1
|
Smith K, Nakaji P, Thomas T, Pinnaduwage D, Wallstrom G, Choi M, Zabramski J, Chen C, Brachman D. Safety and patterns of survivorship in recurrent GBM following resection and surgically targeted radiation therapy: Results from a prospective trial. Neuro Oncol 2022; 24:S4-S15. [PMID: 36322102 PMCID: PMC9629483 DOI: 10.1093/neuonc/noac133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Treatment of recurrent glioblastoma (GBM) remains problematic with survival after additional therapy typically less than 12 months. We prospectively evaluated whether outcomes might be improved with resection plus permanent implantation of a novel radiation device utilizing the gamma-emitting isotope Cs-131 embedded within bioresorbable collagen tiles. METHODS Recurrent histologic GBM were treated in a single-arm trial. Following radiation, the surgical bed was lined with the tiles. Subsequent treatments were at the treating physician's discretion. RESULTS 28 patients were treated (20 at first recurrence, range 1-3). Median age was 58 years, KPS was 80, female:male ratio was 10:18. Methylguanine methyltransferase (MGMT) was methylated in 11%, unmethylated in 18%, and unknown in 71%. Post implant, 17 patients (61%) received ≥1 course of systemic therapy. For all patients, Kaplan-Meier estimates of median time to local failure were 12.1 months, post-implant survival was 10.7 months for all patients and 15.1 months for patients who received systemic therapy; for all patients, median overall survival from diagnosis was 25.0 months (range 9.1-143.1). Sex, age, and number of prior progressions were not statistically significant. Local control was continuously maintained in 46% of patients. Two deaths within 30 days occurred, one from intracranial hemorrhage and one after persistent coma. Three symptomatic adverse events occurred: one wound infection requiring surgery and two late radiation brain injury, resolved non-surgically. CONCLUSION This pre-commercial trial demonstrated acceptable safety and favorable post-treatment local control and survival. The device has received FDA clearance for use in newly diagnosed malignant and all recurrent intracranial neoplasms.
Collapse
Affiliation(s)
- Kris Smith
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Peter Nakaji
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Theresa Thomas
- Radiation Oncology, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Dilini Pinnaduwage
- Radiation Oncology, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Garrick Wallstrom
- Division of Biostatistics, Statistics and Data Corporation, Tempe, Arizona, USA
| | - Mehee Choi
- Radiation Oncology, GT Medical Technologies, Tempe, Arizona, USA
| | - Joseph Zabramski
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Clark Chen
- Department of Neurological Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Brachman
- Department of Radiation Oncology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Radiation Oncology, GT Medical Technologies, Tempe, Arizona, USA
| |
Collapse
|
2
|
Foray C, Barca C, Winkeler A, Wagner S, Hermann S, Schäfers M, Grauer OM, Zinnhardt B, Jacobs AH. Interrogating Glioma-Associated Microglia and Macrophage Dynamics Under CSF-1R Therapy with Multitracer In Vivo PET/MRI. J Nucl Med 2022; 63:1386-1393. [PMID: 35115369 PMCID: PMC9454459 DOI: 10.2967/jnumed.121.263318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Indexed: 01/26/2023] Open
Abstract
Glioma-associated microglia and macrophages (GAMMs) are key players in creating an immunosuppressive microenvironment. They can be efficiently targeted by inhibiting the colony-stimulating factor 1 receptor (CSF-1R). We applied noninvasive PET/CT and PET/MRI using 18F-fluoroethyltyrosine (18F-FET) (amino acid metabolism) and N,N-diethyl-2-[4-(2-18F-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide (18F-DPA-714) (translocator protein) to understand the role of GAMMs in glioma initiation, monitor in vivo therapy-induced GAMM depletion, and observe GAMM repopulation after drug withdrawal. Methods: C57BL/6 mice (n = 44) orthotopically implanted with syngeneic mouse GL261 glioma cells were treated with different regimens using the CSF-1R inhibitor PLX5622 (6-fluoro-N-((5-fluoro-2-methoxypyridin-3-yl)methyl)-5-((5-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl)methyl)pyridin-2-amine) or vehicle, establishing a preconditioning model and a repopulation model, respectively. The mice underwent longitudinal PET/CT and PET/MRI. Results: The preconditioning model indicated similar tumor growth based on MRI (44.5% ± 24.8%), 18F-FET PET (18.3% ± 11.3%), and 18F-DPA-714 PET (16% ± 19.04%) volume dynamics in all groups, suggesting that GAMMs are not involved in glioma initiation. The repopulation model showed significantly reduced 18F-DPA-714 uptake (-45.6% ± 18.4%), significantly reduced GAMM infiltration even after repopulation, and a significantly decreased tumor volume (-54.29% ± 8.6%) with repopulation as measured by MRI, supported by a significant reduction in 18F-FET uptake (-50.2% ± 5.3%). Conclusion: 18F-FET and 18F-DPA-714 PET/MRI allow noninvasive assessment of glioma growth under various regimens of CSF-1R therapy. CSF-1R-mediated modulation of GAMMs may be of high interest as therapy or cotherapy against glioma.
Collapse
Affiliation(s)
- Claudia Foray
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; .,PET Imaging in Drug Design and Development, Münster, Germany
| | - Cristina Barca
- European Institute for Molecular Imaging, University of Münster, Münster, Germany;,PET Imaging in Drug Design and Development, Münster, Germany
| | | | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany;,Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Oliver M. Grauer
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging, University of Münster, Münster, Germany;,PET Imaging in Drug Design and Development, Münster, Germany;,Department of Nuclear Medicine, University Hospital Münster, Münster, Germany;,Biomarkers and Translational Technologies, Neurosciences and Rare Diseases, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland; and
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany;,PET Imaging in Drug Design and Development, Münster, Germany;,Department of Geriatrics with Neurology, Johanniter Hospital, and Centre for Integrated Oncology of the University Hospital Bonn, Bonn, Germany
| |
Collapse
|
3
|
Dono A, Zhu P, Holmes E, Takayasu T, Zhu JJ, Blanco AI, Hsu S, Bhattacharjee MB, Ballester LY, Kim DH, Esquenazi Y, Tandon N. Impacts of genotypic variants on survival following reoperation for recurrent glioblastoma. J Neurooncol 2022; 156:353-363. [PMID: 34997451 PMCID: PMC9338692 DOI: 10.1007/s11060-021-03917-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Recurrent glioblastoma (rGBM) prognosis is dismal. In the absence of effective adjuvant treatments for rGBM, re-resections remain prominent in our arsenal. This study evaluates the impact of reoperation on post-progression survival (PPS) considering rGBM genetic makeup. METHODS To assess the genetic heterogeneity and treatment-related changes (TRC) roles in re-operated or medically managed rGBMs, we compiled demographic, clinical, histopathological, and next-generation genetic sequencing (NGS) characteristics of these tumors from 01/2005 to 10/2019. Survival data and reoperation were analyzed using conventional and random survival forest analysis (RSF). RESULTS Patients harboring CDKN2A/B loss (p = 0.017) and KDR mutations (p = 0.031) had notably shorter survival. Reoperation or bevacizumab were associated with longer PPS (11.2 vs. 7.4-months, p = 0.006; 13.1 vs 6.2, p < 0.001). Reoperated patients were younger, had better performance status and greater initial resection. In 136/273 (49%) rGBMs undergoing re-operation, CDKN2A/B loss (p = 0.03) and KDR mutations (p = 0.02) were associated with shorter survival. In IDH-WT rGBMs with NGS data (n = 166), reoperation resulted in 7.0-month longer survival (p = 0.004) than those managed medically. This reoperation benefit was independently identified by RSF analysis. Stratification analysis revealed that EGFR-mutant, CDKN2A/B-mutant, NF1-WT, and TP53-WT rGBM IDH-WT subgroups benefit most from reoperation (p = 0.03). Lastly, whether or not TRC was prominent at re-operation does not have any significant impact on PPS (10.5 vs. 11.5-months, p = 0.77). CONCLUSIONS Maximal safe re-resection significantly lengthens PPS regardless of genetic makeup, but reoperations are especially beneficial for IDH-WT rGBMs with EGFR and CDKN2A/B mutations with TP53-WT, and NF1-WT. Histopathology at recurrence may be an imperfect gauge of disease severity at progression and the imaging progression may be more reflective of the prognosis.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, TX, USA,Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health, Houston, TX, USA
| | - Ping Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, TX, USA
| | - Emma Holmes
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, TX, USA
| | - Takeshi Takayasu
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health, Houston, TX, USA
| | - Jay-jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, TX, USA,Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Angel I. Blanco
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, TX, USA,Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Sigmund Hsu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, TX, USA,Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Meenakshi B. Bhattacharjee
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health, Houston, TX, USA,Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Leomar Y. Ballester
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health, Houston, TX, USA,Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Dong H. Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, TX, USA,Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, TX, USA,Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, TX, USA,Memorial Hermann Hospital-TMC, Houston, TX, USA,Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA,Department of Neurosurgery, Texas Institute of Restorative Neurotechnology, McGovern Medical School at UT Health, 6400 Fannin Street, Suite 2800, Houston, TX 77030, USA
| |
Collapse
|
4
|
Castellano A, Bailo M, Cicone F, Carideo L, Quartuccio N, Mortini P, Falini A, Cascini GL, Minniti G. Advanced Imaging Techniques for Radiotherapy Planning of Gliomas. Cancers (Basel) 2021; 13:cancers13051063. [PMID: 33802292 PMCID: PMC7959155 DOI: 10.3390/cancers13051063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Michele Bailo
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-0-961-369-4155
| | - Luciano Carideo
- National Cancer Institute, G. Pascale Foundation, 80131 Naples, Italy;
| | - Natale Quartuccio
- A.R.N.A.S. Ospedale Civico Di Cristina Benfratelli, 90144 Palermo, Italy;
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Andrea Falini
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Giuseppe Lucio Cascini
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
5
|
Teyateeti A, Geno CS, Stafford SS, Mahajan A, Yan ES, Merrell KW, Laack NN, Parney IF, Brown PD, Jethwa KR. Does the dural resection bed need to be irradiated? Patterns of recurrence and implications for postoperative radiotherapy for temporal lobe gliomas. Neurooncol Pract 2020; 8:190-198. [PMID: 33898052 DOI: 10.1093/nop/npaa073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Patterns of recurrence and survival with different surgical and radiotherapy (RT) techniques were evaluated to guide RT target volumes for patients with temporal lobe glioma. Methods and Materials This retrospective cohort study included patients with World Health Organization grades II to IV temporal lobe glioma treated with either partial (PTL) or complete temporal lobectomy (CTL) followed by RT covering both the parenchymal and dural resection bed (whole-cavity radiotherapy [WCRT]) or the parenchymal resection bed only (partial-cavity radiotherapy [PCRT]). Patterns of recurrence, progression-free survival (PFS) and overall survival (OS) were evaluated. Results Fifty-one patients were included and 84.3% of patients had high-grade glioma (HGG). CTL and PTL were performed for 11 (21.6%) and 40 (78.4%) patients, respectively. Median RT dose was 60 Gy (range, 40-76 Gy). There were 82.4% and 17.6% of patients who received WCRT and PCRT, respectively. Median follow-up time was 18.4 months (range, 4-161 months). Forty-six patients (90.2%) experienced disease recurrence, most commonly at the parenchymal resection bed (76.5%). No patients experienced an isolated dural recurrence. The median PFS and OS for the PCRT and WCRT cohorts were 8.6 vs 10.8 months (P = .979) and 19.9 vs 18.6 months (P = .859), respectively. PCRT was associated with a lower RT dose to the brainstem, optic, and ocular structures, hippocampus, and pituitary. Conclusion We identified no isolated dural recurrence and similar PFS and OS regardless of postoperative RT volume, whereas PCRT was associated with dose reduction to critical structures. Omission of dural RT may be considered a reasonable alternative approach. Further validation with larger comparative studies is warranted.
Collapse
Affiliation(s)
- Achiraya Teyateeti
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US.,Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Connie S Geno
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, US
| | - Scott S Stafford
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Elizabeth S Yan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Kenneth W Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, US
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, US
| |
Collapse
|
6
|
Robert P, Vives V, Grindel AL, Kremer S, Bierry G, Louin G, Ballet S, Corot C. Contrast-to-Dose Relationship of Gadopiclenol, an MRI Macrocyclic Gadolinium-based Contrast Agent, Compared with Gadoterate, Gadobenate, and Gadobutrol in a Rat Brain Tumor Model. Radiology 2019; 294:117-126. [PMID: 31660804 DOI: 10.1148/radiol.2019182953] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Detection of cerebral lesions at MRI may benefit from a chemically stable and more sensitively detected gadolinium-based contrast agent (GBCA). Gadopiclenol, a macrocyclic GBCA with at least twofold higher relaxivity, is currently undergoing clinical trials in humans. Purpose To determine the relationship between MRI contrast enhancement and the injected dose of gadopiclenol in a glioma rat model compared with those of conventional GBCA at label dose. Materials and Methods Between April and July 2012, 32 rats implanted with C6 glioma received two intravenous injections at a 24-hour interval. The injections were randomly selected among five doses of gadopiclenol (0.025, 0.05, 0.075, 0.1, and 0.2 mmol/kg) and three reference GBCAs (gadoterate meglumine, gadobutrol, and gadobenate dimeglumine) at 0.1 mmol/kg. MRI tumor enhancement was assessed on T1-weighted images before and up to 30 minutes after injection. Two blinded radiologists visually and qualitatively scored contrast enhancement, border delineation, and visualization of tumor morphology. Quantitatively, variations in contrast-to-noise ratio (ΔCNR) between tumor and contralateral parenchyma were calculated at each time point and were compared for each treatment at 5 minutes by using a mixed model after normality test. Results A total of 24 rats underwent the complete protocol (n = 5-7 per group). A linear dose-dependent ΔCNR relationship was observed between 0.025 and 0.1 mmol/kg for gadopiclenol (R 2 = 0.99). No difference in ΔCNR was observed between the three reference GBCAs (P ≥ .55). Gadopiclenol resulted in twofold higher ΔCNR at 0.1 mmol/kg (P < .001 vs gadobutrol and gadoterate, P = .002 vs gadobenate) and similar ΔCNR at 0.05 mmol/kg (P = .56, P > .99, and P = .44 compared with gadobutrol, gadobenate, and gadoterate, respectively). For both readers, 0.05 mmol/kg of gadopiclenol improved contrast enhancement, border delineation, and visualization of tumor morphology (scores > 3 compared with scores between 2 and 3 for the marketed GBCA). Conclusion Gadopiclenol at 0.05 mmol/kg yielded comparable change in contrast-to-noise ratio and morphologic characterization of brain tumors compared with gadobenate, gadoterate, or gadobutrol at 0.1 mmol/kg. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Tweedle in this issue.
Collapse
Affiliation(s)
- Philippe Robert
- From the Department of Research and Innovation, Imaging and Biological Research Division, Guerbet Group, BP57400, 95943 Roissy CDG, France (P.R., V.V., A.L.G., G.L., S.B., C.C.); and Radiologie 2, CHU de Strasbourg, I-Cube, Université de Strasbourg, Strasbourg, France (S.K., G.B.)
| | - Véronique Vives
- From the Department of Research and Innovation, Imaging and Biological Research Division, Guerbet Group, BP57400, 95943 Roissy CDG, France (P.R., V.V., A.L.G., G.L., S.B., C.C.); and Radiologie 2, CHU de Strasbourg, I-Cube, Université de Strasbourg, Strasbourg, France (S.K., G.B.)
| | - Anne-Laure Grindel
- From the Department of Research and Innovation, Imaging and Biological Research Division, Guerbet Group, BP57400, 95943 Roissy CDG, France (P.R., V.V., A.L.G., G.L., S.B., C.C.); and Radiologie 2, CHU de Strasbourg, I-Cube, Université de Strasbourg, Strasbourg, France (S.K., G.B.)
| | - Stéphane Kremer
- From the Department of Research and Innovation, Imaging and Biological Research Division, Guerbet Group, BP57400, 95943 Roissy CDG, France (P.R., V.V., A.L.G., G.L., S.B., C.C.); and Radiologie 2, CHU de Strasbourg, I-Cube, Université de Strasbourg, Strasbourg, France (S.K., G.B.)
| | - Guillaume Bierry
- From the Department of Research and Innovation, Imaging and Biological Research Division, Guerbet Group, BP57400, 95943 Roissy CDG, France (P.R., V.V., A.L.G., G.L., S.B., C.C.); and Radiologie 2, CHU de Strasbourg, I-Cube, Université de Strasbourg, Strasbourg, France (S.K., G.B.)
| | - Gaelle Louin
- From the Department of Research and Innovation, Imaging and Biological Research Division, Guerbet Group, BP57400, 95943 Roissy CDG, France (P.R., V.V., A.L.G., G.L., S.B., C.C.); and Radiologie 2, CHU de Strasbourg, I-Cube, Université de Strasbourg, Strasbourg, France (S.K., G.B.)
| | - Sébastien Ballet
- From the Department of Research and Innovation, Imaging and Biological Research Division, Guerbet Group, BP57400, 95943 Roissy CDG, France (P.R., V.V., A.L.G., G.L., S.B., C.C.); and Radiologie 2, CHU de Strasbourg, I-Cube, Université de Strasbourg, Strasbourg, France (S.K., G.B.)
| | - Claire Corot
- From the Department of Research and Innovation, Imaging and Biological Research Division, Guerbet Group, BP57400, 95943 Roissy CDG, France (P.R., V.V., A.L.G., G.L., S.B., C.C.); and Radiologie 2, CHU de Strasbourg, I-Cube, Université de Strasbourg, Strasbourg, France (S.K., G.B.)
| |
Collapse
|