1
|
Walter T, Foray G, Mohammed-Brahim N, Levé C, Mandonnet E, Gayat E. Mini-strokes after awake surgery for glioma resection: are there anesthesia related factors? Acta Neurochir (Wien) 2024; 166:310. [PMID: 39085454 DOI: 10.1007/s00701-024-06195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Awake surgery is now a common approach for the resection of glioma. One of the surgical complications is mini-stroke which take the form of periresectional small areas of brain ischemic lesions. The main objective of this study is to evaluate the association between factors related to anesthetic management and the risk of mini-stroke, in awake surgery for glioma resection. METHODS In this single-center retrospective study, all patients who were operated on, between 2011 and 2022, in awake conditions for a glioma resection, were retrospectively included. The studied anesthetic parameters included hemodynamic variables, fluid intake and urinary output. The primary endpoint was the presence of mini-stroke on a magnetic resonance imaging performed within the first 48 h postoperatively. RESULTS A total of 176 surgeries were included. Mini-stroke was present in 120/171 surgeries (70%), with a median volume of 1.2 interquartile range [0.4-2.2] cubic centimeters (cc). In a multivariable analysis, only the per operative urinary output was significantly associated with the incidence of postoperative mini-strokes (adjusted odd-ratio 0.65, 95% confidence interval 0.45-0.94, p = 0.02). No variables related to the anesthetic management were associated with the volume of postoperative mini-strokes. In particular, the time spent below 90% of the baseline systolic blood pressure was not associated with either the risk or the volume of mini-strokes. CONCLUSION During awake surgery for glioma resection, among several anesthesia related factors, only the per operative urinary output was associated with the incidence of postoperative mini-stroke.
Collapse
Affiliation(s)
- Thaïs Walter
- Department of Anesthesiology and Critical Care and Burn Unit, Saint-Louis and Lariboisière Hospitals, FHU PROMICE, DMU Parabol, Paris, France.
- Université Paris Cité, Paris, France.
- UMR-S 942 (MASCOT), INSERM, Paris, France.
| | - Grégoire Foray
- Department of Anesthesiology and Critical Care and Burn Unit, Saint-Louis and Lariboisière Hospitals, FHU PROMICE, DMU Parabol, Paris, France
| | | | - Charlotte Levé
- Department of Anesthesiology and Critical Care and Burn Unit, Saint-Louis and Lariboisière Hospitals, FHU PROMICE, DMU Parabol, Paris, France
| | - Emmanuel Mandonnet
- Service of Neurosurgery, Lariboisière Hospital, AP/HP Nord, Paris, France
- Université Paris Cité, Paris, France
| | - Etienne Gayat
- Department of Anesthesiology and Critical Care and Burn Unit, Saint-Louis and Lariboisière Hospitals, FHU PROMICE, DMU Parabol, Paris, France
- Université Paris Cité, Paris, France
- UMR-S 942 (MASCOT), INSERM, Paris, France
| |
Collapse
|
2
|
Yamamoto A, Kijima N, Utsugi R, Mrakami K, Kuroda H, Tachi T, Hirayama R, Okita Y, Kagawa N, Kishima H. Awake surgery for a deaf patient using sign language: A case report. Surg Neurol Int 2024; 15:167. [PMID: 38840599 PMCID: PMC11152539 DOI: 10.25259/sni_52_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/28/2024] [Indexed: 06/07/2024] Open
Abstract
Background Although awake surgery is the gold standard for resecting brain tumors in eloquent regions, patients with hearing impairment require special consideration during intraoperative tasks. Case Description We present a case of awake surgery using sign language in a 45-year-old right-handed native male patient with hearing impairment and a neoplastic lesion in the left frontal lobe, pars triangularis (suspected to be a low-grade glioma). The patient primarily communicated through sign language and writing but was able to speak at a sufficiently audible level through childhood training. Although the patient remained asymptomatic, the tumors gradually grew in size. Awake surgery was performed for tumors resection. After the craniotomy, the patient was awake, and brain function mapping was performed using tasks such as counting, picture naming, and reading. A sign language-proficient nurse facilitated communication using sign language and the patient vocally responded. Intraoperative tasks proceeded smoothly without speech arrest or verbal comprehension difficulties during electrical stimulation of the tumor-adjacent areas. Gross total tumor resection was achieved, and the patient exhibited no apparent complications. Pathological examination revealed a World Health Organization grade II oligodendroglioma with an isocitrate dehydrogenase one mutant and 1p 19q codeletion. Conclusion Since the patient in this case had no dysphonia due to training from childhood, the task was presented in sign language, and the patient responded vocally, which enabled a safe operation. Regarding awake surgery in patients with hearing impairment, safe tumor resection can be achieved by performing intraoperative tasks depending on the degree of hearing impairment and dysphonia.
Collapse
Affiliation(s)
| | | | - Reina Utsugi
- Department of Neurosurgery, Osaka University, Suita, Japan
| | - Koki Mrakami
- Department of Neurosurgery, Osaka University, Suita, Japan
| | - Hideki Kuroda
- Department of Neurosurgery, Osaka University, Suita, Japan
| | - Tetsuro Tachi
- Department of Neurosurgery, Osaka University, Suita, Japan
| | | | - Yoshiko Okita
- Department of Neurosurgery, Osaka University, Suita, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
3
|
Kram L, Neu B, Schroeder A, Wiestler B, Meyer B, Krieg SM, Ille S. Toward a systematic grading for the selection of patients to undergo awake surgery: identifying suitable predictor variables. Front Hum Neurosci 2024; 18:1365215. [PMID: 38756845 PMCID: PMC11096515 DOI: 10.3389/fnhum.2024.1365215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background Awake craniotomy is the standard of care for treating language eloquent gliomas. However, depending on preoperative functionality, it is not feasible in each patient and selection criteria are highly heterogeneous. Thus, this study aimed to identify broadly applicable predictor variables allowing for a more systematic and objective patient selection. Methods We performed post-hoc analyses of preoperative language status, patient and tumor characteristics including language eloquence of 96 glioma patients treated in a single neurosurgical center between 05/2018 and 01/2021. Multinomial logistic regression and stepwise variable selection were applied to identify significant predictors of awake surgery feasibility. Results Stepwise backward selection confirmed that a higher number of paraphasias, lower age, and high language eloquence level were suitable indicators for an awake surgery in our cohort. Subsequent descriptive and ROC-analyses indicated a cut-off at ≤54 years and a language eloquence level of at least 6 for awake surgeries, which require further validation. A high language eloquence, lower age, preexisting semantic and phonological aphasic symptoms have shown to be suitable predictors. Conclusion The combination of these factors may act as a basis for a systematic and standardized grading of patients' suitability for an awake craniotomy which is easily integrable into the preoperative workflow across neurosurgical centers.
Collapse
Affiliation(s)
- Leonie Kram
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Beate Neu
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Axel Schroeder
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Benedikt Wiestler
- Section of Diagnostic and Interventional Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
4
|
Ramakrishnan PK, Saeed F, Thomson S, Corns R, Mathew RK, Sivakumar G. Awake craniotomy for high-grade gliomas - a prospective cohort study in a UK tertiary-centre. Surgeon 2024; 22:e3-e12. [PMID: 38008681 DOI: 10.1016/j.surge.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Studies from the UK reporting on awake craniotomy (AC) include a heterogenous group of patients which limit the evaluation of the true impact of AC in high-grade glioma (HGG) patients. This study aims to report solely the experience and outcomes of AC for HGG surgery from our centre. METHODS A prospective review of all patients who underwent AC for HGG from 2013 to 2019 were performed. Data on patient characteristics including but not limited to demographics, pre- and post-operative Karnofsky performance status (KPS), tumour location and volume, type of surgery, extent of resection (EOR), tumour histopathology, intra- and post-operative complications, morbidity, mortality, disease recurrence, progression-free survival (PFS) and overall survival (OS) from the time of surgery were collected. RESULTS Fifteen patients (6 males; 9 females; 17 surgeries) underwent AC for HGG (median age = 55 years). Two patients underwent repeat surgeries due to disease recurrence. Median pre- and post-operative KPS score was 90 (range:80-100) and 90 (range:60-100), respectively. The EOR ranges from 60 to 100 % with a minimum of 80 % achieved in 81.3 % cases. Post-operative complications include focal seizures (17.6 %), transient aphasia/dysphasia (17.6 %), permanent motor deficit (11.8 %), transient motor deficit (5.9 %) and transient sensory disturbance (5.9 %). There were no surgery-related mortality or post-operative infection. The median PFS and OS were 13 (95%CI 5-78) and 30 (95%CI 21-78) months, respectively. CONCLUSION This is the first study in the UK to solely report outcomes of AC for HGG surgery. Our data demonstrates that AC for HGG in eloquent region is safe, feasible and provides comparable outcomes to those reported in the literature.
Collapse
Affiliation(s)
- Piravin Kumar Ramakrishnan
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Fozia Saeed
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Simon Thomson
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Robert Corns
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Ryan K Mathew
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom; School of Medicine, University of Leeds, Woodhouse, Leeds LS2 9JT, United Kingdom.
| | - Gnanamurthy Sivakumar
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom.
| |
Collapse
|
5
|
Mofatteh M, Mashayekhi MS, Arfaie S, Wei H, Kazerouni A, Skandalakis GP, Pour-Rashidi A, Baiad A, Elkaim L, Lam J, Palmisciano P, Su X, Liao X, Das S, Ashkan K, Cohen-Gadol AA. Awake craniotomy during pregnancy: A systematic review of the published literature. Neurosurg Rev 2023; 46:290. [PMID: 37910275 PMCID: PMC10620271 DOI: 10.1007/s10143-023-02187-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Neurosurgical pathologies in pregnancy pose significant complications for the patient and fetus, and physiological stressors during anesthesia and surgery may lead to maternal and fetal complications. Awake craniotomy (AC) can preserve neurological functions while reducing exposure to anesthetic medications. We reviewed the literature investigating AC during pregnancy. PubMed, Scopus, and Web of Science databases were searched from the inception to February 7th, 2023, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Studies in English investigating AC in pregnant patients were included in the final analysis. Nine studies composed of nine pregnant patients and ten fetuses (one twin-gestating patient) were included. Glioma was the most common pathology reported in six (66.7%) patients. The frontal lobe was the most involved region (4 cases, 44.4%), followed by the frontoparietal region (2 cases, 22.2%). The awake-awake-awake approach was the most common protocol in seven (77.8%) studies. The shortest operation time was two hours, whereas the longest one was eight hours and 29 min. The mean gestational age at diagnosis was 13.6 ± 6.5 (2-22) and 19.6 ± 6.9 (9-30) weeks at craniotomy. Seven (77.8%) studies employed intraoperative fetal heart rate monitoring. None of the AC procedures was converted to general anesthesia. Ten healthy babies were delivered from patients who underwent AC. In experienced hands, AC for resection of cranial lesions of eloquent areas in pregnant patients is safe and feasible and does not alter the pregnancy outcome.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- Neuro International Collaboration (NIC), London, UK.
| | - Mohammad Sadegh Mashayekhi
- Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, ON, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Neuro International Collaboration (NIC), Ottawa, ON, Canada
| | - Saman Arfaie
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Neuro International Collaboration (NIC), Montreal, QC, Canada
| | - Hongquan Wei
- Department of 120 Emergency Command Center, Foshan Sanshui District People's Hospital, Foshan, Guangdong Province, China
| | - Arshia Kazerouni
- Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Georgios P Skandalakis
- First Department of Neurosurgery, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ahmad Pour-Rashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Abed Baiad
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Lior Elkaim
- Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack Lam
- Department of 120 Emergency Command Center, Foshan Sanshui District People's Hospital, Foshan, Guangdong Province, China
| | | | - Xiumei Su
- Obstetrical Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuxing Liao
- Department of Neurosurgery, Foshan Sanshui District People's Hospital, Foshan, China
- Department of Surgery of Cerebrovascular Diseases, Foshan First People's Hospital, Foshan, China
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Keyoumars Ashkan
- Neuro International Collaboration (NIC), London, UK
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- King's Health Partners Academic Health Sciences Centre, London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aaron A Cohen-Gadol
- The Neurosurgical Atlas, Carmel, IN, USA
- Department of Neurological Surgery, Indiana University, Indianapolis, IN, USA
- Neuro International Collaboration, Indianapolis, IN, USA
| |
Collapse
|
6
|
Alanzi AK, Hakmi S, Adeel S, Ghazzal SY. Anesthesia for awake craniotomy: a case report. J Surg Case Rep 2023; 2023:rjad521. [PMID: 37724066 PMCID: PMC10505513 DOI: 10.1093/jscr/rjad521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Awake craniotomy (AC) is a neurosurgical technique that enables the precise localization of functional neural networks through intraoperative brain mapping and real-time monitoring. This operative method has been popularized in recent years due to decreased postoperative morbidities. We present a case of 31-year-old female who was presented with episodes of generalized tonic colonic seizures. She had a history of recurring seizures. Upon further investigations, she was diagnosed with brain space-occupying lesions initially suspected as low-grade glioma. Considering the lesion site, the patient was deemed a suitable candidate for an AC. To achieve conscious sedation, the patient received infusions of remifentanil and propofol at varying rates. During the procedure, the patient was under sedation and was regularly tested for response to predetermined commands. The tumor was successfully excised by using a combination of local anesthesia on the scalp and by the administration of propofol and boluses through a systemic infusion.
Collapse
Affiliation(s)
- Ahmed Khaled Alanzi
- Anesthesia Department, King Hamad University Hospital, Building 2435, Road 2835, Block 228, P.O Box 24343, Busaiteen, Kingdom of Bahrain
| | - Samah Hakmi
- Anesthesia Department, King Hamad University Hospital, Building 2435, Road 2835, Block 228, P.O Box 24343, Busaiteen, Kingdom of Bahrain
| | - Shahid Adeel
- Anesthesia Department, King Hamad University Hospital, Building 2435, Road 2835, Block 228, P.O Box 24343, Busaiteen, Kingdom of Bahrain
| | - Samar Yaser Ghazzal
- Anesthesia Department, King Hamad University Hospital, Building 2435, Road 2835, Block 228, P.O Box 24343, Busaiteen, Kingdom of Bahrain
| |
Collapse
|
7
|
Wong LS, St George J, Agyemang K, Grivas A, Houston D, Foo SY, Mullan T. Outcomes of Fluorescence-Guided vs White Light Resection of Glioblastoma in a Single Institution. Cureus 2023; 15:e42695. [PMID: 37649945 PMCID: PMC10465263 DOI: 10.7759/cureus.42695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 09/01/2023] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant primary brain tumour and confers a very poor prognosis. Maximal safe resection of tumour is the goal of neurosurgical intervention and may be more easily achieved through the use of surgical adjuncts such as fluorescence-guided surgery (FGS). 5-Aminolevulinic acid (5-ALA) accumulates in GBM tissue and fluoresce red, distinguishing tumour cells from the surrounding tissue and therefore making resection easier. 5-ALA-guided resection in GBM has been shown to increase resection rates and prolong progression-free survival without impacting post-operative morbidity. Radiotherapy and concomitant chemotherapy also improve survival in GBM. Other factors such as patient age and molecular status of the tumour also impact prognosis. Aims The aim of this study was to compare the outcomes of 5-ALA vs white light-guided resection for glioblastoma in the west of Scotland. Methods This was a retrospective analysis of baseline characteristics (age, sex, tumour molecular markers, radiotherapy, chemotherapy, anatomical location of tumour and treatment group) and outcomes (mortality, survival, degree of resection and performance status) of 239 patients who underwent primary resection of glioblastoma over a four-year period (2017-2020). A variety of statistical methods were used to analyse the relationship between each variable and surgical technique; multivariate Cox regression and the Kaplan-Meier method were used in survival analysis. Results 5-ALA-guided resection substantially improved resection rates (74.0% vs 40.2%). Mortality at 15 months was 5.1% lower in the 5-ALA group (52.0% vs 57.1%, p = 0.53), and patients lived an average of 68 days longer compared to the white light group (444 days vs 376 days, p = 0.21). There were negligible differences between treatment groups in terms of post-operative performance status (PS) and post-operative complications. In our multivariate Cox regression model, six factors were statistically significant at a level of p ≤ 0.05: age, radiotherapy, chemotherapy, O(6)-methylguanine-DNA methyltransferase (MGMT) methylation, anatomical location and >90% resection. Receiving chemotherapy and radiotherapy, MGMT methylation and undergoing >90% resection conferred a survival benefit at 15 months. Older age and multi-focal disease were related to a worsened mortality rate. Undergoing radiotherapy and maximal resection were the two greatest predictors of improved survival, reducing mortality risk by 58% and 51%, respectively. Conclusion 5-ALA-guided resection improved resection rates without impacting post-operative morbidity. 5-ALA-guided resection was associated with improved survival and lower mortality rate, but this was not statistically significant. Receiving chemoradiotherapy, MGMT methylation and undergoing maximal resection conferred a survival benefit, whilst older age and multi-focal disease were associated with a poorer prognosis.
Collapse
Affiliation(s)
- Li Siang Wong
- General Medicine, Royal Alexandra Hospital, Paisley, GBR
| | | | - Kevin Agyemang
- Neurosurgery, Queen Elizabeth University Hospital, Glasgow, GBR
| | | | - Deborah Houston
- Neurosurgery, Queen Elizabeth University Hospital, Glasgow, GBR
| | - Sin Yee Foo
- Radiology, Queen Elizabeth University Hospital, Glasgow, GBR
| | - Thomas Mullan
- General Medicine, Royal Alexandra Hospital, Paisley, GBR
| |
Collapse
|
8
|
Ius T, Sabatino G, Panciani PP, Fontanella MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R, Catapano G, Costantino G, Della Puppa A, Di Meco F, Gagliardi F, Garbossa D, Germanò AF, Iacoangeli M, Mortini P, Olivi A, Pessina F, Pignotti F, Pinna G, Raco A, Sala F, Signorelli F, Sarubbo S, Skrap M, Spena G, Somma T, Sturiale C, Angileri FF, Esposito V. Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review. J Neurooncol 2023; 162:267-293. [PMID: 36961622 PMCID: PMC10167129 DOI: 10.1007/s11060-023-04274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.
Collapse
Affiliation(s)
- Tamara Ius
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
| | - Marco Maria Fontanella
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
- Neurology Unit, Hospital of Castelfranco Veneto, 31033, Castelfranco Veneto, Italy
| | - Antonella Castellano
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico - San Marco" University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Francesco Belotti
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe Catapano
- Division of Neurosurgery, Department of Neurological Sciences, Ospedale del Mare, Naples, Italy
| | | | - Alessandro Della Puppa
- Neurosurgical Clinical Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Torino, Italy
| | | | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica Delle Marche, Azienda Ospedali Riuniti, Ancona, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| | - Fabrizio Pignotti
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonino Raco
- Division of Neurosurgery, Department of NESMOS, AOU Sant'Andrea, Sapienza University, Rome, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134, Verona, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neurosurgery Unit, University "Aldo Moro", 70124, Bari, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Miran Skrap
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery "Giampaolo Cantore"-IRCSS Neuromed, Pozzilli, Italy
- Department of Human, Neurosciences-"Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
9
|
Willman M, Willman J, Figg J, Dioso E, Sriram S, Olowofela B, Chacko K, Hernandez J, Lucke-Wold B. Update for astrocytomas: medical and surgical management considerations. EXPLORATION OF NEUROSCIENCE 2023; 2:1-26. [PMID: 36935776 PMCID: PMC10019464 DOI: 10.37349/en.2023.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/10/2022] [Indexed: 02/25/2023]
Abstract
Astrocytomas include a wide range of tumors with unique mutations and varying grades of malignancy. These tumors all originate from the astrocyte, a star-shaped glial cell that plays a major role in supporting functions of the central nervous system (CNS), including blood-brain barrier (BBB) development and maintenance, water and ion regulation, influencing neuronal synaptogenesis, and stimulating the immunological response. In terms of epidemiology, glioblastoma (GB), the most common and malignant astrocytoma, generally occur with higher rates in Australia, Western Europe, and Canada, with the lowest rates in Southeast Asia. Additionally, significantly higher rates of GB are observed in males and non-Hispanic whites. It has been suggested that higher levels of testosterone observed in biological males may account for the increased rates of GB. Hereditary syndromes such as Cowden, Lynch, Turcot, Li-Fraumeni, and neurofibromatosis type 1 have been linked to increased rates of astrocytoma development. While there are a number of specific gene mutations that may influence malignancy or be targeted in astrocytoma treatment, O 6-methylguanine-DNA methyltransferase (MGMT) gene function is an important predictor of astrocytoma response to chemotherapeutic agent temozolomide (TMZ). TMZ for primary and bevacizumab in the setting of recurrent tumor formation are two of the main chemotherapeutic agents currently approved in the treatment of astrocytomas. While stereotactic radiosurgery (SRS) has debatable implications for increased survival in comparison to whole-brain radiotherapy (WBRT), SRS demonstrates increased precision with reduced radiation toxicity. When considering surgical resection of astrocytoma, the extent of resection (EoR) is taken into consideration. Subtotal resection (STR) spares the margins of the T1 enhanced magnetic resonance imaging (MRI) region, gross total resection (GTR) includes the margins, and supramaximal resection (SMR) extends beyond the margin of the T1 and into the T2 region. Surgical resection, radiation, and chemotherapy are integral components of astrocytoma treatment.
Collapse
Affiliation(s)
- Matthew Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Figg
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Emma Dioso
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Sai Sriram
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bankole Olowofela
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin Chacko
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jairo Hernandez
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
10
|
Foreman M, Patel A, Sheth S, Reddy A, Lucke-Wold B. Diabetes Mellitus Management in the Context of Cranial Tumors. BOHR INTERNATIONAL JOURNAL OF NEUROLOGY AND NEUROSCIENCE 2022; 1:29-39. [PMID: 36700856 PMCID: PMC9872258 DOI: 10.54646/bijnn.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The study of the relationship between cancer and diabetes mellitus (DM) has been under investigation for many decades. Particularly in the field of neurology and neurosurgery, increasing emphasis has been put on the examination of comorbid DM in patients with cranial tumors. Namely, as the most common and invasive type of malignant adult brain tumor, glioblastoma (GBS) has been the focus of said research. Several mechanisms have been described in the attempt to elucidate the underlying association between DM and GBS, with the metabolic phenomenon known as the Warburg effect and its consequential downstream effects serving as the resounding culprits in recent literature. Since the effect seen in cancers like GBS exploits an upregulated form of aerobic glycolysis, the role of a sequela of DM, known as hyperglycemia, will be investigated. In particular, in the treatment of GBS, surgical resection and subsequent chemotherapy and/or radiotherapy are used in conjunction with corticosteroid therapy, the latter of which has been linked to hyperglycemia. Unsurprisingly, comorbid DM patients are significantly susceptible to this disposition. Further, this fact is reflected in recent literature that demonstrates the impact of hyperglycemia on cancer advancement and patient outcomes in several preclinical and clinical studies. Thus, this review will aim to underline the significance of diabetes and glycemic control via standard-of-care treatments such as metformin administration, as well as to describe emerging treatments such as the signaling modulation of insulin-like growth factor and the employment of the ketogenic diet.
Collapse
Affiliation(s)
- Marco Foreman
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Aashay Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Sohum Sheth
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Akshay Reddy
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
11
|
What surgical approach for left-sided eloquent glioblastoma: biopsy, resection under general anesthesia or awake craniotomy? J Neurooncol 2022; 160:445-454. [DOI: 10.1007/s11060-022-04163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
12
|
Surgery for Recurrent Glioblastoma Multiforme: A Retrospective Case Control Study. World Neurosurg 2022; 166:e624-e631. [PMID: 35870781 DOI: 10.1016/j.wneu.2022.07.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The role of surgery in recurrent glioblastoma multiforme (GBM) remains a controversial topic. The goal of this study was to perform a case control analysis including time to tumor recurrence as an additional prognostic factor in order to determine which patients benefit most from repeat surgery. METHODS Our brain tumor database was reviewed over a 10-year period for all adult (≥18 years old) patients with primary isocitrate dehydrogenase wildtype GBM who received surgery for recurrent disease. These patients were then age, sex, and treatment matched to case controls from our institution who received medical therapy for recurrent disease. RESULTS A total of 174 adult patients with GBM were included in the study, 87 patients who received surgery for recurrent GBM (surgery cohort) and 87 patients who did not receive surgery for recurrent GBM (nonsurgery cohort). The surgery cohort had longer overall survival (P = 0.0003) and postrecurrence survival (P = 0.001) than the nonsurgery cohort. When the surgery cohort was split into 2 groups on the basis of time to tumor recurrence, the long time to recurrence group (>6 months) demonstrated significantly increased survival compared with the short time to recurrence group (P < 0.0001). Multivariate analysis of both cohorts demonstrated surgery for recurrent GBM was independently significant after adjusting for age, Karnofsky Performance Scale, and time to tumor recurrence (P < 0.0001). CONCLUSIONS Surgery for recurrent GBM leads to improved survival independent of age, Karnofsky Performance Scale, and time to tumor recurrence. Patients with time to tumor recurrence >6 months benefit most from additional surgery.
Collapse
|
13
|
Fiore G, Abete-Fornara G, Forgione A, Tariciotti L, Pluderi M, Borsa S, Bana C, Cogiamanian F, Vergari M, Conte V, Caroli M, Locatelli M, Bertani GA. Indication and eligibility of glioma patients for awake surgery: A scoping review by a multidisciplinary perspective. Front Oncol 2022; 12:951246. [PMID: 36212495 PMCID: PMC9532968 DOI: 10.3389/fonc.2022.951246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Awake surgery (AS) permits intraoperative mapping of cognitive and motor functions, allowing neurosurgeons to tailor the resection according to patient functional boundaries thus preserving long-term patient integrity and maximizing extent of resection. Given the increased risks of the awake scenario, the growing importance of AS in surgical practice favored the debate about patient selection concerning both indication and eligibility criteria. Nonetheless, a systematic investigation is lacking in the literature. Objective To provide a scoping review of the literature concerning indication and eligibility criteria for AS in patients with gliomas to answer the questions:1) "What are the functions mostly tested during AS protocols?" and 2) "When and why should a patient be excluded from AS?". Materials and methods Pertinent studies were retrieved from PubMed, PsycArticles and Cochrane Central Register of Controlled Trials (CENTRAL), published until April 2021 according to the PRISMA Statement Extension for Scoping Reviews. The retrieved abstracts were checked for the following features being clearly stated: 1) the population described as being composed of glioma(LGG or HGG) patients; 2) the paper had to declare which cognitive or sensorimotor function was tested, or 2bis)the decisional process of inclusion/exclusion for AS had to be described from at least one of the following perspectives: neurosurgical, neurophysiological, anesthesiologic and psychological/neuropsychological. Results One hundred and seventy-eight studies stated the functions being tested on 8004 patients. Language is the main indication for AS, even if tasks and stimulation techniques changed over the years. It is followed by monitoring of sensorimotor and visuospatial pathways. This review demonstrated an increasing interest in addressing other superior cognitive functions, such as executive functions and emotions. Forty-five studies on 2645 glioma patients stated the inclusion/exclusion criteria for AS eligibility. Inability to cooperate due to psychological disorder(i.e. anxiety),severe language deficits and other medical conditions(i.e.cardiovascular diseases, obesity, etc.)are widely reported as exclusion criteria for AS. However, a very few papers gave scale exact cut-off. Likewise, age and tumor histology are not standardized parameters for patient selection. Conclusion Given the broad spectrum of functions that might be safely and effectively monitored via AS, neurosurgeons and their teams should tailor intraoperative testing on patient needs and background as well as on tumor location and features. Whenever the aforementioned exclusion criteria are not fulfilled, AS should be strongly considered for glioma patients.
Collapse
Affiliation(s)
- Giorgio Fiore
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giorgia Abete-Fornara
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arianna Forgione
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Leonardo Tariciotti
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mauro Pluderi
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Borsa
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Bana
- Department of Neuropathophysiology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Filippo Cogiamanian
- Department of Neuropathophysiology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vergari
- Department of Neuropathophysiology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Conte
- Neuro Intensive Care Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Caroli
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Locatelli
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulio Andrea Bertani
- Department of Neurosurgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Giulio Andrea Bertani,
| |
Collapse
|
14
|
Steininger K, Kahl KH, Konietzko I, Wolfert C, Motov S, Krauß PE, Bröcheler T, Hadrawa M, Sommer B, Stüben G, Shiban E. Intraoperative radiotherapy during awake craniotomies: preliminary results of a single-center case series. Neurosurg Rev 2022; 45:3657-3663. [PMID: 35881316 DOI: 10.1007/s10143-022-01838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022]
Abstract
Awake craniotomies are performed to avoid postoperative neurological deficits when resecting lesions in the eloquent cortex, especially the speech area. Intraoperative radiotherapy (IORT) has recently focused on optimizing the oncological treatment of primary malignant brain tumors and metastases. Herein, for the first time, we present preliminary results of IORT in the setting of awake craniotomies. From 2021 to 2022, all patients undergoing awake craniotomies for tumor resection combined with IORT were analyzed retrospectively. Demographical and clinical data, operative procedure, and treatment-related complications were evaluated. Five patients were identified (age (mean ± standard deviation (SD): 65 ± 13.5 years (y)). A solid left frontal metastasis was detected in the first patient (female, 49 y). The second patient (male, 72 y) presented with a solid metastasis on the left parietal lobe. The third patient (male, 52 y) was diagnosed with a left temporoparietal metastasis. Patient four (male, 74 y) was diagnosed with a high-grade glioma on the left frontal lobe. A metastasis on the left temporooccipital lobe was detected in the fifth patient (male, 78 y). After awake craniotomy and macroscopic complete tumor resection, intraoperative tumor bed irradiation was carried out with 50 kV x-rays and a total of 20 Gy for 16.7 ± 2.5 min. During a mean follow-up of 6.3 ± 2.6 months, none of the patients developed any surgery- or IORT-related complications or disabling permanent neurological deficits. Intraoperative radiotherapy in combination with awake craniotomy seems to be feasible and safe.
Collapse
Affiliation(s)
- K Steininger
- Department of Neurosurgery, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - K H Kahl
- Department of Radiation Therapy, University Hospital Augsburg, Augsburg, Germany
| | - I Konietzko
- Department of Neurosurgery, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - C Wolfert
- Department of Neurosurgery, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - S Motov
- Department of Neurosurgery, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - P E Krauß
- Department of Neurosurgery, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - T Bröcheler
- Department of Anesthesia, University Hospital Augsburg, Augsburg, Germany
| | - M Hadrawa
- Department of Anesthesia, University Hospital Augsburg, Augsburg, Germany
| | - B Sommer
- Department of Neurosurgery, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - G Stüben
- Department of Radiation Therapy, University Hospital Augsburg, Augsburg, Germany
| | - E Shiban
- Department of Neurosurgery, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| |
Collapse
|
15
|
Kurdi M, Moshref RH, Katib Y, Faizo E, Najjar AA, Bahakeem B, Bamaga AK. Simple approach for the histomolecular diagnosis of central nervous system gliomas based on 2021 World Health Organization Classification. World J Clin Oncol 2022; 13:567-576. [PMID: 36157161 PMCID: PMC9346424 DOI: 10.5306/wjco.v13.i7.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The classification of central nervous system (CNS) glioma went through a sequence of developments, between 2006 and 2021, started with only histological approach then has been aided with a major emphasis on molecular signatures in the 4th and 5th editions of the World Health Organization (WHO). The recent reformation in the 5th edition of the WHO classification has focused more on the molecularly defined entities with better characterized natural histories as well as new tumor types and subtypes in the adult and pediatric populations. These new subclassified entities have been incorporated in the 5th edition after the continuous exploration of new genomic, epigenomic and transcriptomic discovery. Indeed, the current guidelines of 2021 WHO classification of CNS tumors and European Association of Neuro-Oncology (EANO) exploited the molecular signatures in the diagnostic approach of CNS gliomas. Our current review presents a practical diagnostic approach for diffuse CNS gliomas and circumscribed astrocytomas using histomolecular criteria adopted by the recent WHO classification. We also describe the treatment strategies for these tumors based on EANO guidelines.
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Rana H Moshref
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Jeddah 213733, Saudi Arabia
| | - Yousef Katib
- Department of Radiology, Faculty of Medicine, Taibah University, Almadinah Almunawwarah 213733, Saudi Arabia
| | - Eyad Faizo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Tabuk University, Tabuk 213733, Saudi Arabia
| | - Ahmed A Najjar
- College of Medicine, Taibah University, Almadinah Almunawwarah 213733, Saudi Arabia
| | - Basem Bahakeem
- Faculty of Medicine, Umm-Alqura University, Makkah 213733, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Pediatric, Neuromuscular Medicine Unit, Faculty of Medicine and King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| |
Collapse
|
16
|
Samandouras G. Extended testing for cognition: has awake brain mapping moved to the next level? Acta Neurochir (Wien) 2022; 164:173-176. [PMID: 34757476 DOI: 10.1007/s00701-021-05010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Affiliation(s)
- George Samandouras
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
17
|
Clavreul A, Aubin G, Delion M, Lemée JM, Ter Minassian A, Menei P. What effects does awake craniotomy have on functional and survival outcomes for glioblastoma patients? J Neurooncol 2021; 151:113-121. [PMID: 33394262 DOI: 10.1007/s11060-020-03666-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Neurosurgeons adopt several different surgical approaches to deal with glioblastomas (GB) located in or near eloquent areas. Some attempt maximal safe resection by awake craniotomy (AC), but doubts persist concerning the real benefits of this type of surgery in this situation. We performed a retrospective study to evaluate the extent of resection (EOR), functional and survival outcomes after AC of patients with GB in critical locations. METHODS Forty-six patients with primary GB treated with the Stupp regimen between 2004 and 2019, for whom brain mapping was feasible, were included. We assessed EOR, postoperative language and/or motor deficits three months after AC, progression-free survival (PFS) and overall survival (OS). RESULTS Complete resection was achieved in 61% of the 46 GB patients. The median PFS was 6.8 months (CI 6.1; 9.7) and the median OS was 17.6 months (CI 14.8; 34.1). Three months after AC, more than half the patients asymptomatic before surgery remained asymptomatic, and one third of patients with symptoms before surgery experienced improvements in language, but not motor functions. The risk of postoperative deficits was higher in patients with preoperative deficits or incomplete resection. Furthermore, the presence of postoperative deficits was an independent predictive factor for shorter PFS. CONCLUSION AC is an option for the resection of GB in critical locations. The observed survival outcomes are typical for GB patients in the Stupp era. However, the success of AC in terms of the recovery or preservation of language and/or motor functions cannot be guaranteed, given the aggressiveness of the tumor.
Collapse
Affiliation(s)
- Anne Clavreul
- Université d'Angers, CHU d'Angers, CRCINA, Angers, France
- Département de Neurochirurgie, CHU Angers, Angers, France
| | - Ghislaine Aubin
- Département de Neurologie, CHU Angers, Angers, France
- Les Capucins, Centre de Rééducation et Réadaptation Fonctionnelle Adulte et Pédiatrique, Angers, France
| | | | - Jean-Michel Lemée
- Université d'Angers, CHU d'Angers, CRCINA, Angers, France
- Département de Neurochirurgie, CHU Angers, Angers, France
| | | | - Philippe Menei
- Université d'Angers, CHU d'Angers, CRCINA, Angers, France.
- Département de Neurochirurgie, CHU Angers, Angers, France.
| |
Collapse
|