3
|
Wu L, Wu W, Zhang J, Zhao Z, Li L, Zhu M, Wu M, Wu F, Zhou F, Du Y, Chai RC, Zhang W, Qiu X, Liu Q, Wang Z, Li J, Li K, Chen A, Jiang Y, Xiao X, Zou H, Srivastava R, Zhang T, Cai Y, Liang Y, Huang B, Zhang R, Lin F, Hu L, Wang X, Qian X, Lv S, Hu B, Zheng S, Hu Z, Shen H, You Y, Verhaak RG, Jiang T, Wang Q. Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma. Cancer Discov 2022; 12:2820-2837. [PMID: 36122307 PMCID: PMC9716251 DOI: 10.1158/2159-8290.cd-22-0196] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/05/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Lingxiang Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Liangyu Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Mengyan Zhu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Min Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fengqi Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rui-Chao Chai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wei Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Qiu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quanzhong Liu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ziyu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Kening Li
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yinan Jiang
- John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pediatric Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiangwei Xiao
- John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pediatric Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Han Zou
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rashmi Srivastava
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tingting Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yun Cai
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Huang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ruohan Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, China
| | - Lang Hu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiuxing Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sali Lv
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas.,Department of Population Health Sciences, UT Health San Antonio, San Antonio, Texas
| | - Zhibin Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| | - Roel G.W. Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| | - Qianghu Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| |
Collapse
|
5
|
Ma X, Dong Z, Liu J, Ma L, Sun X, Gao R, Pan L, Zhang J, A D, An J, Hu K, Sun A, Ge J. β-Hydroxybutyrate Exacerbates Hypoxic Injury by Inhibiting HIF-1α-Dependent Glycolysis in Cardiomyocytes-Adding Fuel to the Fire? Cardiovasc Drugs Ther 2022; 36:383-397. [PMID: 34652582 PMCID: PMC9090701 DOI: 10.1007/s10557-021-07267-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Ketone body oxidation yields more ATP per mole of consumed oxygen than glucose. However, whether an increased ketone body supply in hypoxic cardiomyocytes and ischemic hearts is protective or not remains elusive. The goal of this study is to determine the effect of β-hydroxybutyrate (β-OHB), the main constituent of ketone bodies, on cardiomyocytes under hypoxic conditions and the effects of ketogenic diet (KD) on cardiac function in a myocardial infarction (MI) mouse model. METHODS Human peripheral blood collected from patients with acute myocardial infarction and healthy volunteers was used to detect the level of β-OHB. N-terminal proB-type natriuretic peptide (NT-proBNP) levels and left ventricular ejection fractions (LVEFs) were measured to study the relationship between plasma β-OHB and cardiac function. Adult mouse cardiomyocytes and MI mouse models fed a KD were used to research the effect of β-OHB on cardiac damage. qPCR, western blot analysis, and immunofluorescence were used to detect the interaction between β-OHB and glycolysis. Live/dead cell staining and imaging, lactate dehydrogenase, Cell Counting Kit-8 assays, echocardiography, and 2,3,5-triphenyltetrazolium chloride staining were performed to evaluate the cardiomyocyte death, cardiac function, and infarct sizes. RESULTS β-OHB level was significantly higher in acute MI patients and MI mice. Treatment with β-OHB exacerbated cardiomyocyte death and decreased glucose absorption and glycolysis under hypoxic conditions. These effects were partially ameliorated by inhibiting hypoxia-inducible factor 1α (HIF-1α) degradation via roxadustat administration in hypoxia-stimulated cardiomyocytes. Furthermore, β-OHB metabolisms were obscured in cardiomyocytes under hypoxic conditions. Additionally, MI mice fed a KD exhibited exacerbated cardiac dysfunction compared with control chow diet (CD)-fed MI mice. CONCLUSION Elevated β-OHB levels may be maladaptive to the heart under hypoxic/ischemic conditions. Administration of roxadustat can partially reverse these harmful effects by stabilizing HIF-1α and inducing a metabolic shift toward glycolysis for energy production.
Collapse
Affiliation(s)
- Xiurui Ma
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Department of Cardiology, Shan Xi Cardiovascular Hospital, Taiyuan, 030024, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jingyi Liu
- Department of Cardiology, Shan Xi Cardiovascular Hospital, Taiyuan, 030024, China
| | - Leilei Ma
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China
| | - Rifeng Gao
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200032, China
| | - Lihong Pan
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jinyan Zhang
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Dilan A
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jian An
- Department of Cardiology, Shan Xi Cardiovascular Hospital, Taiyuan, 030024, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China.
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|