1
|
Nozohouri E, Ahn Y, Zoubi S, Patel D, Archie SR, Akter KA, Siddique MB, Huang J, Abbruscato TJ, Bickel U. The Acute Impact of Propofol on Blood-Brain Barrier Integrity in Mice. Pharm Res 2024; 41:1599-1611. [PMID: 39044046 DOI: 10.1007/s11095-024-03735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE We investigated whether short term infusion of propofol, a highly lipophilic agonist at GABAA receptors, which is in widespread clinical use as anesthetic and sedative, affects passive blood-brain barrier (BBB) permeability in vivo. METHODS Mice were anesthetized with an intraperitoneal injection of ketamine/xylazine followed by a continuous IV infusion of propofol in lipid emulsion through a tail vein catheter. Control groups received ketamine/xylazine anesthesia and an infusion of Intralipid, or ketamine/xylazine anesthesia only. [13C12]sucrose as a permeability marker was injected as IV bolus 15 min after start of the infusions. Brain uptake clearance, Kin, of sucrose was calculated from the brain concentrations at 30 min and the area under the plasma-concentration time curve. We also measured the plasma and brain concentration of propofol at the terminal time point. RESULTS The Kin value for propofol-infused mice was significantly higher, by a factor of 1.55 and 1.87, compared to the Intralipid infusion and the ketamine/xylazine groups, respectively, while the control groups were not significantly different. No difference was seen in the expression levels of tight junction proteins in brain across all groups. The propofol plasma concentration at the end of infusion (10.7 µM) matched the clinically relevant range of blood concentrations reported in humans, while concentration in brain was 2.5-fold higher than plasma. CONCLUSIONS Propofol at clinical plasma concentrations acutely increases BBB permeability, extending our previous results with volatile anesthetics to a lipophilic injectable agent. This prompts further exploration, potentially refining clinical practices and ensuring safety, especially during extended propofol infusion schemes.
Collapse
Affiliation(s)
- Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sumaih Zoubi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Juyang Huang
- Department of Physics and Astronomy, Texas Tech University, Lubbock, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA.
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
2
|
Ahn Y, Patil CD, Nozohouri E, Zoubi S, Patel D, Bickel U. Higher Brain Uptake of Gentamicin and Ceftazidime under Isoflurane Anesthesia Compared to Ketamine/Xylazine. Pharmaceutics 2024; 16:135. [PMID: 38276505 PMCID: PMC10820362 DOI: 10.3390/pharmaceutics16010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
We have recently shown that the volatile anesthetics isoflurane and sevoflurane acutely enhance the brain uptake of the hydrophilic markers sucrose and mannitol about two-fold from an awake condition, while the combined injection of the anesthetic agents ketamine and xylazine has no effect. The present study investigated two small-molecule hydrophilic drugs with potential neurotoxicity, the antibiotic agents ceftazidime and gentamicin. Transport studies using an in vitro blood-brain barrier (BBB) model, a monolayer of induced pluripotent stem cell-derived human brain microvascular endothelial cells seeded on Transwells, and LC-MS/MS analysis demonstrated the low permeability of both drugs in the range of sucrose, with permeability coefficients of 6.62 × 10-7 ± 2.34 × 10-7 cm/s for ceftazidime and 7.38 × 10-7 ± 2.29 × 10-7 cm/s for gentamicin. In vivo brain uptake studies of ceftazidime or gentamicin after IV doses of 25 mg/kg were performed in groups of 5-6 mice anesthetized at typical doses for surgical procedures with either isoflurane (1.5-2% v/v) or ketamine/xylazine (100:10 mg/kg I.P.). The brain uptake clearance, Kin, for ceftazidime increased from 0.033 ± 0.003 μL min-1 g-1 in the ketamine/xylazine group to 0.057 ± 0.006 μL min-1 g-1 in the isoflurane group (p = 0.0001), and from 0.052 ± 0.016 μL min-1 g-1 to 0.101 ± 0.034 μL min-1 g-1 (p = 0.0005) for gentamicin. We did not test the dose dependency of the uptake, because neither ceftazidime nor gentamicin are known substrates of any active uptake or efflux transporters at the BBB. In conclusion, the present study extends our previous findings with permeability markers and suggests that inhalational anesthetic isoflurane increases the BBB permeability of hydrophilic small-molecule endobiotics or xenobiotics when compared to the injection of ketamine/xylazine. This may be of clinical relevance in the case of potential neurotoxic substances.
Collapse
Affiliation(s)
- Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Chanakya D. Patil
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sumaih Zoubi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
3
|
Semyachkina-Glushkovskaya O, Sergeev K, Semenova N, Slepnev A, Karavaev A, Hramkov A, Prokhorov M, Borovkova E, Blokhina I, Fedosov I, Shirokov A, Dubrovsky A, Terskov A, Manzhaeva M, Krupnova V, Dmitrenko A, Zlatogorskaya D, Adushkina V, Evsukova A, Tuzhilkin M, Elizarova I, Ilyukov E, Myagkov D, Tuktarov D, Kurths J. Machine Learning Technology for EEG-Forecast of the Blood-Brain Barrier Leakage and the Activation of the Brain's Drainage System during Isoflurane Anesthesia. Biomolecules 2023; 13:1605. [PMID: 38002287 PMCID: PMC10669477 DOI: 10.3390/biom13111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Anesthesia enables the painless performance of complex surgical procedures. However, the effects of anesthesia on the brain may not be limited only by its duration. Also, anesthetic agents may cause long-lasting changes in the brain. There is growing evidence that anesthesia can disrupt the integrity of the blood-brain barrier (BBB), leading to neuroinflammation and neurotoxicity. However, there are no widely used methods for real-time BBB monitoring during surgery. The development of technologies for an express diagnosis of the opening of the BBB (OBBB) is a challenge for reducing post-surgical/anesthesia consequences. In this study on male rats, we demonstrate a successful application of machine learning technology, such as artificial neural networks (ANNs), to recognize the OBBB induced by isoflurane, which is widely used in surgery. The ANNs were trained on our previously presented data obtained on the sound-induced OBBB with an 85% testing accuracy. Using an optical and nonlinear analysis of the OBBB, we found that 1% isoflurane does not induce any changes in the BBB, while 4% isoflurane caused significant BBB leakage in all tested rats. Both 1% and 4% isoflurane stimulate the brain's drainage system (BDS) in a dose-related manner. We show that ANNs can recognize the OBBB induced by 4% isoflurane in 57% of rats and BDS activation induced by 1% isoflurane in 81% of rats. These results open new perspectives for the development of clinically significant bedside technologies for EEG-monitoring of OBBB and BDS.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| | - Konstantin Sergeev
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Nadezhda Semenova
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Andrey Slepnev
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Anatoly Karavaev
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
- Institute of Radio Engineering and Electronics of RAS, Zelenaya Str. 38, 410019 Saratov, Russia
- Research Institute of Cardiology, Saratov State Medical University, B. Kazachaya Str. 112, 410012 Saratov, Russia
| | - Alexey Hramkov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
- Institute of Radio Engineering and Electronics of RAS, Zelenaya Str. 38, 410019 Saratov, Russia
| | - Mikhail Prokhorov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
- Institute of Radio Engineering and Electronics of RAS, Zelenaya Str. 38, 410019 Saratov, Russia
| | - Ekaterina Borovkova
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
- Institute of Radio Engineering and Electronics of RAS, Zelenaya Str. 38, 410019 Saratov, Russia
- Research Institute of Cardiology, Saratov State Medical University, B. Kazachaya Str. 112, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Ivan Fedosov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Alexander Dubrovsky
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Matvey Tuzhilkin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Inna Elizarova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
| | - Egor Ilyukov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Dmitry Myagkov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Dmitry Tuktarov
- Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (K.S.); (N.S.); (A.S.); (A.K.); (M.P.); (E.B.); (I.F.); (A.D.); (E.I.); (D.T.)
| | - Jürgen Kurths
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.S.); (A.T.); (M.M.); (V.K.); (A.D.); (D.Z.); (V.A.); (A.E.); (M.T.); (I.E.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
4
|
Characterization of Anesthesia in Rats from EEG in Terms of Long-Range Correlations. Diagnostics (Basel) 2023; 13:diagnostics13030426. [PMID: 36766531 PMCID: PMC9914327 DOI: 10.3390/diagnostics13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Long-range correlations are often used as diagnostic markers in physiological research. Due to the limitations of conventional techniques, their characterizations are typically carried out with alternative approaches, such as the detrended fluctuation analysis (DFA). In our previous works, we found EEG-related markers of the blood-brain barrier (BBB), which limits the penetration of major drugs into the brain. However, anesthetics can penetrate the BBB, affecting its function in a dose-related manner. Here, we study two types of anesthesia widely used in experiments on animals, including zoletil/xylazine and isoflurane in optimal doses not associated with changes in the BBB. Based on DFA, we reveal informative characteristics of the electrical activity of the brain during such doses that are important for controlling the depth of anesthesia in long-term experiments using magnetic resonance imaging, multiphoton microscopy, etc., which are crucial for the interpretation of experimental results. These findings provide an important informative platform for the enhancement and refinement of surgery, since the EEG-based DFA analysis of BBB can easily be used during surgery as a tool for characterizing normal BBB functions under anesthesia.
Collapse
|
5
|
Rapid Brain Distribution of Subcutaneously Administered Methamphetamine in Mice. Eur J Drug Metab Pharmacokinet 2023; 48:115-118. [PMID: 36289165 DOI: 10.1007/s13318-022-00801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 01/11/2023]
|
6
|
The Crosstalk between the Blood–Brain Barrier Dysfunction and Neuroinflammation after General Anaesthesia. Curr Issues Mol Biol 2022; 44:5700-5717. [PMID: 36421670 PMCID: PMC9689502 DOI: 10.3390/cimb44110386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As we know, with continuous medical progress, the treatment of many diseases can be conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With the widespread use of general anaesthetics, people are beginning to question the safety of general anaesthesia and there is a growing interest in central nervous system (CNS) complications associated with anaesthetics. Recently, abundant evidence has suggested that both blood–brain barrier (BBB) dysfunction and neuroinflammation play roles in the development of CNS complications after anaesthesia. Whether there is a crosstalk between BBB dysfunction and neuroinflammation after general anaesthesia, and whether this possible crosstalk could be a therapeutic target for CNS complications after general anaesthesia needs to be clarified by further studies.
Collapse
|
7
|
Teller J, Jung C, Wilke JB, Schimmelpfennig SD, Hindermann M, Hinken L, Gabriel MM, Fegbeutel C, Schäfer A, Laser H, Lichtinghagen R, Worthmann H, Weissenborn K, Ehrenreich H. Autoantibodies against NMDAR subunit NR1 disappear from blood upon anesthesia. Brain Behav Immun Health 2022; 24:100494. [PMID: 35965838 PMCID: PMC9372600 DOI: 10.1016/j.bbih.2022.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Anesthetics penetrate the blood-brain-barrier (BBB) and - as confirmed preclinically – transiently disrupt it. An analogous consequence in humans has remained unproven. In mice, we previously reported that upon BBB dysfunction, the brain acts as ‘immunoprecipitator’ of autoantibodies against N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB). We thus hypothesized that during human anesthesia, pre-existing NMDAR1-AB will specifically bind to brain. Screening of N = 270 subjects undergoing general anesthesia during cardiac surgery for serum NMDAR1-AB revealed N = 25 NMDAR1-AB seropositives. Only N = 14 remained positive post-surgery. No changes in albumin, thyroglobulin or CRP were associated with reduction of serum NMDAR1-AB. Thus, upon anesthesia, BBB opening likely occurs also in humans. Whether the blood brain barrier opens on general anesthesia in humans is unclear. Serum NMDAR1-AB titers drop upon anesthesia during cardiac surgery. Drop of serum NMDAR1-AB after anesthesia indicates ‘immunoprecipitation’ by brain. Immunoprecipitation needs brain access of NMDAR1-AB, indicating barrier opening. Neither hemodilution nor inflammation explain this loss of NMDAR1-AB from serum.
Collapse
|
8
|
Hughes JM, Neese OR, Bieber DD, Lewis KA, Ahmadi LM, Parsons DW, Canfield SG. The Effects of Propofol on a Human in vitro Blood-Brain Barrier Model. Front Cell Neurosci 2022; 16:835649. [PMID: 35634467 PMCID: PMC9132176 DOI: 10.3389/fncel.2022.835649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundRecently, the safety of repeated and lengthy anesthesia administration has been called into question, a subset of these animal studies demonstrated that anesthetics induced blood-brain barrier (BBB) dysfunction. The BBB is critical in protecting the brain parenchyma from the surrounding micro-vasculature. BBB breakdown and dysfunction has been observed in several neurodegenerative diseases and may contribute to both the initiation and the progression of the disease. In this study we utilize a human induced pluripotent stem cell (iPSC) derived-BBB model, exhibiting near in vivo properties, to evaluate the effects of anesthetics on critical barrier properties.MethodsiPSC-derived brain microvascular endothelial cells (BMECs) expressed near in vivo barrier tightness assessed by trans-endothelial electrical resistance and para-cellular permeability. Efflux transporter activity was determined by substrate transport in the presence of specific inhibitors. Trans-cellular transport was measured utilizing large fluorescently tagged dextran. Tight junction localization in BMECs was evaluated with fluorescent microscopy. The anesthetic, propofol was exposed to BMECs at varying durations and concentrations and BBB properties were monitored post-exposure.ResultsFollowing propofol exposure, BMECs displayed reduced resistance and increased permeability indicative of a leaky barrier. Reduced barrier tightness and the dysregulation of occludin, a tight junction protein, were partly the result of an elevation in matrix metalloproteinase (MMP) levels. Efflux transporter activity and trans-cellular transport were unaffected by propofol exposure. Propofol induced barrier dysfunction was partially restored following matrix metalloproteinase inhibition.ConclusionFor the first time, we have demonstrated that propofol alters BBB integrity utilizing a human in vitro BBB model that displays key in vivo characteristics. A leaky BBB enables otherwise impermeable molecules such as pathogens and toxins the ability to reach vulnerable cell types of the brain parenchyma. A robust human in vitro BBB model will allow for the evaluation of several anesthetics at fluctuating clinical scenarios and to elucidate mechanisms with the goal of ultimately improving anesthesia safety.
Collapse
Affiliation(s)
- Jason M. Hughes
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Olivia R. Neese
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
- Department of Biology, Indiana State University, Terre Haute, IN, United States
| | - Dylan D. Bieber
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Kirsten A. Lewis
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Layla M. Ahmadi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Dustin W. Parsons
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
| | - Scott G. Canfield
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Terre Haute, IN, United States
- *Correspondence: Scott G. Canfield,
| |
Collapse
|