1
|
Fan X, Deng S, Cao X, Meng B, Hu J, Liu J. Isomers of n-Type Poly(thiophene- alt- co-thiazole) for Organic Thermoelectrics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46741-46749. [PMID: 39162353 DOI: 10.1021/acsami.4c08553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
n-Type polythiophene represents a promising category of n-type polymer thermoelectric materials known for their straightforward structure and scalable synthesis. However, n-type polythiophene often suffers from a twisted backbone and poor stacking property when introducing high-density electron-withdrawing groups for a lower lowest unoccupied molecular orbital (LUMO) level, which is considered to be beneficial for n-doping efficiency. Herein, we developed two isomers of polythiophene derivatives, PTTz1 and PTTz2, by inserting thiazole units into the polythiophene backbone composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and thiophene-3,4-dicarbonitrile (2CNT). Although PTTz1 and PTTz2 share a similar polymer skeleton, they differ in thiazole configuration, with the nitrogen atoms of the thiazole units oriented toward TPD and 2CNT, respectively. The insertion of thiazole units significantly planarizes the polythiophene backbone while largely preserving low LUMO levels. Notably, PTTz2 exhibits a more coplanar backbone and closer π-stacking compared to PTTz1, resulting in a greatly enhanced electron mobility. Both PTTz1 and PTTz2 can be easily n-doped due to their deep LUMO levels. PTTz2 demonstrates superior thermoelectric performance, with an electrical conductivity of 50.3 S cm-1 and a power factor of 23.8 μW m-1 K-2, which is approximately double that of PTTz1. This study highlights the impact of the thiazole unit on n-type polythiophene derivatives and provides valuable guidelines for the design of high-performance n-type polymer thermoelectric materials.
Collapse
Affiliation(s)
- Xinyi Fan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xu Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Dutta B, Ahmed F, Mir MH. Coordination polymers: a promising candidate for photo-responsive electronic device application. Dalton Trans 2023; 52:17084-17098. [PMID: 37916313 DOI: 10.1039/d3dt02768f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The design and synthesis of electrically conductive coordination polymers (CPs) are of special interest due to their applications in the fabrication of many environmentally benign emerging technologies, such as molecular wires, photovoltaic cells, light emitting diodes (LEDs), field effect transistors (FETs) and Schottky barrier diodes (SBDs). Owing to their structural flexibility, easy functionality and adjustable energy levels, CPs are promising candidates for providing a better pathway for superior charge transport. Again, the utilization of visible light as an external stimulus to control and manoeuvre the electrical properties of the CPs is exceptionally motivating for the development of many optoelectronic devices, such as photodetectors, photo-switches, photodiodes and chemiresistive sensors. The applications of such materials in devices will solve questions regarding the energy crisis and environmental concerns. This study provides an overview of the recent advances in the development of photo-responsive CPs and the possibility of their application in developing optoelectronic devices. In this regard, a thorough literature survey was performed and the studies related to the fabrication of photosensitive conducting CPs for applications in optoelectronic devices are listed.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Faruk Ahmed
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Department of Chemistry, Saheed Nurul Islam Mahavidyalaya, Tentulia, West Bengal 743286, India
| | | |
Collapse
|
3
|
Hu T, Zhang T, Mu H, Wang Z. Intrinsic Second-Order Topological Insulator in Two-Dimensional Covalent Organic Frameworks. J Phys Chem Lett 2022; 13:10905-10911. [PMID: 36394555 DOI: 10.1021/acs.jpclett.2c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an intriguing topological phase, higher-order topological insulators have attracted tremendous attention, but the candidate materials are limited in artificial and inorganic systems. In this work, we propose a universal approach to search for two-dimensional (2D) second-order topological insulators (SOTIs) in covalent organic frameworks (COFs) with C3 symmetric cores. The underlying mechanism is illustrated through tight-binding calculations in a star lattice, showing the 2D SOTI in an overlooked energy window between two Kagome-bands with four types of nontrivial band structures. The emergence of the unique topological edge and corner states can be understood from the Su-Schrieffer-Heeger model. Furthermore, using the frontier orbital of the monomer building block as an indicator, the 2D SOTI is directly confirmed in three realistic COFs by first-principles calculations. Our results not only extend the concept of organic topological insulators from first-order to second-order but also demonstrate the universal existence of intrinsic higher-order topology in 2D COFs.
Collapse
Affiliation(s)
- Tianyi Hu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Tingfeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Haimen Mu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Zhengfei Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui230088, China
| |
Collapse
|
4
|
Liu H, Wang Y, Qin Z, Liu D, Xu H, Dong H, Hu W. Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. J Phys Chem Lett 2021; 12:1612-1630. [PMID: 33555195 DOI: 10.1021/acs.jpclett.0c02988] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Electrically conductive coordination polymers (generally known as metal-organic frameworks, MOFs) are a class of crystalline hybrid materials produced by the reasonable self-assembly of metal nodes and organic linkers. The unique and intriguing combination of inorganic and organic components endows coordination polymers with superior optical and electrical properties, which have recently aroused much attention in several electronic and optoelectronic technological applications. However, there are many challenging obstacles and issues that need to be addressed in this burgeoning field. In this Perspective, we first provide a fundamental understanding about the electronic design strategies that provide better guidance for realizing high conductivities and good mobilities in coordination polymers. We then examine the current established synthetic approaches to construct high-quality working samples of electrically conductive coordination polymers for device integration. This is followed by a discussion of the current state-of-the-art progress toward the preliminary achievements in (opto)electronic devices spanning chemiresistive sensors, field-effect transistors, organic photovoltaics, photodetectors, etc. Finally, we conclude this Perspective with the existing hurdles and limitations in this area, along with the critical directions and opportunities for future research.
Collapse
Affiliation(s)
- Hao Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yongshuai Wang
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengsheng Qin
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Liu
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Xu
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|