1
|
He H, Zhong Z, Fan P, Zhao W, Yuan D. Regulating Optoelectronic and Thermoelectric Properties of Organic Semiconductors by Heavy Atom Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405156. [PMID: 39535469 DOI: 10.1002/smll.202405156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Heavy atom effects can be used to enhance intermolecular interaction, regulate quinoidal resonance properties, increase bandwidths, and tune diradical characters, which have significant impacts on organic optoelectronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), etc. Meanwhile, the introduction of heavy atoms is shown to promote charge transfer, enhance air stability, and improve device performances in the field of organic thermoelectrics (OTEs). Thus, heavy atom effects are receiving more and more attention. However, regulating heavy atoms in organic semiconductors is still meeting great challenges. For example, heavy atoms will lead to solubility and stability issues (tellurium substitution) and lack of versatile design strategy and effective synthetic methods to be incorporated into organic semiconductors, which limit their application in electronic devices. Therefore, this work timely summarizes the unique functionalities of heavy atom effects, and up-to-date progress in organic electronics including OFETs, OPVs, OLEDs, and OTEs, while the structure-performance relationships between molecular designs and electronic devices are clearly elucidated. Furthermore, this review systematically analyzes the remaining challenges in regulating heavy atoms within organic semiconductors, and design strategies toward efficient and stable organic semiconductors by the introduction of novel heavy atoms regulation are proposed.
Collapse
Affiliation(s)
- Hao He
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Ziting Zhong
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Peng Fan
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Dafei Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Wang Z, Zhu S, Peng X, Luo S, Liang W, Zhang Z, Dou Y, Zhang G, Chen S, Hu H, Chen Y. Regulating Intermolecular Interactions and Film Formation Kinetics for Record Efficiency in Difluorobenzothiadizole-Based Organic Solar Cells. Angew Chem Int Ed Engl 2024:e202412903. [PMID: 39264260 DOI: 10.1002/anie.202412903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/13/2024]
Abstract
The difluorobenzothiadizole (ffBT) unit is one of the most classic electron-accepting building blocks used to construct D-A copolymers for applications in organic solar cells (OSCs). Historically, ffBT-based polymers have achieved record power conversion efficiencies (PCEs) in fullerene-based OSCs owing to their strong temperature-dependent aggregation (TDA) characteristics. However, their excessive miscibility and rapid aggregation kinetics during film formation have hindered their performance with state-of-the-art non-fullerene acceptors (NFAs). Herein, we synthesized two ffBT-based copolymers, PffBT-2T and PffBT-4T, incorporating different π-bridges to modulate intermolecular interactions and aggregation tendencies. Experimental and theoretical studies revealed that PffBT-4T exhibits reduced electrostatic potential differences and miscibility with L8-BO compared to PffBT-2T. This facilitates improved phase separation in the active layer, leading to enhanced molecular packing and optimized morphology. Moreover, PffBT-4T demonstrated a prolonged nucleation and crystal growth process, leading to enhanced molecular packing and optimized morphology. Consequently, PffBT-4T-based devices achieved a remarkable PCE of 17.5 %, setting a new record for ffBT-based photovoltaic polymers. Our findings underscore the importance of conjugate backbone modulation in controlling aggregation behavior and film formation kinetics, providing valuable insights for the design of high-performance polymer donors in organic photovoltaics.
Collapse
Affiliation(s)
- Zhibo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Shenbo Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiao Peng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Siwei Luo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenting Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ziyue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yunjie Dou
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Shangshang Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yiwang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
3
|
Liu H, Geng Y, Xiao Z, Ding L, Du J, Tang A, Zhou E. The Development of Quinoxaline-Based Electron Acceptors for High Performance Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404660. [PMID: 38890789 DOI: 10.1002/adma.202404660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Indexed: 06/20/2024]
Abstract
In the recent advances of organic solar cells (OSCs), quinoxaline (Qx)-based nonfullerene acceptors (QxNFAs) have attracted lots of attention and enabled the recorded power conversion efficiency approaching 20%. As an excellent electron-withdrawing unit, Qx possesses advantages of many modifiable sites, wide absorption range, low reorganization energy, and so on. To develop promising QxNFAs to further enhance the photovoltaic performance of OSCs, it is necessary to systematically summarize the QxNFAs reported so far. In this review, all the focused QxNFAs are classified into five categories as following: SM-Qx, YQx, fused-YQx, giant-YQx, and polymer-Qx according to the molecular skeletons. The molecular design concepts, relationships between the molecular structure and optoelectronic properties, intrinsic mechanisms of device performance are discussed in detail. At the end, the advantages of this kind of materials are summed up, the molecular develop direction is prospected, the challenges faced by QxNFAs are given, and constructive solutions to the existing problems are advised. Overall, this review presents unique viewpoints to conquer the challenge of QxNFAs and thus boost OSCs development further toward commercial applications.
Collapse
Affiliation(s)
- Hongxing Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yanfang Geng
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zuo Xiao
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Liming Ding
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jimin Du
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan Province, 455002, China
| | - Ailing Tang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
4
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
5
|
Hu H, Liu S, Xu J, Ma R, Peng Z, Peña TAD, Cui Y, Liang W, Zhou X, Luo S, Yu H, Li M, Wu J, Chen S, Li G, Chen Y. Over 19 % Efficiency Organic Solar Cells Enabled by Manipulating the Intermolecular Interactions through Side Chain Fluorine Functionalization. Angew Chem Int Ed Engl 2024; 63:e202400086. [PMID: 38329002 DOI: 10.1002/anie.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
Fluorine side chain functionalization of non-fullerene acceptors (NFAs) represents an effective strategy for enhancing the performance of organic solar cells (OSCs). However, a knowledge gap persists regarding the relationship between structural changes induced by fluorine functionalization and the resultant impact on device performance. In this work, varying amounts of fluorine atoms were introduced into the outer side chains of Y-series NFAs to construct two acceptors named BTP-F0 and BTP-F5. Theoretical and experimental investigations reveal that side-chain fluorination significantly increase the overall average electrostatic potential (ESP) and charge balance factor, thereby effectively improving the ESP-induced intermolecular electrostatic interaction, and thus precisely tuning the molecular packing and bulk-heterojunction morphology. Therefore, the BTP-F5-based OSC exhibited enhanced crystallinity, domain purity, reduced domain spacing, and optimized phase distribution in the vertical direction. This facilitates exciton diffusion, suppresses charge recombination, and improves charge extraction. Consequently, the promising power conversion efficiency (PCE) of 17.3 % and 19.2 % were achieved in BTP-F5-based binary and ternary devices, respectively, surpassing the PCE of 16.1 % for BTP-F0-based OSCs. This work establishes a structure-performance relationship and demonstrates that fluorine functionalization of the outer side chains of Y-series NFAs is a compelling strategy for achieving ideal phase separation for highly efficient OSCs.
Collapse
Affiliation(s)
- Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| | - Shuai Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiaoyu Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhengxing Peng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Top Archie Dela Peña
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, 511400, Guangzhou, P. R. China
- The Hong Kong Polytechnic University, Faculty of Science, Department of Applied Physics, Kowloon, Hong Kong, 000000, P. R. China
| | - Yongjie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenting Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoli Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Siwei Luo
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Han Yu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- The Hong Kong Polytechnic University, Faculty of Science, Department of Applied Physics, Kowloon, Hong Kong, 000000, P. R. China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, 511400, Guangzhou, P. R. China
| | - Shangshang Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Yiwang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
6
|
Xing Z, Li SH, An MW, Yang S. Beyond Planar Structure: Curved π-Conjugated Molecules for High-Performing and Stable Perovskite Solar Cells. CHEMSUSCHEM 2024; 17:e202301662. [PMID: 38169145 DOI: 10.1002/cssc.202301662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Perovskite solar cell (PSC) shows a great potential to become the next-generation photovoltaic technology, which has stimulated researchers to engineer materials and to innovate device architectures for promoting device performance and stability. As the power conversion efficiency (PCE) keeps advancing, the importance of exploring multifunctional materials for the PSCs has been increasingly recognized. Considerable attention has been directed to the design and synthesis of novel organic π-conjugated molecules, particularly the emerging curved ones, which can perform various unmatched functions for PSCs. In this review, the characteristics of three representative such curved π-conjugated molecules (fullerene, corannulene and helicene) and the recent progress concerning the application of these molecules in state-of-the-art PSCs are summarized and discussed holistically. With this discussion, we hope to provide a fresh perspective on the structure-property relation of these unique materials toward high-performance and high-stability PSCs.
Collapse
Affiliation(s)
- Zhou Xing
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, Fujian, China
| | - Shu-Hui Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 541004, Guilin, Guangxi, China
| | - Ming-Wei An
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), 350007, Fuzhou, Fujian, China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, 518055, Shenzhen, Guangdong, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, 518055, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Liu L, Yang Y, Meskers SCJ, Wang Q, Zhang L, Yang C, Zhang J, Zhu L, Zhang Y, Wei Z. Fused-Ring Electron-Acceptor Single Crystals with Chiral 2D Supramolecular Organization for Anisotropic Chiral Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304627. [PMID: 37467489 DOI: 10.1002/adma.202304627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Supramolecular chiral organization gives π-conjugated molecules access to fascinating specific interactions with circularly polarized light (CPL). Such a feature enables the fabrication of high-performance chiral organic electronic devices that detect or emit CPL directly. Herein, it is shown that chiral fused-ring electron-acceptor BTP-4F single-crystal-based phototransistors demonstrate distinguished CPL discrimination capability with current dissymmetry factor exceeding 1.4, one of the highest values among state-of-the-art direct CPL detectors. Theoretical calculations prove that the chirality at the supramolecular level in these enantiomeric single crystals originates from chiral exciton coupling of a unique quasi-2D supramolecular organization consisting of interlaced molecules with opposite helical conformation. Impressively, such supramolecular organization produces a higher dissymmetry factor along the preferred growth direction of the chiral single crystals in comparison to that of the short axis direction. Furthermore, the amplified, inverted, and also anisotropic current dissymmetry compared to optical dissymmetry is studied by finite element simulations. Therefore, a unique chiral supramolecular organization that is responsible for the excellent chiroptical response and anisotropic electronic properties is developed, which not only enables the construction of high-performance CPL detection devices but also allows a better understanding of the structure-property relationships in chiral organic optoelectronics.
Collapse
Affiliation(s)
- Lixuan Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yang Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Stefan C J Meskers
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. box 513, Eindhoven, NL, 5600 MB, The Netherlands
| | - Qingkai Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Liting Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chen Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| |
Collapse
|
8
|
Ham G, Lee D, Park C, Cha H. Charge Carrier Dynamics in Non-Fullerene Acceptor-Based Organic Solar Cells: Investigating the Influence of Processing Additives Using Transient Absorption Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5712. [PMID: 37630003 PMCID: PMC10456882 DOI: 10.3390/ma16165712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
In this study, we present a comprehensive investigation into the charge generation mechanism in bulk-heterojunction organic solar cells employing non-fullerene acceptors (NFAs) both with and without the presence of processing additives. While photovoltaic devices based on Y6 or BTP-eC9 have shown remarkable power conversion efficiencies, the underlying charge generation mechanism in polymer:NFA blends remains poorly understood. To shed light on this, we employ transient absorption (TA) spectroscopy to elucidate the charge transfer pathway within a blend of the donor polymer PM6 and NFAs. Interestingly, the charge carrier lifetimes of neat Y6 and BTP-eC9 are comparable, both reaching up to 20 ns. However, the PM6:BTP-eC9 blend exhibits substantially higher charge carrier generation and a longer carrier lifetime compared to PM6:Y6 blend films, leading to superior performance. By comparing TA data obtained from PM6:Y6 or PM6:BTP-eC9 blend films with and without processing additives, we observe significantly enhanced charge carrier generation and prolonged charge carrier lifetimes in the presence of these additives. These findings underscore the potential of manipulating excited species as a promising avenue for further enhancing the performance of organic solar cells. Moreover, this understanding contributes to the advancement of NFA-based systems and the optimization of charge transfer processes in polymer:NFA blends.
Collapse
Affiliation(s)
- Gayoung Ham
- Department of Energy Convergence and Climate Change, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Damin Lee
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Changwoo Park
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyojung Cha
- Department of Energy Convergence and Climate Change, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Cui Y, Chen Z, Zhu P, Ma W, Zhu H, Liao X, Chen Y. Enhancing photostability and power conversion efficiency of organic solar cells by a “sunscreen” ternary strategy. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
10
|
Shan T, Hou X, Yin X, Guo X. Organic photodiodes: device engineering and applications. FRONTIERS OF OPTOELECTRONICS 2022; 15:49. [PMID: 36637681 PMCID: PMC9763529 DOI: 10.1007/s12200-022-00049-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 06/17/2023]
Abstract
Organic photodiodes (OPDs) have shown great promise for potential applications in optical imaging, sensing, and communication due to their wide-range tunable photoelectrical properties, low-temperature facile processes, and excellent mechanical flexibility. Extensive research work has been carried out on exploring materials, device structures, physical mechanisms, and processing approaches to improve the performance of OPDs to the level of their inorganic counterparts. In addition, various system prototypes have been built based on the exhibited and attractive features of OPDs. It is vital to link the device optimal design and engineering to the system requirements and examine the existing deficiencies of OPDs towards practical applications, so this review starts from discussions on the required key performance metrics for different envisioned applications. Then the fundamentals of the OPD device structures and operation mechanisms are briefly introduced, and the latest development of OPDs for improving the key performance merits is reviewed. Finally, the trials of OPDs for various applications including wearable medical diagnostics, optical imagers, spectrometers, and light communications are reviewed, and both the promises and challenges are revealed.
Collapse
Affiliation(s)
- Tong Shan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Hou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaokuan Yin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojun Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Guo Y, Zhu L, Duan R, Han G, Yi Y. Molecular Design of A-D-A Electron Acceptors Towards Low Energy Loss for Organic Solar Cells. Chemistry 2022; 29:e202203356. [PMID: 36504417 DOI: 10.1002/chem.202203356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Low energy loss is a prerequisite for organic solar cells to achieve high photovoltaic efficiency. Electron-vibration coupling (i. e., intramolecular reorganization energy) plays a crucial role in the photoelectrical conversion and energy loss processes. In this Concept article, we summarize our recent theoretical advances on revealing the energy loss mechanisms at the molecular level of A-D-A electron acceptors. We underline the importance of electron-vibration couplings on reducing the energy loss and describe the effective molecular design strategies towards low energy loss through decreasing the electron-vibration couplings.
Collapse
Affiliation(s)
- Yuan Guo
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.,Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lingyun Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Ruihong Duan
- School of Science, Xuchang University Xuchang, Henan, 461000, P. R. China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Wang X, Tan X, Luo G, Huang J, Chen G. Weak Electron-Deficient Building Block Containing O–B ← N Bonds for Polymer Donors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoling Wang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Xueyan Tan
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Genggeng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Guohua Chen
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
13
|
Wang H, Cao C, Chen H, Lai H, Ke C, Zhu Y, Li H, He F. Oligomeric Acceptor: A "Two-in-One" Strategy to Bridge Small Molecules and Polymers for Stable Solar Devices. Angew Chem Int Ed Engl 2022; 61:e202201844. [PMID: 35307936 DOI: 10.1002/anie.202201844] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/30/2022]
Abstract
Oligomeric acceptors are expected to combine the advantages of both highly developed small molecular and polymeric acceptors. However, organic solar cells (OSCs) based on oligomers lag far behind due to their slow development and low diversity. Here, three oligomeric acceptors were produced through oligomerization of small molecules. The dimer dBTICγ-EH achieved the best power conversion efficiencies (PCEs) of 14.48 % in bulk heterojunction devices and possessed a T80 (80 % of the initial PCE) lifetime of 1020 h under illumination, which were far better than that of small molecular and polymeric acceptors. More excitingly, it showed PCEs of 16.06 % in quasi-planar heterojunction (Q-PHJ) devices which is the highest value OSCs using oligomeric acceptors to date. These results suggest that oligomerization of small molecules is a promising strategy to achieve OSCs with optimized performance between the high efficiency and durable stability, and offer oligomeric materials a bright future in commercial applications.
Collapse
Affiliation(s)
- Hengtao Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Congcong Cao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunxian Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
14
|
Zhao N, Zhang R, Zou X, Su X, Dang F, Wen G, Zhang W, Zheng K, Chen H, Wu K. Photoinduced Polaron Formation in a Polymerized Electron-Acceptor Semiconductor. J Phys Chem Lett 2022; 13:5143-5150. [PMID: 35658092 DOI: 10.1021/acs.jpclett.2c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymerized small molecular acceptor (PSMA) based all-polymer solar cells (all-PSC) have achieved power conversion efficiencies (PCE) over 16%, and the PSMA is considered to hold great promise for further improving the performance of all-PSC. Yet, in comparison with that of the polymer donor, the photophysics of a polymerized acceptor remains poorly understood. Herein, the excited state dynamics in a polymerized acceptor PZT810 was comprehensively investigated under various pump intensities and photon energies. The excess excitation energy was found to play a key role in excitons dissociation into free polarons for neat PSMA films, while free polarons cannot be generated from the polaron pairs in neat acceptor films. This work reveals an in-depth understanding of relaxation dynamics for PSMAs and that the underlying photophysical origin of PSMA can be mediated by excitation energies and intensities. These results would benefit the realization of the working mechanism for all-PSC and the designing of new PSMAs.
Collapse
Affiliation(s)
- Ningjiu Zhao
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Rui Zhang
- Department of Physics, Chemsitry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Xianshao Zou
- Division of Chemical Physics, Lund University, Lund, 22100, Sweden
| | - Xiaojun Su
- Department of Basic Courses, Guangzhou Maritime University, Guangzhou, 510725, China
| | - Fan Dang
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Guanzhao Wen
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou, 510006, China
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
| | - Kaibo Zheng
- Division of Chemical Physics, Lund University, Lund, 22100, Sweden
| | - Hailong Chen
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Kehui Wu
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| |
Collapse
|
15
|
Wang H, Cao C, Chen H, Lai H, Ke C, Zhu Y, Li H, He F. Oligomeric Acceptor: A “Two‐in‐One” Strategy to Bridge Small Molecules and Polymers for Stable Solar Devices. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hengtao Wang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Congcong Cao
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518055 China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Chunxian Ke
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
16
|
Chen Z, Zhu H. Photoinduced Charge Transfer and Recombination Dynamics in Star Nonfullerene Organic Solar Cells. J Phys Chem Lett 2022; 13:1123-1130. [PMID: 35080888 DOI: 10.1021/acs.jpclett.1c04247] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonfullerene acceptors (NFAs) are regarded as star candidates for efficient organic solar cells with power conversion efficiency (PCE) over 18%. In contrast to the rapid development of NFA materials, however, the underlying excited-state dynamics which fundamentally govern the device performance remains unclear. In this Perspective, we discuss recent advances and provide our insights on photoinduced charge transfer and combination dynamics in NFA-based organic solar cells (OSCs), including the biphasic hole-transfer process and its correlation with morphology, the role of driving force and Marcus normal region behavior on interfacial hole-transfer properties, and charge recombination energy loss by NFA triplet formation. We also discuss our understanding of how to control the charge-transfer and recombination processes by phase morphology and molecular design to improve OSC performance. Finally, we suggest a few research directions, including the interfacial charge transfer and separation mechanism, the origin of low fill factor, and complex excited-state dynamics in multicomponent OSCs.
Collapse
Affiliation(s)
- Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
17
|
Schweda B, Reinfelds M, Hofstadler P, Trimmel G, Rath T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS APPLIED ENERGY MATERIALS 2021; 4:11899-11981. [PMID: 35856015 PMCID: PMC9286321 DOI: 10.1021/acsaem.1c01737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Bettina Schweda
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Matiss Reinfelds
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Petra Hofstadler
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Gregor Trimmel
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| |
Collapse
|
18
|
|