1
|
Ren W, Li W, Xu S, Wang K, Jiang W, Jin F, Zhu X, Chen J, Song Z, Zhang P, Dong H, Zhang X, Deng J, Gao Y, Zhang C, Wu Y, Zhang B, Guo Q, Li H, Wang Z, Biamonte J, Song C, Deng DL, Wang H. Experimental quantum adversarial learning with programmable superconducting qubits. NATURE COMPUTATIONAL SCIENCE 2022; 2:711-717. [PMID: 38177368 DOI: 10.1038/s43588-022-00351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2024]
Abstract
Quantum computing promises to enhance machine learning and artificial intelligence. However, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from adversarial perturbations as well. Here we report an experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built on variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 μs, and average fidelities of simultaneous single- and two-qubit gates above 99.94% and 99.4%, respectively, with both real-life images (for example, medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would substantially enhance their robustness to such perturbations.
Collapse
Affiliation(s)
- Wenhui Ren
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Weikang Li
- Center for Quantum Information, IIIS, Tsinghua University, Beijing, China
| | - Shibo Xu
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Ke Wang
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Wenjie Jiang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing, China
| | - Feitong Jin
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Xuhao Zhu
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Jiachen Chen
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Zixuan Song
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Pengfei Zhang
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Hang Dong
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Xu Zhang
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Jinfeng Deng
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Yu Gao
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Chuanyu Zhang
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Yaozu Wu
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
| | - Bing Zhang
- Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Hangzhou, China
| | - Qiujiang Guo
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Hangzhou, China
| | - Hekang Li
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Hangzhou, China
| | - Zhen Wang
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Hangzhou, China
| | - Jacob Biamonte
- Beijing Institute of Mathematical Sciences and Applications, Beijing, China
| | - Chao Song
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China.
- Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Hangzhou, China.
| | - Dong-Ling Deng
- Center for Quantum Information, IIIS, Tsinghua University, Beijing, China.
- Shanghai Qi Zhi Institute, Shanghai, China.
| | - H Wang
- Department of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, China.
- Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Hangzhou, China.
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China.
| |
Collapse
|