1
|
Wu J, Lu Y, Ke X, Zheng L, Liao R, Wu D. A versatile reactive layer toward ultra-long lifespan lithium metal anodes. Natl Sci Rev 2025; 12:nwae421. [PMID: 39830407 PMCID: PMC11737383 DOI: 10.1093/nsr/nwae421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/10/2024] [Accepted: 11/20/2024] [Indexed: 01/22/2025] Open
Abstract
Unstable anode/electrolyte interfaces have significantly hindered the development of lithium (Li) metal batteries under high rates and large capacities. In this study, a versatile reactive layer based on sulfur-selenium crosslinked polyacrylonitrile brushes has been developed by a combined strategy of polymer topology design and chemical crosslinking. The sulfur-selenium crosslinked polyacrylonitrile side-chains can react with Li to generate passivated Li2S-Li2Se-containing solid electrolyte interphase while 3D lithiophilic porous nanonetworks enable Li penetration, contributing to achieving rapid and uniform Li ion flux and a dendrite-free anode. With these merits, ultralong-term stable cycling (over 1 year and 4 months) at a high current density of 10 mA cm-2 has been achieved for the protected Li anodes. Moreover, even when tested in high-loading Li|NCM622 cell (21.6 mg cm-2) and Li-S cell with a low negative to positive electrode capacity ratio (1.4), stable cycling performances can also be achieved.
Collapse
Affiliation(s)
- Jinlun Wu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuheng Lu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianlan Ke
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Linying Zheng
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongfeng Liao
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Dingcai Wu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Wu Y, Luo P, Su K, Yu M, Song X, Huang L, Zhang S, Song H, Du L, Liu W, Cui Z. Local charge homogenization strategy enables ultra-high voltage tolerance of polyether electrolytes for 4.7 V lithium metal batteries. Natl Sci Rev 2025; 12:nwae436. [PMID: 39830392 PMCID: PMC11737385 DOI: 10.1093/nsr/nwae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
In-situ fabricated polyether electrolytes have been regarded as one of the most promising solid electrolyte systems. Nevertheless, they cannot match high-voltage cathodes over 4.3 V due to their poor oxidative stability. Herein, we propose an effective local charge homogenization strategy based on the triglycidyl isocyanurate (TGIC) crosslinker, achieving ultra-high-voltage electrochemical stability of polyether electrolytes (viz. PTIDOL) at cutoff voltages up to 4.7 V. The introduction of TGIC optimizes the Li+ solvation environment, thereby homogenizing the charge distribution at ether oxygen (EO) sites, resulting in significantly enhanced oxidative stability of the polyether main chain. Consequently, the Li|PTIDOL|LiNi0.6Co0.2Mn0.2O2 (NCM622) cell achieves long-term operation at an ultra-high cutoff voltage with a capacity retention of 81.8% after 400 cycles, one of the best results reported for polyether electrolytes to date. This work provides significant insights for the development of polyether electrolytes with high-voltage tolerance and the advancement of high-energy-density batteries.
Collapse
Affiliation(s)
- Yuanlong Wu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Piao Luo
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Kexin Su
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Song
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lianzhan Huang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shaocong Zhang
- School of Software Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weishu Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Wang Z, Zhou Z, Gao X, Liu Q, Man J, Du F, Xiong F. Natural Silkworm Cocoon-Derived Separator with Na-Ion De-Solvated Function for Sodium Metal Batteries. Molecules 2024; 29:4813. [PMID: 39459181 PMCID: PMC11510509 DOI: 10.3390/molecules29204813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The commercialization of sodium batteries faces many challenges, one of which is the lack of suitable high-quality separators. Herein, we presented a novel natural silkworm cocoon-derived separator (SCS) obtained from the cocoon inner membrane after a simple degumming process. A Na||Na symmetric cell assembled with this separator can be stably cycled for over 400 h under test conditions of 0.5 mA cm-2-0.5 mAh cm-2. Moreover, the Na||SCS||Na3V2(PO4)3 full cell exhibits an initial capacity of 79.3 mAh g-1 at 10 C and a capacity retention of 93.6% after 1000 cycles, which far exceeded the 57.5 mAh g-1 and 42.1% of the full cell using a commercial glass fiber separator (GFS). The structural origin of this excellent electrochemical performance lies in the fact that cationic functional groups (such as amino groups) on silkworm proteins can de-solvate Na-ions by anchoring the ClO4- solvent sheath, thereby enhancing the transference number, transport kinetics and deposition/dissolution properties of Na-ions. In addition, the SCS has significantly better mechanical properties and thinness indexes than the commercial GFS, and, coupled with the advantages of being natural, cheap, non-polluting and degradable, it is expected to be used as a commercialized sodium battery separator material.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, Liaocheng University, Liaocheng 252059, China; (Z.W.); (Z.Z.); (X.G.); (Q.L.); (J.M.); (F.D.)
| | - Zihan Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, Liaocheng University, Liaocheng 252059, China; (Z.W.); (Z.Z.); (X.G.); (Q.L.); (J.M.); (F.D.)
| | - Xing Gao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, Liaocheng University, Liaocheng 252059, China; (Z.W.); (Z.Z.); (X.G.); (Q.L.); (J.M.); (F.D.)
| | - Qian Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, Liaocheng University, Liaocheng 252059, China; (Z.W.); (Z.Z.); (X.G.); (Q.L.); (J.M.); (F.D.)
| | - Jianzong Man
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, Liaocheng University, Liaocheng 252059, China; (Z.W.); (Z.Z.); (X.G.); (Q.L.); (J.M.); (F.D.)
| | - Fanghui Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, Liaocheng University, Liaocheng 252059, China; (Z.W.); (Z.Z.); (X.G.); (Q.L.); (J.M.); (F.D.)
| | - Fangyu Xiong
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| |
Collapse
|
4
|
Mei S, Zheng Z, Lian Y, Wei Z, Chen X, Peng C, Zhang Y, Zhang X, Ding L, Peng Y, Deng Z. Lithiophilic Polymers of High Conjugation and Mesoporosity Enable Lean and Dendrite-Free Lithium Anode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47620-47630. [PMID: 39189968 DOI: 10.1021/acsami.4c09372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Lithiated Cu current collectors with a lean Li supply have been extensively explored as prospective composite anodes for constructing lithium metal batteries (LMBs) but suffer from low Coulombic efficiencies (CE) and uncontrollable dendrite growth. Herein, two hexaazanonaphthalene (HATN)-based compounds comprising rich conjugated aromatic rings and redox-active C═N groups are synthesized and exploited to modify the Cu surface for mediating smooth Li plating/stripping. Compared to the HATN compound interlinked through flexible sigma bonds, the one conjugated through dual sp2-carbon manifests a more rigid backbone, improved electric conductivity, and enhanced mesoporosity. As a result, Cu electrodes modified with the latter demonstrate enhanced CE and suppressed dendrites in both half and symmetric cells, apart from a stable operation over 250 cycles in the LiFePO4 full cells with a capacity retention of 94.9% at 1 C. This study signifies the tailoring of intramolecular conjugation and chain configuration of lithiophilic macromolecules to facilitate reversible Li deposition on Cu for achieving high-performance LMBs.
Collapse
Affiliation(s)
- Shiwei Mei
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Zhangyi Zheng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Yuebin Lian
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Zhihe Wei
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Xinghua Chen
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Chengyuan Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Yanzhi Zhang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Xinyu Zhang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Leyu Ding
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
5
|
Wu X, Tang Y, Amanze C, Peng J, Yu R, Li J, Shen L, Liu Y, Zeng W. Fabrication and optimization of bioelectrochemical system using tetracycline-degrading bacterial strains for antibiotic wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 407:131096. [PMID: 38986881 DOI: 10.1016/j.biortech.2024.131096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
In this study, a microbial fuel cell was constructed using Raoultella sp. XY-1 to efficiently degrade tetracycline (TC) and assess the effectiveness of the electrochemical system. The degradation rate reached 83.2 ± 1.8 % during the 7-day period, in which the system contained 30 mg/L TC, and the degradation pathway and intermediates were identified. Low concentrations of TC enhanced anodic biofilm power production, while high concentrations of TC decreased the electrochemical activity of the biofilm, extracellular polymeric substances, and enzymatic activities associated with electron transfer. Introducing electrogenic bacteria improved power generation efficiency. A three-strain hybrid system was fabricated using Castellaniella sp. A3, Castellaniella sp. A5 and Raoultella sp. XY-1, leading to the enhanced TC degradation rate of 90.4 % and the increased maximum output voltage from 200 to 265 mV. This study presents a strategy utilizing tetracycline-degrading bacteria as bioanodes for TC removal, while incorporating electrogenic bacteria to enhance electricity generation.
Collapse
Affiliation(s)
- Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Yunhui Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Jingxuan Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China.
| |
Collapse
|
6
|
Fu Y, Li D, Sun X, Xue Y, Shi Y, Li Z, Luo C, Lin Q, Gui X, Xu K. Dual-Carbon Phase-Encapsulated Prelithiated SiO x Microrod Anode for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403070. [PMID: 38770743 DOI: 10.1002/smll.202403070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Among silicon-based anode family for Li-ion battery technology, SiOx, a nonstoichiometric silicon suboxide holds the potential for significant near-term commercial impact. In this context, this study mainly focuses on demonstrating an innovative SiOx@C anode design that adopts a pre-lithiation strategy based on in situ pyrolysis of Li-salt of silsesquioxane trisilanolate without the need for lithium metal or active lithium compounds and creates dual carbon encapsulation of SiOC nanodomains by simply one-step thermal treatment. This ingenious design ensures the pre-lithiation process and pre-lithiation material with high-environmental stability. Moreover, phenyl-rich organosiloxane clusters and polyacrylonitrile polymers are expected to serve as internal and external carbon source, respectively. The formation of an interpenetrating and continuous carbon matrix network would not only synergistically offer an improved electrochemical accessibility of active sites but also alleviate the volume expansion effect during cycling. As a result, this new type of anode delivered a high reversible capacity, remarkable cycle stability as well as excellent high-rate capability. In particular, the L2-SiOx@C material has a high initial coulomb efficienc of 80.4% and, after 500 cycles, a capacity retention as high as 97.5% at 0.5 A g-1 with a reversible specific capacity of 654.5 mA h g-1.
Collapse
Affiliation(s)
- Yulin Fu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P. R. China
| | - Dongxia Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P. R. China
| | - Xiangfeng Sun
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CASH GCC (Nanxiong) Research Institute of Advanced Materials Co, Ltd, Nanxiong, 512000, P. R. China
| | - Yuxin Xue
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, P. R. China
| | - Yuanhao Shi
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P. R. China
| | - Zhiqi Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P. R. China
| | - Chongxian Luo
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CASH GCC (Nanxiong) Research Institute of Advanced Materials Co, Ltd, Nanxiong, 512000, P. R. China
| | - Qiong Lin
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P. R. China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, P. R. China
| | - Xuefeng Gui
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P. R. China
- CASH GCC (Nanxiong) Research Institute of Advanced Materials Co, Ltd, Nanxiong, 512000, P. R. China
- CASH GCC Shaoguan Research Institute of Advanced Materials, Shaoguan, 512000, P. R. China
| | - Kai Xu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Xu W, Dong W, Lin J, Mu K, Song Z, Tan J, Wang R, Liu Q, Zhu C, Xu J, Tian L. Optimization Design of Fluoro-Cyanogen Copolymer Electrolyte to Achieve 4.7 V High-Voltage Solid Lithium Metal Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400466. [PMID: 38888446 PMCID: PMC11336954 DOI: 10.1002/advs.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/08/2024] [Indexed: 06/20/2024]
Abstract
Raising the charging voltage and employing high-capacity cathodes like lithium cobalt oxide (LCO) are efficient strategies to expand battery capacity. High voltage, however, will reveal major issues such as the electrolyte's low interface stability and weak electrochemical stability. Designing high-performance solid electrolytes from the standpoint of substance genetic engineering design is consequently vital. In this instance, stable SEI and CEI interface layers are constructed, and a 4.7 V high-voltage solid copolymer electrolyte (PAFP) with a fluoro-cyanogen group is generated by polymer molecular engineering. As a result, PAFP has an exceptionally broad electrochemical window (5.5 V), a high Li+ transference number (0.71), and an ultrahigh ionic conductivity (1.2 mS cm-2) at 25 °C. Furthermore, the Li||Li symmetric cell possesses excellent interface stability and 2000 stable cycles at 1 mA cm-2. The LCO|PAFP|Li batteries have a 73.7% retention capacity after 1200 cycles. Moreover, it still has excellent cycling stability at a high charging voltage of 4.7 V. These characteristics above also allow PAFP to run stably at high loading, showing excellent electrochemical stability. Furthermore, the proposed PAFP provides new insights into high-voltage resistant solid polymer electrolytes.
Collapse
Affiliation(s)
- Weijian Xu
- Institute of Low‐Dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Weiliang Dong
- Institute of Low‐Dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Jianzhou Lin
- Institute of Low‐Dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Kexin Mu
- Institute of Low‐Dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Zhennuo Song
- Institute of Low‐Dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Jiji Tan
- Institute of Low‐Dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Ruixue Wang
- Institute of Low‐Dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Qiang Liu
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHong Kong100872China
| | - Caizhen Zhu
- Institute of Low‐Dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Jian Xu
- Institute of Low‐Dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Lei Tian
- Institute of Low‐Dimensional Materials Genome InitiativeCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
8
|
Shen X, Chen W, Wang H, Zhang L, Hao B, Zhu C, Yang X, Sun M, Zhou J, Liu X, Yan C, Qian T. Selectively "size-excluding" water molecules to enable a highly reversible zinc metal anode. Chem Sci 2024; 15:10182-10192. [PMID: 38966361 PMCID: PMC11220579 DOI: 10.1039/d3sc06934f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/06/2024] [Indexed: 07/06/2024] Open
Abstract
Significant water-related side reactions hinder the development of highly safe, low-cost aqueous zinc metal batteries (AZMBs) for grid-scale energy storage. Herein, by regulating the length of alkyl chains, we successfully adjust interstitial voids between the polymer chains of a metal soap interface between 1.48 Å (size of a zinc ion) and 4.0 Å (size of a water molecule). Therefore, water molecules are selectively "size-excluded," while smaller zinc ions are permitted to pass through. Consequently, water-related side reactions (including hydrogen evolution and corrosion) could be effectively inhibited. Furthermore, abundant zinc ion tunnels accompanied with zincophilic components facilitate the homogenization of the Zn2+ flux, thus preventing dendrite growth. Therefore, the Zn symmetric cell shows a lifespan of approximately 10 000 cycles at 20 mA cm-2 and 1 mA h cm-2, and the Zn//Na5V12O32 (NVO) full cell delivers much better cycling stability with much higher capacity retention of around 93% after 2000 cycles at 2 A g-1 compared to its bare Zn counterpart (19%). This work provides valuable insights for the utilization of metal soap interfaces and regulation of their channel size between perpendicular alkyl chains to realize precise water shielding, which is not only applicable in ZMBs but also in other aqueous batteries.
Collapse
Affiliation(s)
- Xiaowei Shen
- School of Electrical Engineering and Automation, Nantong University Nantong 226019 China
| | - Wanhao Chen
- School of Chemistry and Chemical Engineering, Nantong University Nantong 226019 China
- College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University Qingdao 266071 China
| | - Haocong Wang
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University Suzhou 215006 China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University Nantong 226019 China
| | - Baojiu Hao
- School of Chemistry and Chemical Engineering, Nantong University Nantong 226019 China
| | - Changhao Zhu
- School of Chemistry and Chemical Engineering, Nantong University Nantong 226019 China
| | - Xiuzhen Yang
- School of Chemistry and Chemical Engineering, Nantong University Nantong 226019 China
| | - Meizhu Sun
- School of Chemistry and Chemical Engineering, Nantong University Nantong 226019 China
| | - Jinqiu Zhou
- School of Chemistry and Chemical Engineering, Nantong University Nantong 226019 China
| | - Xuejun Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University Qingdao 266071 China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University Changzhou 213164 China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University Suzhou 215006 China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University Nantong 226019 China
| |
Collapse
|
9
|
Liu Z, Zhang Q, Song X, Shi Y, Zhu X, Liu X, Zhou Y, Chen Z, Feng Y, Chen S, He J, Guo Z, Zhao Y. Construction of Inorganic/Polymer Tandem Layer on Li Metal with Long-Term Stability by LiNO 3 Concentration Gradient Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312150. [PMID: 38326081 DOI: 10.1002/smll.202312150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Metal electrode with long cycle life is decisive for the actual use of metal rechargeable batteries, while the dendrite growth and side reaction limit their cyclic stability. Herein, the construction of polymer and inorganic-rich SEI tandem layer structure on Li metal can be used for extraordinarily extending its cycle life is reported, which is generated by an in situ PVDF/LiF/LiNO3 (PLL) gel layer on the surface of Li metal with a chemically compatible ether solvent. The cycle life of Li//Li cells with the tandem layer structure is over 6000 h, six times longer than those with LiNO3 homogeneous electrolyte. It highlights the importance of LiNO3 concentration gradient electrolyte formed by the in situ PLL gel layer, in which highly concentrated LiNO3 is confined on the surface of Li metal to generate the uniform and inorganic-rich LiF/Li2O/Li3N layer on the bottom of PVDF/LiF with good mechanical strength, resulting in the dendrite free anode in cell cycling. The assembled Li//LiFePO4 and Li//NMC811 batteries show the capacity retention rate of 80.9% after 800 cycles and 82.3% after 500 cycles, respectively, much higher than those of references.
Collapse
Affiliation(s)
- Zewen Liu
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Qi Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaosheng Song
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yue Shi
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xuebing Zhu
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiao Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yamei Zhou
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhonghui Chen
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yunchong Feng
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Silei Chen
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Jinling He
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhijie Guo
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
10
|
Chen W, Zhu C, Xu X, Liu X. Perfluoro-1-butanesulfonic acid etching strategy for dendrite suppression in aqueous zinc metal batteries. RSC Adv 2024; 14:19090-19095. [PMID: 38873541 PMCID: PMC11172410 DOI: 10.1039/d4ra03632h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Perfluoro-1-butanesulfonic acid (PFBS) was used to etch on the surface of a zinc anode to introduce a 3D C4F9O3S-Zn interface layer with unique fluorine groups (Zn@PFBS) to inhibit the formation of dendrites. The C-F chains in the Zn@PFBS coating enhance the anode hydrophobicity of the zinc metal, which not only suppresses the HER of the surface of the zinc metal, but also strengthens the corrosion resistance of the zinc metal. Meanwhile, -SO3 - in the coating enhanced the binding energy with Zn2+, which acted as a nucleation site on the surface of the zinc anode to induce the uniform deposition of Zn2+ and inhibited the disordered growth of zinc dendrites. As a result, the symmetric battery assembled with the Zn@PFBS anode achieved a stable cycling of 6200 cycles at 5 mA cm-2 to 1 mA h cm-2. Meanwhile, the Zn@PFBS anode exhibited a higher cycling performance with a capacity retention rate of 78.6% after 1000 cycles in a Zn@PFBS//Na5V12O32 (NVO) full cell.
Collapse
Affiliation(s)
- Wanhao Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University Qingdao 266071 China
| | - Changhao Zhu
- School of Chemistry and Chemical Engineering, Nantong University Nantong 226019 China
| | - Xinnan Xu
- School of Chemistry and Chemical Engineering, Nantong University Nantong 226019 China
| | - Xuejun Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University Qingdao 266071 China
| |
Collapse
|
11
|
Wen T, Tan S, Li R, Huang X, Xiao H, Teng X, Jia H, Xiong F, Huang G, Qu B, Song J, Wang J, Tang A, Pan F. Large-Scale Integration of the Ion-Reinforced Phytic Acid Layer Stabilizing Magnesium Metal Anode. ACS NANO 2024; 18:11740-11752. [PMID: 38648626 DOI: 10.1021/acsnano.3c13028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Rechargeable magnesium batteries (RMBs) have garnered significant attention for their potential in large-scale energy storage applications. However, the commercial development of RMBs has been severely hampered by the rapid failure of large-sized Mg metal anodes, especially under fast and deep cycling conditions. Herein, a concept proof involving a large-scale ion-reinforced phytic acid (PA) layer (100 cm × 7.5 cm) with an excellent water-oxygen tolerance, high Mg2+ conductivity, and favorable electrochemical stability is proposed to enable rapid and uniform plating/stripping of Mg metal anode. Guided by even distributions of Mg2+ flux and electric field, the as-prepared large-sized PA-Al@Mg electrode (5.8 cm × 4.5 cm) exhibits no perforation and uniform Mg plating/stripping after cycling. Consequently, an ultralong lifespan (2400 h at 3 mA cm-2 with 1 mAh cm-2) and high current tolerance (300 h at 9 mA cm-2 with 1 mAh cm-2) of the symmetric cell using the PA-Al@Mg anode could be achieved. Notably, the PA-Al@Mg//Mo6S8 full cell demonstrates exceptional stability, operating for 8000 cycles at 5 C with a capacity retention of 99.8%, surpassing that of bare Mg (3000 cycles, 74.7%). Moreover, a large-sized PA-Al@Mg anode successfully contributes to the stable pouch cell (200 and 750 cycles at 0.1 and 1 C), further confirming its significant potential for practical utilization. This work provides valuable theoretical insights and technological support for the practical implementation of RMBs.
Collapse
Affiliation(s)
- Tiantian Wen
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Shuangshuang Tan
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Rong Li
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Xueting Huang
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Hui Xiao
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Xuxi Teng
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Hongxing Jia
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Fangyu Xiong
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Guangsheng Huang
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Baihua Qu
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Jiangfeng Song
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Jingfeng Wang
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Aitao Tang
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| | - Fusheng Pan
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, China
| |
Collapse
|
12
|
Li Z, Wang L, Huang X, He X. Unveiling the Mystery of LiF within Solid Electrolyte Interphase in Lithium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305429. [PMID: 38098303 DOI: 10.1002/smll.202305429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/04/2023] [Indexed: 05/30/2024]
Abstract
Over the past decades, significant advances have been made in lithium-ion batteries. However, further requirement on the electrochemical performance is still a powerful motivator to improve battery technology. The solid electrolyte interphase (SEI) is considered as a key component on negative electrode, having been proven to be crucial for the performance, even in safety of batteries. Although numerous studies have focused on SEI in recent years, its specific properties, including structure and composition, remain largely unclear. Particularly, LiF, a common and important component in SEI, has sparked debates among researchers, resulting in divergent viewpoints. In this review, the recent research findings on SEI and delve into the characteristics of the LiF component is aim to consolidated. The cause of SEI formation and the evolution of SEI models is summarized. The distinctive properties of SEI generated on various negative electrodes is further discussed, the ongoing scholarly controversy surrounding the function of LiF within SEI, and the specific physicochemical properties about LiF and its synergistic effect in heterogeneous components. The objective is to facilitate better understanding of SEI and the role of the LiF component, ultimately contributing to the development of Li batteries with enhanced electrochemical performance and safety for battery communities.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of MEMS of the Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, P. R. China
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaodong Huang
- Key Laboratory of MEMS of the Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, P. R. China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
13
|
Zhu X, Liu M, Bu F, Yue XY, Fei X, Zhou YN, Ju A, Yang J, Qiu P, Xiao Q, Lin C, Jiang W, Wang L, Li X, Luo W. Ordered mesoporous nanofibers mimicking vascular bundles for lithium metal batteries. Natl Sci Rev 2024; 11:nwae081. [PMID: 38577675 PMCID: PMC10989666 DOI: 10.1093/nsr/nwae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 04/06/2024] Open
Abstract
Hierarchical self-assembly with long-range order above centimeters widely exists in nature. Mimicking similar structures to promote reaction kinetics of electrochemical energy devices is of immense interest, yet remains challenging. Here, we report a bottom-up self-assembly approach to constructing ordered mesoporous nanofibers with a structure resembling vascular bundles via electrospinning. The synthesis involves self-assembling polystyrene (PS) homopolymer, amphiphilic diblock copolymer, and precursors into supramolecular micelles. Elongational dynamics of viscoelastic micelle solution together with fast solvent evaporation during electrospinning cause simultaneous close packing and uniaxial stretching of micelles, consequently producing polymer nanofibers consisting of oriented micelles. The method is versatile for the fabrication of large-scale ordered mesoporous nanofibers with adjustable pore diameter and various compositions such as carbon, SiO2, TiO2 and WO3. The aligned longitudinal mesopores connected side-by-side by tiny pores offer highly exposed active sites and expedite electron/ion transport. The assembled electrodes deliver outstanding performance for lithium metal batteries.
Collapse
Affiliation(s)
- Xiaohang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengmeng Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fanxing Bu
- Institute for Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| | - Xin-Yang Yue
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yong-Ning Zhou
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Anqi Ju
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qi Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Jian Hu X, Ping Zheng Y, Wei Li Z, Xia C, Chua DHC, Hu X, Liu T, Bin Liu X, Ping Wu Z, Yu Xia B. Artificial LiF-Rich Interface Enabled by In situ Electrochemical Fluorination for Stable Lithium-Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202319600. [PMID: 38286751 DOI: 10.1002/anie.202319600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Lithium (Li)-metal batteries are promising next-generation energy storage systems. One drawback of uncontrollable electrolyte degradation is the ability to form a fragile and nonuniform solid electrolyte interface (SEI). In this study, we propose the use of a fluorinated carbon nanotube (CNT) macrofilm (CMF) on Li metal as a hybrid anode, which can regulate the redox state at the anode/electrolyte interface. Due to the favorable reaction energy between the plated Li and fluorinated CNTs, the metal can be fluorinated directly to a LiF-rich SEI during the charging process, leading to a high Young's modulus (~2.0 GPa) and fast ionic transfer (~2.59×10-7 S cm-1 ). The obtained SEI can guide the homogeneous plating/stripping of Li during electrochemical processes while suppressing dendrite growth. In particular, the hybrid of endowed full cells with substantially enhanced cyclability allows for high capacity retention (~99.3 %) and remarkable rate capacity. This work can extend fluorination technology into a platform to control artificial SEI formation in Li-metal batteries, increasing the stability and long-term performance of the resulting material.
Collapse
Affiliation(s)
- Xun Jian Hu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Yi Ping Zheng
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Zhi Wei Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Daniel H C Chua
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xin Hu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Ting Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Xian Bin Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
| | - Zi Ping Wu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou, 341000, China
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
15
|
Liu H, Tan S, Wang Z, Chen Y, Yue J, Wang D, Huang G, Wang J, Pan F. Binary Mg-1 at%Gd alloy anode for high-performance rechargeable magnesium batteries. CHEMSUSCHEM 2024; 17:e202301589. [PMID: 38143242 DOI: 10.1002/cssc.202301589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023]
Abstract
Rechargeable magnesium batteries (RMBs) become a highly promising candidate for the large-scale energy storage system by right of the high volumetric capacity, intrinsic safety and abundant resources of Mg anode. However, the uneven Mg stripping and large overpotential will cause a severe pitting perforation and the followed failure of Mg anode. Herein, we proposed a high-performance binary Mg-1 at% Gd alloy anode prepared by the melting and hot extrusion. The introduction of 1 at% Gd element can effectively reduce the Mg2+ diffusion energy barrier (0.34 eV) on alloy surface and induces the formation of a robust and low-resistance electrolyte/anode interphase, thus enabling a uniform and fast Mg plating/stripping. As a result, the Mg-1 at.% Gd anode displays a largely enhanced life of 220 h and a low overpotential of 213 mV at a high current density of 5.0 mA cm-2 with 2.5 mAh cm-2 . Moreover, the assembled Mg-1 at.% Gd//Mo6 S8 full cell delivers a high rate performance (73.5 mAh g-1 at 5 C) and ultralong cycling stability of 8000 cycles at 5 C. This work brings new insights to design the new-type and practical Mg alloy anodes for commercial RMBs.
Collapse
Affiliation(s)
- Han Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
| | - Shuangshuang Tan
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
| | - Zhongting Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
| | - Yifan Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
| | - Jili Yue
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
| | - Dong Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
| | - Guangsheng Huang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
| | - Jingfeng Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
| | - Fusheng Pan
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
16
|
Luo L, Tan S, Gao Z, Yang X, Xu J, Huang G, Wang J, Pan F. Theoretical insights into the intercalation mechanism of Li, Na, and Mg ions in a metallic BN/VS 2 heterostructure. Phys Chem Chem Phys 2024; 26:7001-7009. [PMID: 38345314 DOI: 10.1039/d3cp05232j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Layered VS2 has been widely used as a battery anode material owing to its large specific surface area and controllable ion-transport channel. However, its semiconductor properties and poor cycling stability seriously limit its further applications. Herein, a two-dimensional BN/VS2 heterostructure (BVH) was constructed as an anode material for rechargeable metal-ion batteries (RMIBs). Demonstrated using first principles calculations, BVH exhibits a metallic property due to lattice stress between monolayer BN and VS2. BVH displays low ion diffusion energy barriers (0.13, 0.43, and 0.56 eV) and high theoretical capacities (447, 553.5, and 340.7 mA h g-1) for Li+, Na+, and Mg2+ storage. In BVH, the VS2 layer as the main redox center supports charge transfer, while the inactive BN layer enables high structural stability. This synergistic effect is expected to simultaneously achieve a high rate, high capacity, and long life. This design provides an important insight into developing new anode materials for RMIBs.
Collapse
Affiliation(s)
- Lingxiao Luo
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Shuangshuang Tan
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Zhipeng Gao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Xiaofang Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Junyao Xu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Guangsheng Huang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Jingfeng Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Fusheng Pan
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| |
Collapse
|
17
|
Zhang Z, Han WQ. From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. NANO-MICRO LETTERS 2023; 16:24. [PMID: 37985522 PMCID: PMC10661211 DOI: 10.1007/s40820-023-01234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles, which have increasingly stringent energy density requirements. Lithium metal batteries (LMBs), with their ultralow reduction potential and high theoretical capacity, are widely regarded as the most promising technical pathway for achieving high energy density batteries. In this review, we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs. Furthermore, we propose improved strategies involving interface engineering, 3D current collector design, electrolyte optimization, separator modification, application of alloyed anodes, and external field regulation to address these challenges. The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them. This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes. Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface, leading to increased interface inhomogeneity-a critical factor contributing to failure in all-solid-state lithium metal batteries. Based on recent research works, this perspective highlights the current status of research on developing high-performance LMBs.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
18
|
Zhao Z, Zhou X, Zhang B, Huang F, Wang Y, Ma Z, Liu J. Regulating Steric Hindrance of Porous Organic Polymers in Composite Solid-State Electrolytes to Induce the Formation of LiF-Rich SEI in Li-Ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202308738. [PMID: 37528636 DOI: 10.1002/anie.202308738] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Lithium fluoride (LiF) at the solid electrolyte interface (SEI) contributes to the stable operation of polymer-based solid-state lithium metal batteries. Currently, most of the methods for constructing lithium fluoride SEI are based on the design of polar groups of fillers. However, the mechanism behind how steric hindrance of fillers impacts LiF formation remains unclear. This study synthesizes three kinds of porous polyacetal amides (PAN-X, X=NH2 , NH-CH3 , N-(CH3 )2 ) with varying steric hindrances by regulating the number of methyl substitutions of nitrogen atoms on the reaction monomer, which are incorporated into polymer composite solid electrolytes, to investigate the regulation mechanism of steric hindrance on the content of lithium fluoride in SEI. The results show that bis(trifluoromethanesulfonyl)imide (TFSI- ) will compete for the charge without steric effect, while excessive steric hindrance hinders the interaction between TFSI- and polar groups, reducing charge acquisition. Only when one hydrogen atom on the amino group is replaced by a methyl group, steric hindrance from the methyl group prevents TFSI- from capturing charge in that direction, thereby facilitating the transfer of charge from the polar group to a separate TFSI- and promoting maximum LiF formation. This work provides a novel perspective on constructing LiF-rich SEI.
Collapse
Affiliation(s)
- Zishao Zhao
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Xuanyi Zhou
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Biao Zhang
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Fenfen Huang
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Yan Wang
- School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan, 411201, China
| | - Zengsheng Ma
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
19
|
Feng Y, Lv Y, Fu H, Parekh M, Rao AM, Wang H, Tai X, Yi X, Lin Y, Zhou J, Lu B. Co-activation for enhanced K-ion storage in battery anodes. Natl Sci Rev 2023; 10:nwad118. [PMID: 37389185 PMCID: PMC10306327 DOI: 10.1093/nsr/nwad118] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 07/01/2023] Open
Abstract
The relative natural abundance of potassium and potentially high energy density has established potassium-ion batteries as a promising technology for future large-scale global energy storage. However, the anodes' low capacity and high discharge platform lead to low energy density, which impedes their rapid development. Herein, we present a possible co-activation mechanism between bismuth (Bi) and tin (Sn) that enhances K-ion storage in battery anodes. The co-activated Bi-Sn anode delivered a high capacity of 634 mAh g-1, with a discharge plateau as low as 0.35 V, and operated continuously for 500 cycles at a current density of 50 mA g-1, with a high Coulombic efficiency of 99.2%. This possible co-activation strategy for high potassium storage may be extended to other Na/Zn/Ca/Mg/Al ion battery technologies, thus providing insights into how to improve their energy storage ability.
Collapse
Affiliation(s)
- Yanhong Feng
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yawei Lv
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Hongwei Fu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Mihir Parekh
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29643, USA
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC 29643, USA
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolin Tai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xianhui Yi
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| |
Collapse
|
20
|
Fei F, Zhang H, Deng J, Xu H, Xie J, Mohamed HSH, Abdelmaoula AE, Mai L, Xu L. Hydrogen Bonding Induced Confinement Effect between Ultrafine Nanowires and Polymer Chains for Low-Energy-Barrier Ion Transport in Composite Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37318982 DOI: 10.1021/acsami.3c03771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Achieving low-energy-barrier lithium ion transport is a fundamental issue for composite solid-state electrolytes (CSEs) in all-solid-state lithium metal batteries (ASSLMBs). In this work, a hydrogen bonding induced confinement strategy was proposed to construct confined template channels for low-energy-barrier lithium ion continuous transport. Specifically, the ultrafine boehmite nanowires (BNWs) with 3.7 nm diameter were synthesized and superiorly dispersed in a polymer matrix to form a flexible CSE. The ultrafine BNWs with large specific surface areas and abundant oxygen vacancies assist the dissociation of lithium salts and confine the conformation of polymer chain segments by hydrogen bonding between the BNWs and the polymer matrix, thus forming a polymer/ultrafine nanowire intertwined structure as template channels for dissociated lithium ions continuous transport. As a result, the as-prepared electrolytes displayed a satisfactory ionic conductivity of 0.714 mS cm-1 and low energy barrier (16.30 kJ mol-1), and the assembled ASSLMB delivered excellent specific capacity retention (92.8%) after 500 cycles. This work demonstrates a promising way to design CSEs with high ionic conductivity for high-performance ASSLMBs.
Collapse
Affiliation(s)
- Fan Fei
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, Hubei, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Hong Zhang
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, Hubei, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Jiahui Deng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Hantao Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Jun Xie
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Hemdan S H Mohamed
- Physics Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Ahmed Eissa Abdelmaoula
- Mining and Metallurgical Department, Faculty of Engineering, Al-Azhar University, Al Mokhaym Al Daem, Naser City, Cairo 11884, Egypt
| | - Liqiang Mai
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, Hubei, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
- Hainan Institute, Wuhan University of Technology, Sanya 572000, P. R. China
| | - Lin Xu
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, Hubei, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
- Hainan Institute, Wuhan University of Technology, Sanya 572000, P. R. China
| |
Collapse
|
21
|
Zeng T, Liu DH, Fan C, Fan R, Zhang F, Liu J, Yang T, Chen Z. LiMn 0.8Fe 0.2PO 4@C cathode prepared via a novel hydrated MnHPO 4 intermediate for high performance lithium-ion batteries. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02306g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A highly stable intermediate hydrated MnHPO4 is used to synthesize a well-crystallized LiMn0.8Fe0.2PO4@C cathode, which exhibits a high electrical conductivity of 6.823 × 10−2 S cm−1 and excellent cycling stability with a capacity retention of 98.62%.
Collapse
Affiliation(s)
- Taotao Zeng
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dai-Huo Liu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Changling Fan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Runzheng Fan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Fuquan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Jinshui Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
| | - Tingzhou Yang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|