1
|
Lu Y, Yi L, Fu Z, Xie J, Cheng Q, Fu Z, Zou Z. Nonclassical crystallization of goethite nanorods in limpet teeth by self-assembly of silica-rich nanoparticles reveals structure-mechanical property relations. J Colloid Interface Sci 2024; 669:64-74. [PMID: 38705113 DOI: 10.1016/j.jcis.2024.04.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The intricate organization of goethite nanorods within a silica-rich matrix makes limpet teeth the strongest known natural material. However, the mineralization pathway of goethite in organisms under ambient conditions remains elusive. Here, by investigating the multi-level structure of limpet teeth at different growth stages, it is revealed that the growth of goethite crystals proceeds by the attachment of amorphous nanoparticles, a nonclassical crystallization pathway widely observed during the formation of calcium-based biominerals. Importantly, these nanoparticles contain a high amount of silica, which is gradually expelled during the growth of goethite. Moreover, in mature teeth of limpet, the content of silica correlates with the size of goethite crystals, where smaller goethite crystals are densely packed in the leading part with higher content of silica. Correspondingly, the leading part exhibits higher hardness and elastic modulus. Thus, this study not only reveals the nonclassical crystallization pathway of goethite nanorods in limpet teeth, but also highlights the critical roles of silica in controlling the hierarchical structure and the mechanical properties of limpet teeth, thus providing inspirations for fabricating biomimetic materials with excellent properties.
Collapse
Affiliation(s)
- Yan Lu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Luyao Yi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zeyao Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhengyi Fu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaoyong Zou
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
2
|
Molnár Z, Pekker P, Rečnik A, Pósfai M. Formation and properties of spindle-shaped aragonite mesocrystals from Mg-bearing solutions. NANOSCALE 2024; 16:2012-2021. [PMID: 38194258 DOI: 10.1039/d3nr04672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The formation of aragonite under ambient conditions is typically linked to Mg-rich aqueous environments. The grains that form in such environments show peculiar properties such as aggregate-like appearance and mesocrystalline character. We tested the effect of dissolved Mg2+ ions on the formation of aragonite mesocrystals by synthesizing aragonite with an automatic titrator at constant pH and at different dissolved Mg : Ca ratios, and by studying the properties of the precipitated material with various scanning transmission electron microscopy (STEM) techniques. At all studied Mg : Ca ratios the firstly condensed carbonate phase was Mg-bearing amorphous calcium carbonate (Mg-ACC) that transformed into aragonite during the synthesis experiments. The aragonite grains had typically aggregate-like appearance and spindle shapes, with the external morphologies of the spindles unaffected by variation in solution chemistry. The alignment of the nanocrystals within the aggregates was crystallographically highly coherent, the [001] directions of nanocrystals showing only a small misorientation with respect to one another; however, both parallel and twin assembly of neighbouring crystals occurred. An increase in the dissolved Mg concentration decreased the crystallographic coherence between the aragonite nanocrystals, suggesting an important role of Mg2+ ions in the assembly of aragonite spindles. Whereas the mesoscale-ordered arrangement of nanocrystals implies a particle-mediated assembly, the observed differences in particle size and composition between the amorphous precursor and the crystalline end-product suggest that the crystallization includes at least partial dissolution and re-precipitation. These findings provide insight into the formation of aragonite and could contribute to the understanding of important aspects of the formation of mesocrystals and hierarchically structured biogenic minerals.
Collapse
Affiliation(s)
- Zsombor Molnár
- University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Nanolab, Egyetem st. 10, 8200, Veszprém, Hungary.
- HUN-REN-PE Environmental Mineralogy Research Group, Egyetem st. 10, 8200, Veszprém, Hungary
| | - Péter Pekker
- University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Nanolab, Egyetem st. 10, 8200, Veszprém, Hungary.
| | - Aleksander Rečnik
- Jožef Stefan Institute, Department of Nanostructured Materials, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Mihály Pósfai
- University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Nanolab, Egyetem st. 10, 8200, Veszprém, Hungary.
- HUN-REN-PE Environmental Mineralogy Research Group, Egyetem st. 10, 8200, Veszprém, Hungary
| |
Collapse
|