1
|
Aziz N, Wal P, Patel A, Prajapati H. A comprehensive review on the pharmacological role of gut microbiome in neurodegenerative disorders: potential therapeutic targets. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7307-7336. [PMID: 38734839 DOI: 10.1007/s00210-024-03109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Neurological disorders, including Alzheimer and Parkinson's, pose significant challenges to public health due to their complex etiologies and limited treatment options. Recent advances in research have highlighted the intricate bidirectional communication between the gut microbiome and the central nervous system (CNS), revealing a potential therapeutic avenue for neurological disorders. Thus, this review aims to summarize the current understanding of the pharmacological role of gut microbiome in neurological disorders. Mounting evidence suggests that the gut microbiome plays a crucial role in modulating CNS function through various mechanisms, including the production of neurotransmitters, neuroactive metabolites, and immune system modulation. Dysbiosis, characterized by alterations in gut microbial composition and function, has been observed in many neurological disorders, indicating a potential causative or contributory role. Pharmacological interventions targeting the gut microbiome have emerged as promising therapeutic strategies for neurological disorders. Probiotics, prebiotics, antibiotics, and microbial metabolite-based interventions have shown beneficial effects in animal models and some human studies. These interventions aim to restore microbial homeostasis, enhance microbial diversity, and promote the production of beneficial metabolites. However, several challenges remain, including the need for standardized protocols, identification of specific microbial signatures associated with different neurological disorders, and understanding the precise mechanisms underlying gut-brain communication. Further research is necessary to unravel the intricate interactions between the gut microbiome and the CNS and to develop targeted pharmacological interventions for neurological disorders.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India.
| | - Aman Patel
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| | - Harshit Prajapati
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| |
Collapse
|
2
|
Ma X, Liu Y, Ding B, Lu S, Ni B, Chen Y, Yang L, Liu Y, Zhang Y, Wang Y, Yang Y, Liu X. Anthocyanins from blueberry ameliorated arsenic-induced memory impairment, oxidative stress, and mitochondrial-biosynthesis imbalance in rat hippocampal neurons. Cell Signal 2024; 119:111177. [PMID: 38621470 DOI: 10.1016/j.cellsig.2024.111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
In this study, blueberry anthocyanins extract (BAE) was used to investigate its protective effect on arsenic-induced rat hippocampal neurons damage. Arsenic exposure resulted in elevated levels of oxidative stress, decreased antioxidant capacity and increased apoptosis in rat hippocampal brain tissue and mitochondria. Immunohistochemical results showed that arsenic exposure also significantly decreased the expression of mitochondrial biosynthesis-related factors PGC-1α and TFAM. Treatment with BAE alleviated the decrease in antioxidant capacity, mitochondrial biogenesis related protein PGC-1α/NRF2/TFAM expression, and ATP production of arsenic induced hippocampal neurons in rats, and improved cognitive function in arsenic damaged rats. This study provides new insights into the detoxification effect of anthocyanins on the nervous system toxicity caused by metal exposure in the environment, indicating that anthocyanins may be a natural antioxidant against the nervous system toxicity caused by environmental metal exposure.
Collapse
Affiliation(s)
- Xinbo Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Bo Ding
- Nanning Center for Disease Control and Prevention, China
| | - Siqi Lu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Bangyao Ni
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yuting Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yanan Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yuchen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yuxi Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China.
| |
Collapse
|
3
|
Lopresti AL, Smith SJ, Riggs ML, Major RA, Gibb TG, Wood SM, Hester SN, Knaggs HE. An Examination into the Effects of a Nutraceutical Supplement on Cognition, Stress, Eye Health, and Skin Satisfaction in Adults with Self-Reported Cognitive Complaints: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:1770. [PMID: 38892705 PMCID: PMC11174377 DOI: 10.3390/nu16111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Dietary quality and the consumption of antioxidant-rich foods have been shown to protect against memory decline. Therefore, this double-blind, randomized, placebo-controlled study aimed to investigate the effects of a nutritional supplement on changes in cognitive performance. Methods: In adults aged 40 to 70 years with subjective memory complaints, participants were randomly allocated to take a supplement containing vitamin E, astaxanthin, and grape juice extract daily for 12 weeks or a matching placebo. The primary outcomes comprised changes in cognitive tasks assessing episodic memory, working memory, and verbal memory. Secondary and exploratory measures included changes in the speed of information processing, attention, and self-report measures of memory, stress, and eye and skin health. Moreover, changes in plasma concentrations of brain-derived neurotrophic factor, malondialdehyde, tumor-necrosis factor-α, and interleukin-6 were measured, along with changes in skin carotenoid concentrations. Results: Compared to the placebo, nutritional supplementation was associated with larger improvements in one primary outcome measure comprising episodic memory (p = 0.037), but not for working memory (p = 0.418) or verbal learning (p = 0.841). Findings from secondary and exploratory outcomes demonstrated that the nutraceutical intake was associated with larger improvements in the Everyday Memory Questionnaire (p = 0.022), increased plasma brain-derived neurotrophic factor (p = 0.030), decreased plasma malondialdehyde (p = 0.040), and increased skin carotenoid concentrations (p = 0.006). However, there were no group differences in changes in the remaining outcome measures. Conclusions: Twelve weeks of supplementation with a nutritional supplement was associated with improvements in episodic memory and several biological markers associated with cognitive health. Future research will be essential to extend and validate the current findings.
Collapse
Affiliation(s)
- Adrian L. Lopresti
- Clinical Research Australia, Perth, WA 6023, Australia;
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | | | | | | | - Tanner G. Gibb
- Pharmanex Research, NSE Products, Inc., Provo, UT 84604, USA
| | - Steven M. Wood
- Pharmanex Research, NSE Products, Inc., Provo, UT 84604, USA
| | | | - Helen E. Knaggs
- Pharmanex Research, NSE Products, Inc., Provo, UT 84604, USA
| |
Collapse
|
4
|
Andrews V, Zammit G, O’Leary F. Dietary pattern, food, and nutritional supplement effects on cognitive outcomes in mild cognitive impairment: a systematic review of previous reviews. Nutr Rev 2023; 81:1462-1489. [PMID: 37027832 PMCID: PMC10563860 DOI: 10.1093/nutrit/nuad013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
CONTEXT Nutritional interventions may benefit cognition in people with mild cognitive impairment (MCI). However, evidence is yet to be synthesized in a way that can inform recommendations for clinical and public health settings. OBJECTIVE To systematically review evidence on the effect of dietary patterns, foods, and nutritional supplements on cognitive decline in individuals with MCI. DATA SOURCES Guided by the Preferred Reporting items for Systematic Review and Meta-Analysis Protocols 2015 statement, the Medline, EMBASE, and CINAHL databases, the JBI Database of Systematic Reviews and Implementation Reports, Cochrane Database of Systematic Reviews, and Database of Abstracts of Reviews of Effects were searched (publication years 2005 to 2020). Included studies were English-language systematic reviews and meta-analyses of randomized controlled trials and cohort studies reporting on the effectiveness of nutritional interventions on cognition of individuals with MCI. DATA EXTRACTION Two reviewers independently selected studies and extracted data on cognitive outcomes and adverse events. Review quality was assessed using AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews-2). Primary study overlap was managed following Cochrane Handbook guidelines. DATA ANALYSIS Of the 6677 records retrieved, 20 reviews were included, which, in turn, reported on 43 randomized controlled trials and 1 cohort study that, together, addressed 18 nutritional interventions. Most reviews were limited by quality and the small number of primary studies with small sample sizes. Reviews were mostly positive for B vitamins, omega-3 fatty acids, and probiotics (including 12, 11 and 4 primary studies, respectively). Souvenaid and the Mediterranean diet reduced cognitive decline or Alzheimer's disease progression in single trials with <500 participants. Findings from studies with a small number of participants suggest vitamin D, a low-carbohydrate diet, medium-chain triglycerides, blueberries, grape juice, cocoa flavanols, and Brazil nuts may improve individual cognitive subdomains, but more studies are needed. CONCLUSIONS Few nutritional interventions were found to convincingly improve cognition of individuals with MCI. More high-quality research in MCI populations is required to determine if nutritional treatments improve cognition and/or reduce progression to dementia. SYSTEMATIC REVIEW REGISTRATION Open Science Framework protocol identifier DOI:10.17605/OSF.IO/BEP2S.
Collapse
Affiliation(s)
- Victoria Andrews
- are with the Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, and The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Gabrielle Zammit
- are with the Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, and The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Fiona O’Leary
- are with the Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, and The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Huang F, Marungruang N, Martinsson I, Camprubí Ferrer L, Nguyen TD, Gondo TF, Karlsson EN, Deierborg T, Öste R, Heyman-Lindén L. A mixture of Nordic berries improves cognitive function, metabolic function and alters the gut microbiota in C57Bl/6J male mice. Front Nutr 2023; 10:1257472. [PMID: 37854349 PMCID: PMC10580983 DOI: 10.3389/fnut.2023.1257472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Our diets greatly influence our health. Multiple lines of research highlight the beneficial properties of eating berries and fruits. In this study, a berry mixture of Nordic berries previously identified as having the potential to improve memory was supplemented to young C57Bl/6J male mice to investigate effects on cognition function, metabolic health, markers of neuroinflammation, and gut microbiota composition. C57Bl/6J male mice at the age of 8 weeks were given standard chow, a high-fat diet (HF, 60%E fat), or a high-fat diet supplemented with freeze-dried powder (20% dwb) of a mixture of Nordic berries and red grape juice (HF + Berry) for 18 weeks (n = 12 animals/diet group). The results show that supplementation with the berry mixture may have beneficial effects on spatial memory, as seen by enhanced performance in the T-maze and Barnes maze compared to the mice receiving the high-fat diet without berries. Additionally, berry intake may aid in counteracting high-fat diet induced weight gain and could influence neuroinflammatory status as suggested by the increased levels of the inflammation modifying IL-10 cytokine in hippocampal extracts from berry supplemented mice. Furthermore, the 4.5-month feeding with diet containing berries resulted in significant changes in cecal microbiota composition. Analysis of cecal bacterial 16S rRNA revealed that the chow group had significantly higher microbial diversity, as measured by the Shannon diversity index and total operational taxonomic unit richness, than the HF group. The HF diet supplemented with berries resulted in a strong trend of higher total OTU richness and significantly increased the relative abundance of Akkermansia muciniphila, which has been linked to protective effects on cognitive decline. In conclusion, the results of this study suggest that intake of a Nordic berry mixture is a valuable strategy for maintaining and improving cognitive function, to be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Fang Huang
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
- Aventure AB, Lund, Sweden
| | | | - Isak Martinsson
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lluís Camprubí Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Thao Duy Nguyen
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Thamani Freedom Gondo
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | | | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Lovisa Heyman-Lindén
- Berry Lab AB, Lund, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Lopresti AL, Smith SJ, Pouchieu C, Pourtau L, Gaudout D, Pallet V, Drummond PD. Effects of a polyphenol-rich grape and blueberry extract (Memophenol™) on cognitive function in older adults with mild cognitive impairment: A randomized, double-blind, placebo-controlled study. Front Psychol 2023; 14:1144231. [PMID: 37063535 PMCID: PMC10095830 DOI: 10.3389/fpsyg.2023.1144231] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundPolyphenols are naturally occurring organic compounds found in plants. Research suggests that their intake reduces the risk of cognitive decline and related dementias. Grapes and blueberries are polyphenol-rich foods that have attracted attention for their potential cognitive-enhancing effects.PurposeExamine the effects of supplementation with a standardized and patented polyphenol-rich grape and blueberry extract (Memophenol™) on cognitive function in older adults with mild cognitive impairment.Study designTwo-arm, 6 month, parallel-group, randomized, double-blind, placebo-controlled trial.MethodsOne hundred and forty-three volunteers aged 60 to 80 years with mild cognitive impairment were supplemented with either 150 mg of Memophenol™, twice daily or a placebo. Outcome measures included computer-based cognitive tasks, the Behavior Rating Inventory of Executive Function (BRIEF-A), the Cognitive Failures Questionnaire, and the CASP-19.ResultsCompared to the placebo, Memophenol™ supplementation was associated with greater improvements in the speed of information processing (p = 0.020), visuospatial learning (p = 0.012), and the BRIEF-A global score (p = 0.046). However, there were no other statistically significant between-group differences in the performance of other assessed cognitive tests or self-report questionnaires. Memophenol™ supplementation was well-tolerated with no reports of significant adverse reactions.ConclusionThe promising results from this trial suggest that 6-months of supplementation with Memophenol™ may improve aspects of cognitive function in adults with mild cognitive impairment. Further research will be important to expand on the current findings and identify the potential mechanisms of action associated with the intake of this polyphenol-rich extract.
Collapse
Affiliation(s)
- Adrian L. Lopresti
- Clinical Research Australia, Perth, WA, Australia
- Healthy Ageing Research Centre and Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Adrian L. Lopresti,
| | - Stephen J. Smith
- Clinical Research Australia, Perth, WA, Australia
- Healthy Ageing Research Centre and Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | | | | | | | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR, Bordeaux, France
| | - Peter D. Drummond
- Healthy Ageing Research Centre and Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
7
|
Wei X, Wang W, Min Z, Li Z, Ouyang Y, Ruan X, Fang Y, Li D. Transcriptomics Combined with Metabolisms Reveals the Effect of Light-exclusive Films on the Quality and Polyphenols of ‘Cabernet Sauvignon’ Grapes. Food Res Int 2023. [DOI: 10.1016/j.foodres.2023.112754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
ALNasser MN, Mellor IR, Carter WG. A Preliminary Assessment of the Nutraceutical Potential of Acai Berry ( Euterpe sp.) as a Potential Natural Treatment for Alzheimer's Disease. Molecules 2022; 27:4891. [PMID: 35956841 PMCID: PMC9370152 DOI: 10.3390/molecules27154891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry's antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box No. 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
9
|
Cheatham CL, Nieman DC, Neilson AP, Lila MA. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front Neurosci 2022; 16:833202. [PMID: 35273477 PMCID: PMC8902155 DOI: 10.3389/fnins.2022.833202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Age-related cognitive changes can be the first indication of the progression to dementias, such as Alzheimer's disease. These changes may be driven by a complex interaction of factors including diet, activity levels, genetics, and environment. Here we review the evidence supporting relationships between flavonoids, physical activity, and brain function. Recent in vivo experiments and human clinical trials have shown that flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance. Improved cognition has also been correlated with a physically active lifestyle, and with the functionality and diversity of the gut microbiome. The great majority (+ 90%) of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the gut microbiome level prior to absorption, and these prebiotic flavonoids modulate microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion may only be realized in the presence of a robust microbiome. Moderate-to-vigorous physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-inflammatory and immunomodulatory metabolites into circulation. The gut microbiome exerts a profound influence on cognitive function; moderate exercise and flavonoid intake influence cognitive benefits; and exercise and flavonoid intake influence the microbiome. We conclude that there is a potential for combined impacts of flavonoid intake and physical exertion on cognitive function, as modulated by the gut microbiome, and that the combination of a flavonoid-rich diet and routine aerobic exercise may potentiate cognitive benefits and reduce cognitive decline in an aging population, via mechanisms mediated by the gut microbiome. Mechanistic animal studies and human clinical interventions are needed to further explore this hypothesis.
Collapse
Affiliation(s)
- Carol L. Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David C. Nieman
- Human Performance Lab, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Andrew P. Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
10
|
Effect of Dietary Grapes on Female C57BL6/J Mice Consuming a High-Fat Diet: Behavioral and Genetic Changes. Antioxidants (Basel) 2022; 11:antiox11020414. [PMID: 35204296 PMCID: PMC8868599 DOI: 10.3390/antiox11020414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Adverse effects of a chronic high-fat diet (HFD) on murine behavior, cognition, and memory are well established. Polyphenols such as resveratrol, anthocyanins, and flavonoids, that are known for antioxidative and anti-inflammatory properties, are present in grapes. The objective of this work was to determine if the dietary intake of grapes has the potential of alleviating HFD-induced deficiencies. (2) Methods: The effect of dietary grape intake was studied using behavioral assays and high throughput genome-wide RNA transcriptome analyses with female C57BL6/J mice. (3) Results: Mice that were fed a HFD from 3-weeks of age showed anxiety-like behaviors compared with the standard diet (STD). This HFD-induced effect was attenuated by supplementing the HFD with 1% grape powder (HF1G) (open field test). Similar results were observed with the novel object recognition test; there was a significant difference in time spent exploring a novel object between the HFD and the HF1G groups. There was no significant difference between the HFD1G and the STD groups. Based on the RNA-Seq analysis, genetic expression in the brain varied as a result of diet, with 210, 360, and 221 uniquely expressed genes in the STD, HFD, and HF1G groups, respectively. Cluster analysis revealed that the HFIG group mapped more closely with the STD group than the HFD group. Focusing on some specific areas, based on genetic expression, Dopamine receptor 2 (Drd2) was increased in the HFD group and normalized in the HF1G group, relative to the STD group. In addition, as judged by cluster hierarchy, the expression of genes that are associated with the dopamine receptor 2 pathway were increased in the HFD group, whereas the pattern that was derived from mouse brain from the HF1G group showed greater similarity to the STD group. KEGG pathway analyses were consistent with these results. For example, neuroactive ligand-receptor interaction (KEGG ID: mmu04080) was altered due to HFD compared with STD, but normalized by grape supplementation or the HFD; there was no significant difference between the STD and HF1G groups. In addition, the expression of genes related to feeding behavior, such as Adora2a, Th, and Trh, were also increased in the HFD group compared with the STD group, and attenuated by grape supplementation. (4) Conclusions: Dietary grape consumption has positive effects on behavior and cognition that are impaired by a HFD. Attenuation of these effects correlates with global transcriptional changes in mouse brain.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Cell senescence is implicated in numerous age-related conditions. Antiageing therapies and nutritional approaches have been researched for purposes of removing senescent cells (senolytics) to treat or prevent age-related diseases, such as cognitive impairment and Alzheimer's disease. In this updated review, we examined the evidence from the last 18 months regarding nutrition senolytics, with a focus on cognitive ageing among older adults. RECENT FINDINGS Overall, 19 systematic reviews and 17 intervention studies were included. Studies failed to provide evidence of nutritional senolytic agents or senescence-associated secretory phenotype (SASP) suppressors, for oral supplements providing beneficial effects on cognitive ageing among older adults. The protective role of food sources such as berries and nuts, and dietary patterns of Mediterranean diet and Mediterranean-DASH diet Intervention for Neurodegenerative Delay diet against cognitive decline or risk of dementia have been mostly supported by recent studies. SUMMARY The present review gathered additional evidence for both oral supplements and foods/diets rich in nutritional senolytic agents or SASP suppressors on cognitive health among older adults. In pursuing antiageing strategies, the importance of whole foods and healthy diets should not be overlooked, future studies are warranted on long-term effects and cytotoxicity of nutritional senolytics.
Collapse
Affiliation(s)
- Xi Chen
- Dementia Centre for Research Collaboration
| | - Henry Brodaty
- Dementia Centre for Research Collaboration
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales
| | - Fiona O'Leary
- Discipline of Nutrition and Dietetics, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|