1
|
Laffont-Lozes P, Naciri T, Pantel A, Martin A, Pruvot-Occean AS, Haignere V, Loubet P, Sotto A, Larcher R. First case report of a vertebral osteomyelitis caused by carbapenem-resistant Enterobacter cloacae treated with imipenem/cilastatin/relebactam prolonged infusion then meropenem/vaborbactam in continuous infusion. Front Pharmacol 2024; 15:1347306. [PMID: 39545060 PMCID: PMC11561750 DOI: 10.3389/fphar.2024.1347306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/18/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Bone and joint infections (BJIs) caused by multidrug-resistant bacteria are becoming more frequent. However, data on the use of novel β-lactam/β-lactamase inhibitors, such as imipenem/cilastatin/relebactam (I-R) and meropenem/vaborbactam (MVB), to treat BJIs is lacking. Furthermore, prolonged infusions of these β-lactams should theoretically optimize pharmacokinetic/pharmacodynamics target in these indications, but there are currently no reports on this type of infusions, especially in the setting of BJI. Case Presentation We report a case of a vertebral osteomyelitis caused by carbapenem-resistant Enterobacter cloacae successfully treated with extended-infusion of I-R (1.25 g q6h over 2 h), then with continuous infusion of MVB (2 g q4h as over 4 h). Therapeutic drug monitoring confirmed that extended-infusion of I-R and continuous infusion of MVB achieved serum concentrations up to 12 mg/L of imipenem and 19 mg/L of meropenem, respectively. Conclusion The favourable outcome of this patient treated for a vertebral osteomyelitis caused by carbapenem-resistant E. cloacae suggest that extended- and continuous infusions of I-R and MVB, are promising regimens for treatment of BJIs caused by carbapenem-resistant Enterobacterales.
Collapse
Affiliation(s)
| | - Tayma Naciri
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nîmes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, NîmesFrance
- VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Montpellier, France
| | - Aurélie Martin
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nîmes, France
| | | | - Vincent Haignere
- Department of Orthopaedic Surgery and Traumatology, Nimes University Hospital, Nîmes, France
| | - Paul Loubet
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nîmes, France
- VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Montpellier, France
| | - Albert Sotto
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nîmes, France
- VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Montpellier, France
| | - Romaric Larcher
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nîmes, France
- PhyMedExp (Physiology and Experimental Medicine), INSERM (French Institute of Health and Medical Research), CNRS (French National Centre for Scientific Research), University of Montpellier, Montpellier, France
| |
Collapse
|
2
|
Zhang S, Liao X, Ding T, Ahn J. Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:260. [PMID: 38534695 DOI: 10.3390/antibiotics13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Since the discovery of penicillin, β-lactam antibiotics have commonly been used to treat bacterial infections. Unfortunately, at the same time, pathogens can develop resistance to β-lactam antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems by producing β-lactamases. Therefore, a combination of β-lactam antibiotics with β-lactamase inhibitors has been a promising approach to controlling β-lactam-resistant bacteria. The discovery of novel β-lactamase inhibitors (BLIs) is essential for effectively treating antibiotic-resistant bacterial infections. Therefore, this review discusses the development of innovative inhibitors meant to enhance the activity of β-lactam antibiotics. Specifically, this review describes the classification and characteristics of different classes of β-lactamases and the synergistic mechanisms of β-lactams and BLIs. In addition, we introduce potential sources of compounds for use as novel BLIs. This provides insights into overcoming current challenges in β-lactamase-producing bacteria and designing effective treatment options in combination with BLIs.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
3
|
Baig M, Rahim S, Naseem Khan R, Memon DD, Ansari ZA, Athar Khan M. Efficacy of Intravenous Colistin Monotherapy Versus Colistin Combined With Meropenem in Patients With Multidrug-Resistant Infections: A Retrospective Observational Study. Cureus 2023; 15:e47342. [PMID: 38022127 PMCID: PMC10657236 DOI: 10.7759/cureus.47342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Intensive care units frequently contend with infections caused by highly drug-resistant organisms, particularly Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacterales (CRE), which often lead to high mortality rates. Colistin (colomycin) is employed to treat infections, notably extremely drug-resistant (XDR) bacteria. Antibiotic combination treatment is a frequently used tactic in this endeavour. However, the widespread use of antibiotics in synergy could result in the emergence of resistance and a rise in side effects, such as those linked to Clostridium difficile infection. The aim of the study was to assess and contrast the clinical results of intravenous colistin monotherapy with the combination of colistin and meropenem in patients experiencing MDR bacteremia resulting from Acinetobacter Baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacterales (CRE). Methods In this retrospective observational study, an analysis spanning two years, from June 2021 to June 2023, was conducted at a teaching hospital located in Karachi, Pakistan. The research involved the retrospective examination of medical records from 132 patients who had been diagnosed with MDR bacteremia. Patients were divided into two categories based on their treatment regimen, either intravenous colistin monotherapy or intravenous colistin combined with meropenem. Among the 132 patients included in the analysis, 66 underwent colistin monotherapy, while the other 66 received a combination of colistin and meropenem. The primary focus of evaluation in this study centered on the 14-day all-cause mortality, while secondary outcomes encompassed clinical success and microbiologic cure. Results The mean age of patients in both groups was comparable, and there were no noteworthy gender differences. Additionally, the distribution of infection types and the isolated pathogens showed no substantial distinctions between the two groups. The study revealed no statistically significant disparities in 14-day mortality, improvement in Sequential Organ Failure Assessment (SOFA) score, or the proportion of patients who were cured and survived between the two treatment groups. Conclusion The findings from this study lead to the conclusion that there exists no significant disparity in the efficacy of colistin monotherapy compared to the combination of colistin with meropenem in the treatment of MDR bacteremia stemming from Acinetobacter Baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacterales (CRE). The results provide a basis for future research and underscore the significance of ongoing endeavors to refine antibiotic treatment strategies in response to the worldwide issue of antibiotic resistance.
Collapse
Affiliation(s)
- Mehwish Baig
- Intensive Care Unit, Liaquat College of Medicine and Dentistry, Darul Sehat Hospital, Karachi, PAK
| | - Sana Rahim
- Intensive Care Unit, Liaquat College of Medicine and Dentistry, Darul Sehat Hospital, Karachi, PAK
| | - Rashid Naseem Khan
- Internal Medicine, Liaquat College of Medicine and Dentistry, Darul Sehat Hospital, Karachi, PAK
| | | | - Zaid A Ansari
- Internal Medicine, Liaquat College of Medicine and Dentistry, Darul Sehat Hospital, Karachi, PAK
| | | |
Collapse
|
4
|
Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS, Baybulatova EA. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023; 11:1633. [PMID: 37371728 DOI: 10.3390/biomedicines11061633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Infections are important factors contributing to the morbidity and mortality among elderly patients. High rates of consumption of antimicrobial agents by the elderly may result in increased risk of toxic reactions, deteriorating functions of various organs and systems and leading to the prolongation of hospital stay, admission to the intensive care unit, disability, and lethal outcome. Both safety and efficacy of antibiotics are determined by the values of their plasma concentrations, widely affected by physiologic and pathologic age-related changes specific for the elderly population. Drug absorption, distribution, metabolism, and excretion are altered in different extents depending on functional and morphological changes in the cardiovascular system, gastrointestinal tract, liver, and kidneys. Water and fat content, skeletal muscle mass, nutritional status, use of concomitant drugs are other determinants of pharmacokinetics changes observed in the elderly. The choice of a proper dosing regimen is essential to provide effective and safe antibiotic therapy in terms of attainment of certain pharmacodynamic targets. The objective of this review is to perform a structure of evidence on the age-related changes contributing to the alteration of pharmacokinetic parameters in the elderly.
Collapse
Affiliation(s)
- Olga I Butranova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Ushkalova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey K Zyryanov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- State Budgetary Institution of Healthcare of the City of Moscow "City Clinical Hospital No. 24 of the Moscow City Health Department", Pistzovaya Srt. 10, 127015 Moscow, Russia
| | - Mikhail S Chenkurov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Baybulatova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
5
|
Kaye KS, Marchaim D, Thamlikitkul V, Carmeli Y, Chiu CH, Daikos G, Dhar S, Durante-Mangoni E, Gikas A, Kotanidou A, Paul M, Roilides E, Rybak M, Samarkos M, Sims M, Tancheva D, Tsiodras S, Kett D, Patel G, Calfee D, Leibovici L, Power L, Munoz-Price S, Stevenson K, Susick L, Latack K, Daniel J, Chiou C, Divine GW, Ghazyaran V, Pogue JM. Colistin Monotherapy versus Combination Therapy for Carbapenem-Resistant Organisms. NEJM EVIDENCE 2023; 2:10.1056/evidoa2200131. [PMID: 37538951 PMCID: PMC10398788 DOI: 10.1056/evidoa2200131] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND Pneumonia and bloodstream infections (BSI) due to extensively drug-resistant (XDR) Acinetobacter baumannii, XDR Pseudomonas aeruginosa, and carbapenem-resistant Enterobacterales (CRE) are associated with high mortality rates, and therapeutic options remain limited. This trial assessed whether combination therapy with colistin and meropenem was superior to colistin monotherapy for the treatment of these infections. METHODS The OVERCOME (Colistin Monotherapy versus Combination Therapy) trial was an international, randomized, double-blind, placebo-controlled trial. We randomly assigned participants to receive colistin (5 mg/kg once followed by 1.67 mg/kg every 8 hours) in combination with either meropenem (1000 mg every 8 hours) or matching placebo for the treatment of pneumonia and/or BSI caused by XDR A. baumannii, XDR P. aeruginosa, or CRE. The primary outcome was 28-day mortality, and secondary outcomes included clinical failure and microbiologic cure. RESULTS Between 2012 and 2020, a total of 464 participants were randomly assigned to treatment, and 423 eligible patients comprised the modified intention-to-treat population. A. baumannii was the predominant trial pathogen (78%) and pneumonia the most common index infection (70%). Most patients were in the intensive care unit at the time of enrollment (69%). There was no difference in mortality (43 vs. 37%; P=0.17), clinical failure (65 vs. 58%; difference, 6.8 percentage points; 95% confidence interval [CI], -3.1 to 16.6), microbiologic cure (65 vs. 60%; difference, 4.8 percentage points; 95% CI, -5.6 to 15.2), or adverse events (acute kidney injury, 52 vs. 49% [P=0.55]; hypersensitivity reaction, 1 vs. 3% [P=0.22]; and neurotoxicity, 5 vs. 2% [P=0.29]) between patients receiving monotherapy and combination therapy, respectively. CONCLUSIONS Combination therapy with colistin and meropenem was not superior to colistin monotherapy for the treatment of pneumonia or BSI caused by these pathogens. (Funded by the National Institute of Allergy and Infectious Diseases, Division of Microbiology and Infectious Diseases protocol 10-0065; ClinicalTrials.gov number, NCT01597973.).
Collapse
Affiliation(s)
- Keith S Kaye
- Division of Allergy, Immunology, and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Dror Marchaim
- Division of Infectious Diseases, Assaf Harofeh Medical Center, Be'er Ya'akov, Israel
| | - Visanu Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yehuda Carmeli
- Laboratory for Microbiology and Infection Control, Tel Aviv University, Tel Aviv, Israel
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - George Daikos
- School of Medicine, National and Kapodistrian University of Athens
| | - Sorabh Dhar
- Division of Infectious Diseases, Detroit Medical Center, Wayne State University, Detroit
| | - Emanuele Durante-Mangoni
- Internal Medicine, University of Campania "Luigi Vanvitelli" and AORN dei Colli-Monaldi Hospital, Napoli, Italy
| | - Achilles Gikas
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, Irákleio, Greece
| | | | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel
| | - Emmanuelle Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Aristotle University School of Health Sciences and Hippokration General Hospital, Thessaloniki, Greece
| | - Michael Rybak
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit
| | - Michael Samarkos
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens
| | | | - Dora Tancheva
- Centre for Burns and Plastic Surgery, Pirogov Emergency Medicine Hospital, Sofia, Bulgaria
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, University of Athens Medical School
| | - Daniel Kett
- University of Miami Hospital, Jackson Memorial Hospital
| | - Gopi Patel
- Division of Infectious Diseases, Mount Sinai Hospital, New York
| | - David Calfee
- Division of Infectious Disease, Weill Cornell Medicine, New York
| | | | | | | | | | - Laura Susick
- Department of Public Health Sciences, Henry Ford Health, Detroit
| | - Katie Latack
- Department of Public Health Sciences, Henry Ford Health, Detroit
| | - Jolene Daniel
- Division of Allergy, Immunology, and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Christine Chiou
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - George W Divine
- Department of Public Health Sciences, Henry Ford Health, Detroit
| | - Varduhi Ghazyaran
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor
| |
Collapse
|
6
|
Larcher R, Laffont-Lozes P, Roger C, Doncesco R, Groul-Viaud C, Martin A, Loubet P, Lavigne JP, Pantel A, Sotto A. Last resort beta-lactam antibiotics for treatment of New-Delhi Metallo-Beta-Lactamase producing Enterobacterales and other Difficult-to-Treat Resistance in Gram-negative bacteria: A real-life study. Front Cell Infect Microbiol 2022; 12:1048633. [PMID: 36544909 PMCID: PMC9762507 DOI: 10.3389/fcimb.2022.1048633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Novel last resort beta-lactam antibiotics are now available for management of infections due to New-Delhi Metallo-Beta-Lactamase (NDM) producing Enterobacterales and non-fermenters with Difficult-to-Treat Resistance. However, data regarding the use of imipenem-cilastatin-relebactam (IMI-REL), cefiderocol (CFD) and ceftazidime-avibactam plus aztreonam (CAZ-AVI-ATM) are scarce in real-life settings. This study aimed to describe the use of last resort beta-lactam antibiotics, the microbiology and the outcome, in patients hospitalized in a tertiary hospital. Methods We conducted a monocentric observational cohort study from 2020/01/01, to 2022/08/31. We screened all patients admitted to Nimes University Hospital who have received ≥ 1 dose of last resort beta-lactam antibiotics during the study period, using the Pharmacy database. We included patients treated with IMI-REL, CFD and CAZ-AVI-ATM. The primary endpoint was the infection-free survival rate. We also calculated rates of microbiological and clinical cure, recurrent infection, death and adverse events. Results Twenty-seven patients were included in the study and 30 treatment courses were analyzed: CFD (N=24; 80%), CAZ-AVI-ATM (N=3; 10%) and IMI-REL (N=3; 10%). Antibiotics were used in 21 males (70%) and 9 females (30%) with a median age at 65-year-old [50-73.5] and a median Charlson index at 1 [0-2]. Almost all the patients had ≥ 1 risk factor for carbapenem resistant bacteria, a half of them was hospitalized for severe COVID-19, and most of antibiotic courses (N=26; 87%) were associated with ICU admission. In the study population, the probability of infection-free survival at day-90 after last resort beta-lactam therapy initiation was 48.4% CI95% [33.2-70.5]. Clinical failure rate was at 30%, microbiological failure rate at 33% and mortality rate at 23%. Adverse events were documented in 5 antibiotic courses (17%). In details, P. aeruginosa were mainly treated with CFD and IMI-REL, S. maltophilia with CFD and CAZ-AVI-ATM, A. baumannii with CFD, and NDM producing-K. pneumoniae with CAZ-AVI-ATM and CFD. After a treatment course with CFD, CAZ-AVI-ATM and IMI-REL, the probability of infection-free survival was 48% CI95% [10.4-73.5], 33.3% CI95% [6.7-100], 66.7% CI95% [30-100], respectively. Discussion/conclusion Use of last resort beta-lactam antimicrobials in real-life settings was a safe and efficient therapeutic option for severe infections related to Gram-negative bacteria with Difficult-to-Treat Resistance.
Collapse
Affiliation(s)
- Romaric Larcher
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,PhyMedExp (Physiology and Experimental Medicine), INSERM (French Institute of Health and Medical Research), CNRS (French National Centre for Scientific Research), University of Montpellier, Montpellier, France,*Correspondence: Romaric Larcher,
| | | | - Claire Roger
- Anesthesiology and Critical Care Medicine, Nimes University Hospital, Nimes, France
| | - Regine Doncesco
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
| | - Celine Groul-Viaud
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France
| | - Aurelie Martin
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
| | - Paul Loubet
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Albert Sotto
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| |
Collapse
|
7
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
8
|
Gaibani P, Giani T, Bovo F, Lombardo D, Amadesi S, Lazzarotto T, Coppi M, Rossolini GM, Ambretti S. Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics (Basel) 2022; 11:antibiotics11050628. [PMID: 35625273 PMCID: PMC9137602 DOI: 10.3390/antibiotics11050628] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Multidrug resistance (MDR) represents a serious global threat due to the rapid global spread and limited antimicrobial options for treatment of difficult-to-treat (DTR) infections sustained by MDR pathogens. Recently, novel β-lactams/β-lactamase inhibitor combinations (βL-βLICs) have been developed for the treatment of DTR infections due to MDR Gram-negative pathogens. Although novel βL-βLICs exhibited promising in vitro and in vivo activities against MDR pathogens, emerging resistances to these novel molecules have recently been reported. Resistance to novel βL-βLICs is due to several mechanisms including porin deficiencies, increasing carbapenemase expression and/or enzyme mutations. In this review, we summarized the main mechanisms related to the resistance to ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam in MDR Gram-negative micro-organisms. We focused on antimicrobial activities and resistance traits with particular regard to molecular mechanisms related to resistance to novel βL-βLICs. Lastly, we described and discussed the main detection methods for antimicrobial susceptibility testing of such molecules. With increasing reports of resistance to novel βL-βLICs, continuous attention should be maintained on the monitoring of the phenotypic traits of MDR pathogens, into the characterization of related mechanisms, and on the emergence of cross-resistance to these novel antimicrobials.
Collapse
Affiliation(s)
- Paolo Gaibani
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
- Correspondence:
| | - Tommaso Giani
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy; (T.G.); (M.C.); (G.M.R.)
- Department of Experimental and Clinical Medicine, University of Florence, 50100 Florence, Italy
| | - Federica Bovo
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
| | - Donatella Lombardo
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
| | - Stefano Amadesi
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
| | - Tiziana Lazzarotto
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40100 Bologna, Italy
| | - Marco Coppi
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy; (T.G.); (M.C.); (G.M.R.)
- Department of Experimental and Clinical Medicine, University of Florence, 50100 Florence, Italy
| | - Gian Maria Rossolini
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy; (T.G.); (M.C.); (G.M.R.)
- Department of Experimental and Clinical Medicine, University of Florence, 50100 Florence, Italy
| | - Simone Ambretti
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.B.); (D.L.); (S.A.); (T.L.); (S.A.)
| |
Collapse
|
9
|
Aztreonam in Combination with Imipenem-Relebactam Against Clinical and Isogenic Strains of Serine and Metallo-β-Lactamase-Producing Enterobacterales. Diagn Microbiol Infect Dis 2022; 103:115674. [DOI: 10.1016/j.diagmicrobio.2022.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/28/2022]
|
10
|
Abstract
Introduction Antimicrobial resistance (AMR) is an emerging global threat. It increases mortality and morbidity and strains healthcare systems. Health care professionals can counter the rising AMR by promoting antibiotic stewardship and facilitating new drug development. Even with the economic and scientific challenges, it is reassuring that new agents continue to be developed. Methods This review addresses new antibiotics in the pipeline. We conducted a review of the literature including Medline, Clinicaltrials.org, and relevant pharmaceutical companies for approved and in pipeline antibiotics in phase 3 or new drug application (NDA). Results We found a number of new antibiotics and reviewed their current development status, mode of action, spectra of activity, and indications for which they have been approved. The included studies from phase 3 clinical trials were mainly utilized for the treatment of acute bacterial skin and skin structure infections, community-acquired bacterial pneumonia, and pneumonia acquired in the healthcare settings. The number of these agents is limited against high priority organisms. The identified antibiotics were based mainly on previously known molecules or pre-existing antimicrobial agents. Conclusion There are a limited number of antibiotics against high priority organisms such as multi-drug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Enterobacteriaceae. New antimicrobial agents directed against the top priority organisms as classified by the World Health Organization are urgently needed.
Collapse
|
11
|
Novelty and nuance in the intensive care unit: new options to combat multidrug resistant pneumonia. Curr Opin Infect Dis 2021; 34:151-155. [PMID: 33395092 DOI: 10.1097/qco.0000000000000712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To describe the increasing burden of multidrug resistant (MDR) Gram-negative pathogens in severe pneumonia and to examine the clinical trials supporting a role for novel agents for the treatment of this infection. RECENT FINDINGS MDR Gram-negative bacteria cause an increasing proportion of severe pneumonias. Although the epidemiology of resistance varies across the globe, all regions have seen an evolution in resistance, especially among Enterobacterales spp, Pseudomonas aeruginosa, and Acinetobacter bumannii. Fortunately, several clinical trials have established the role for multiple new antibiotics in pneumonia. Although these drugs all have different ranges of in vitro activity and potency, each helps to address the problem of MDR. These studies have varied based on the proportion of subjects undergoing mechanical ventilation and the comparator agents employed. Although all these trials have demonstrated noninferiority to the comparator, the mortality rates across the analyses ranged from <% to >20%. None of the recent investigations included immunocompromised subjects. SUMMARY Multiple new agents exist for treating MDR Gram-negative pneumonia. These agents are not interchangeable. Thus, one must approach their adoption with a nuanced eye.
Collapse
|
12
|
Luci G, Mattioli F, Falcone M, Di Paolo A. Pharmacokinetics of Non-β-Lactam β-Lactamase Inhibitors. Antibiotics (Basel) 2021; 10:769. [PMID: 34202609 PMCID: PMC8300739 DOI: 10.3390/antibiotics10070769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
The growing emergence of drug-resistant bacterial strains is an issue to treat severe infections, and many efforts have identified new pharmacological agents. The inhibitors of β-lactamases (BLI) have gained a prominent role in the safeguard of beta-lactams. In the last years, new β-lactam-BLI combinations have been registered or are still under clinical evaluation, demonstrating their effectiveness to treat complicated infections. It is also noteworthy that the pharmacokinetics of BLIs partly matches that of β-lactams companions, meaning that some clinical situations, as well as renal impairment and renal replacement therapies, may alter the disposition of both drugs. Common pharmacokinetic characteristics, linear pharmacokinetics across a wide range of doses, and known pharmacokinetic/pharmacodynamic parameters may guide modifications of dosing regimens for both β-lactams and BLIs. However, comorbidities (i.e., burns, diabetes, cancer) and severe changes in individual pathological conditions (i.e., acute renal impairment, sepsis) could make dose adaptation difficult, because the impact of those factors on BLI pharmacokinetics is partly known. Therapeutic drug monitoring protocols may overcome those issues and offer strategies to personalize drug doses in the intensive care setting. Further prospective clinical trials are warranted to improve the use of BLIs and their β-lactam companions in severe and complicated infections.
Collapse
Affiliation(s)
- Giacomo Luci
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| | - Francesca Mattioli
- Department of Internal Medicine, Pharmacology & Toxicology Unit, University of Genoa, 16100 Genoa, Italy;
| | - Marco Falcone
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.L.); (M.F.)
| |
Collapse
|
13
|
Mansour H, Ouweini AEL, Chahine EB, Karaoui LR. Imipenem/cilastatin/relebactam: A new carbapenem β-lactamase inhibitor combination. Am J Health Syst Pharm 2021; 78:674-683. [PMID: 33580649 DOI: 10.1093/ajhp/zxab012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The pharmacology, pharmacokinetics, pharmacodynamics, antimicrobial activity, efficacy, safety, and current regulatory status of imipenem/cilastatin/relebactam are reviewed. SUMMARY Imipenem/cilastatin/relebactam is a newly approved anti-infective combination of a well-established β-lactam and a new β-lactamase inhibitor for the treatment of complicated urinary tract infections (cUTIs), including pyelonephritis, and complicated intra-abdominal infections (cIAIs) caused by susceptible gram-negative bacteria in patients 18 years of age or older with limited or no alternative treatment options. The antibiotic is also indicated for the treatment of hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP). The antibiotic is active in vitro against a wide range of pathogens, including multidrug-resistant (MDR) Pseudomonas aeruginosa and carbapenem-resistant Enterobacterales (CRE) such as Klebsiella pneumoniae carbapenemase. The addition of relebactam does not restore the activity of imipenem against metallo-β-lactamase (MBL)-producing Enterobacterales and carbapenem-resistant Acinetobacter baumannii. Two phase 3 clinical trials of imipenem/cilastatin/relebactam were conducted. In the RESTORE-IMI 1 trial, the efficacy and safety of imipenem/cilastatin/relebactam was found to be comparable to that of imipenem/cilastatin plus colistin for the treatment of infections caused by imipenem-nonsusceptible gram-negative bacteria in patients with HABP/VABP, cUTIs, and cIAIs, with a significantly lower incidence of nephrotoxicity reported with the new antibiotic. The RESTORE-IMI 2 trial demonstrated the noninferiority of imipenem/cilastatin/relebactam to piperacillin/tazobactam for the treatment of HABP/VABP. Commonly reported adverse events in clinical trials included anemia, elevated liver enzymes, electrolyte imbalances, nausea, vomiting, diarrhea, headache, fever, phlebitis and/or infusion-site reactions, and hypertension. CONCLUSION Imipenem/cilastatin/relebactam is a new β-lactam/β-lactamase inhibitor combination with activity against MDR gram-negative bacteria, including many CRE but excluding MBL-producing Enterobacterales and carbapenem-resistant Acinetobacter baumannii. It is approved for the treatment of cUTIs, cIAIs, and HABP/VABP.
Collapse
Affiliation(s)
- Hanine Mansour
- Department of Pharmacy Practice, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Ahmad E L Ouweini
- Lebanese American University Medical Center - Rizk Hospital, Beirut, Lebanon.,School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Elias B Chahine
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA
| | - Lamis R Karaoui
- Department of Pharmacy Practice, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
14
|
Yu SN, Kim T, Park SY, Lee YM, Park KH, Lee EJ, Jeon MH, Choo EJ, Kim TH, Lee MS, Park SY. Predictors of Acute Kidney Injury and 28-Day Mortality in Carbapenem-Resistant Acinetobacter baumannii Complex Bacteremia. Microb Drug Resist 2021; 27:1029-1036. [PMID: 33656377 DOI: 10.1089/mdr.2020.0312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Colistin is an, antibiotic used to treat carbapenem-resistant Acinetobacter baumannii complex (CRABC) infection. However, colistin is well known for its nephrotoxicity. To accurately assess the effects of colistin on acute kidney injury (AKI) and 28-day mortality, we investigated the risk factors associated with AKI and mortality in patients with CRABC bacteremia who received or never received colistin. Patients with CRABC bacteremia aged ≥18 years were retrospectively identified for 3 years at five tertiary teaching hospitals. AKI was defined by using the Kidney Disease Improving Global Outcomes criteria. AKI developed in 103 (34.9%) of the 295 patients enrolled patients. AKI developed more frequently in patients who received colistin than in patients who did not (46.7% vs. 29.5%, p = 0.004). Multivariate analysis showed that intravenous colistin usage was an independent risk factor for AKI in these patients. Nonfatal disease, catheter-related bloodstream infection, and administration of colistin were protective factors for 28-day mortality. However, the sequential organ failure assessment score and AKI were associated with poor outcomes. In conclusion, colistin may be a double-edged sword; although it causes AKI, it also reduces 28-day mortality in patients with CRABC bacteremia. Therefore, colistin administration as an appropriate antibiotic may improve CRABC bacteremia prognosis, despite its nephrotoxicity.
Collapse
Affiliation(s)
- Shi Nae Yu
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Tark Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Se Yoon Park
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Yu-Mi Lee
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Ki-Ho Park
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Min Hyok Jeon
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Eun Ju Choo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Tae Hyong Kim
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Mi Suk Lee
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Seong Yeon Park
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
15
|
Abstract
Imipenem/cilastatin/relebactam (Recarbrio™) is an intravenously administered combination of the carbapenem imipenem, the renal dehydropeptidase-I inhibitor cilastatin, and the novel β-lactamase inhibitor relebactam. Relebactam is a potent inhibitor of class A and class C β-lactamases, conferring imipenem activity against many imipenem-nonsusceptible strains. Imipenem/cilastatin/relebactam is approved in the USA and EU for the treatment of hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) in adults and other gram-negative infections, including complicated urinary tract infections (cUTIs) [including pyelonephritis] and complicated intra-abdominal infections (cIAIs), in adults with limited or no alternative treatment options. In pivotal phase II and III trials, imipenem/cilastatin/relebactam was noninferior to piperacillin/tazobactam in patients with HABP/VABP and to imipenem/cilastatin in patients with cUTIs and cIAIs. It was also effective in imipenem-nonsusceptible infections. Imipenem/cilastatin/relebactam was generally well tolerated, with a safety profile consistent with that of imipenem/cilastatin. Available evidence indicates that imipenem/cilastatin/relebactam is an effective and generally well tolerated option for gram-negative infections in adults, including critically ill and/or high-risk patients, and a potential therapy for infections caused by carbapenem-resistant pathogens.
Collapse
Affiliation(s)
- Young-A Heo
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
16
|
Moussa M, Abou Chakra M, Dellis A, Moussa Y, Papatsoris A. Pharmacotherapeutic advances for recurrent urinary tract infections in women. Expert Opin Pharmacother 2020; 21:2011-2026. [PMID: 32717156 DOI: 10.1080/14656566.2020.1795128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Treatment of recurrent Urinary tract infections (UTIs) has become challenging because of the dramatic increase in the rates of recurrent infection andof multidrug-resistant (MDR) infections. AREAS COVERED The authors review recurrent UTIs(rUTI) management in women. EXPERT OPINION Continuous or post-coital prophylaxis with low-dose antimicrobials or intermittent self-treatment has all been demonstrated to be effective in managing rUTIs in women. Intravaginal estrogen therapy , shows potential toward preventing rUTI. Oral vaccine Uro-Vaxom seems to reduce the number of UTIs. There is evidence that other therapies (e.g. cranberry, Methenamine hippurate, oral D-mannose) may decrease the number of symptomatic UTIs. The treatment of CRE-UTIs is focused on a colistin backbone. Carbapenems are considered first-line agents for UTIs caused by ESBL, but their use is associated with increased MDR. The usage of non-carbapenem for the treatment of ESBL UTIs is necessary. Cefepime, Piperacillin-Tazobactam, Ceftolozane-Tazobactam, and Ceftazidime-Avibactam are justified options. Oral therapy with Pivmecillinam, Fosfomycin, and Nitrofurantoin can be used against uncomplicated UTIs due to ESBL infection.
Collapse
Affiliation(s)
- Mohamad Moussa
- Department of Urology, Al Zahraa Hospital, University Medical Center, Lebanese University , Beirut, Lebanon
| | - Mohamed Abou Chakra
- Department of Urology, Al Zahraa Hospital, University Medical Center, Lebanese University , Beirut, Lebanon
| | - Athanasios Dellis
- Department of Surgery, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens , Athens, Greece.,2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens , Athens, Greece
| | - Yasmin Moussa
- Clinic of Dermatology, Dr Brinkmann, Schult & Samini-Fard , Gladbeck, Germany
| | - Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens , Athens, Greece
| |
Collapse
|