1
|
Wang X, Yu D, Chui L, Zhou T, Feng Y, Cao Y, Zhi S. A Comprehensive Review on Shiga Toxin Subtypes and Their Niche-Related Distribution Characteristics in Shiga-Toxin-Producing E. coli and Other Bacterial Hosts. Microorganisms 2024; 12:687. [PMID: 38674631 PMCID: PMC11052178 DOI: 10.3390/microorganisms12040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin (Stx), the main virulence factor of Shiga-toxin-producing E. coli (STEC), was first discovered in Shigella dysenteriae strains. While several other bacterial species have since been reported to produce Stx, STEC poses the most significant risk to human health due to its widespread prevalence across various animal hosts that have close contact with human populations. Based on its biochemical and molecular characteristics, Shiga toxin can be grouped into two types, Stx1 and Stx2, among which a variety of variants and subtypes have been identified in various bacteria and host species. Interestingly, the different Stx subtypes appear to vary in their host distribution characteristics and in the severity of diseases that they are associated with. As such, this review provides a comprehensive overview on the bacterial species that have been recorded to possess stx genes to date, with a specific focus on the various Stx subtype variants discovered in STEC, their prevalence in certain host species, and their disease-related characteristics. This review provides a better understanding of the Stx subtypes and highlights the need for rapid and accurate approaches to toxin subtyping for the proper evaluation of the health risks associated with Shiga-toxin-related bacterial food contamination and human infections.
Collapse
Affiliation(s)
- Xuan Wang
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Daniel Yu
- School of Public Health, Univeristy of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Linda Chui
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Tiantian Zhou
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yu Feng
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yuhao Cao
- School of Basic Medical Sciences, Ningbo University, Ningbo 315000, China;
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| |
Collapse
|
2
|
Gummalla VS, Zhang Y, Liao YT, Wu VCH. The Role of Temperate Phages in Bacterial Pathogenicity. Microorganisms 2023; 11:541. [PMID: 36985115 PMCID: PMC10052878 DOI: 10.3390/microorganisms11030541] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria and archaea and are classified as virulent or temperate phages based on their life cycles. A temperate phage, also known as a lysogenic phage, integrates its genomes into host bacterial chromosomes as a prophage. Previous studies have indicated that temperate phages are beneficial to their susceptible bacterial hosts by introducing additional genes to bacterial chromosomes, creating a mutually beneficial relationship. This article reviewed three primary ways temperate phages contribute to the bacterial pathogenicity of foodborne pathogens, including phage-mediated virulence gene transfer, antibiotic resistance gene mobilization, and biofilm formation. This study provides insights into mechanisms of phage-bacterium interactions in the context of foodborne pathogens and provokes new considerations for further research to avoid the potential of phage-mediated harmful gene transfer in agricultural environments.
Collapse
Affiliation(s)
| | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
3
|
AB 5 Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins. Toxins (Basel) 2022; 14:toxins14010062. [PMID: 35051039 PMCID: PMC8779504 DOI: 10.3390/toxins14010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Foodborne diseases affect an estimated 600 million people worldwide annually, with the majority of these illnesses caused by Norovirus, Vibrio, Listeria, Campylobacter, Salmonella, and Escherichia coli. To elicit infections in humans, bacterial pathogens express a combination of virulence factors and toxins. AB5 toxins are an example of such toxins that can cause various clinical manifestations, including dehydration, diarrhea, kidney damage, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Treatment of most bacterial foodborne illnesses consists of fluid replacement and antibiotics. However, antibiotics are not recommended for infections caused by Shiga toxin-producing E. coli (STEC) because of the increased risk of HUS development, although there are conflicting views and results in this regard. Lack of effective treatment strategies for STEC infections pose a public health threat during outbreaks; therefore, the debate on antibiotic use for STEC infections could be further explored, along with investigations into antibiotic alternatives. The overall goal of this review is to provide a succinct summary on the mechanisms of action and the pathogenesis of AB5 and related toxins, as expressed by bacterial foodborne pathogens, with a primary focus on Shiga toxins (Stx). The role of Stx in human STEC disease, detection methodologies, and available treatment options are also briefly discussed.
Collapse
|
4
|
Zhi S, Parsons BD, Szelewicki J, Yuen YTK, Fach P, Delannoy S, Li V, Ferrato C, Freedman SB, Lee BE, Pang XL, Chui L. Identification of Shiga-Toxin-Producing Shigella Infections in Travel and Non-Travel Related Cases in Alberta, Canada. Toxins (Basel) 2021; 13:toxins13110755. [PMID: 34822539 PMCID: PMC8618429 DOI: 10.3390/toxins13110755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 01/21/2023] Open
Abstract
It has long been accepted that Shiga toxin (Stx) only exists in Shigella dysenteriae serotype 1. However, in recent decades, the presence of Shiga toxin genes (stx) in other Shigella spp. have been reported. We screened 366 Shigella flexneri strains from Alberta, Canada (2003 to 2016) for stx and 26 positive strains were identified. These isolates are highly related with the majority originating from the Dominican Republic and three isolates with Haiti origin. Both phylogenetic and spanning tree analysis of the 26 Alberta and 29 stx positive S. flexneri originating from the U.S., France, Canada (Quebec) and Haiti suggests that there are geographic specific distribution patterns (Haiti and Dominican Republic clades). This study provides the first comprehensive whole genome based phylogenetic analysis of stx positive S. flexneri strains as well as their global transmission, which signify the public health risks of global spreading of these strains.
Collapse
Affiliation(s)
- Shuai Zhi
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315000, China;
- School of Medicine, Ningbo University, Ningbo 315000, China
| | - Brendon D. Parsons
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada; (B.D.P.); (J.S.); (Y.T.K.Y.); (X.-L.P.)
| | - Jonas Szelewicki
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada; (B.D.P.); (J.S.); (Y.T.K.Y.); (X.-L.P.)
| | - Yue T. K. Yuen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada; (B.D.P.); (J.S.); (Y.T.K.Y.); (X.-L.P.)
| | - Patrick Fach
- Agency for Food, Environmental and Occupational Health and Safety (ANSES), Food Safety Laboratory, COLiPATH Research Unit & IDPA Genomics Platform, FR-94700 Maisons-Alfort, France; (P.F.); (S.D.)
| | - Sabine Delannoy
- Agency for Food, Environmental and Occupational Health and Safety (ANSES), Food Safety Laboratory, COLiPATH Research Unit & IDPA Genomics Platform, FR-94700 Maisons-Alfort, France; (P.F.); (S.D.)
| | - Vincent Li
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
| | - Christina Ferrato
- Alberta Precision Laboratories-ProvLab, Calgary, AB T2N 4W4, Canada;
| | - Stephen B. Freedman
- Alberta Children’s Hospital, Division of Pediatric Emergency Medicine and Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Alberta Children’s Hospital Research Institute, Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine & Dentistry, Women and Children’s Health Research Institute, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada; (B.D.P.); (J.S.); (Y.T.K.Y.); (X.-L.P.)
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada; (B.D.P.); (J.S.); (Y.T.K.Y.); (X.-L.P.)
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
- Correspondence:
| |
Collapse
|
5
|
Haksar D, Asadpoor M, Heise T, Shi J, Braber S, Folkerts G, Ballell L, Rodrigues J, Pieters RJ. Fighting Shigella by Blocking Its Disease-Causing Toxin. J Med Chem 2021; 64:6059-6069. [PMID: 33909975 PMCID: PMC8154557 DOI: 10.1021/acs.jmedchem.1c00152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Shiga toxin is an
AB5 toxin produced by Shigella species, while related toxins are produced
by Shiga toxin-producing Escherichia coli (STEC). Infection by Shigella can lead to bloody diarrhea followed
by the often fatal hemolytic uremic syndrome (HUS). In the present
paper, we aimed for a simple and effective toxin inhibitor by comparing
three classes of carbohydrate-based inhibitors: glycodendrimers, glycopolymers,
and oligosaccharides. We observed a clear enhancement in potency for
multivalent inhibitors, with the divalent and tetravalent compounds
inhibiting in the millimolar and micromolar range, respectively. However,
the polymeric inhibitor based on galabiose was the most potent in
the series exhibiting nanomolar inhibition. Alginate and chitosan
oligosaccharides also inhibit Shiga toxin and may be used as a prophylactic
drug during shigella outbreaks.
Collapse
Affiliation(s)
- Diksha Haksar
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Torben Heise
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jie Shi
- Diseases of the Developing World (DDW), Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Lluis Ballell
- Diseases of the Developing World (DDW), Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Janneth Rodrigues
- Diseases of the Developing World (DDW), Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
6
|
Llarena AK, Aspholm M, O'Sullivan K, Wêgrzyn G, Lindbäck T. Replication Region Analysis Reveals Non-lambdoid Shiga Toxin Converting Bacteriophages. Front Microbiol 2021; 12:640945. [PMID: 33868197 PMCID: PMC8044961 DOI: 10.3389/fmicb.2021.640945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin is the major virulence factor of enterohemorrhagic Escherichia coli (EHEC), and the gene encoding it is carried within the genome of Shiga toxin-converting phages (Stx phages). Numerous Stx phages have been sequenced to gain a better understanding of their contribution to the virulence potential of EHEC. The Stx phages are classified into the lambdoid phage family based on similarities in lifestyle, gene arrangement, and nucleotide sequence to the lambda phages. This study explores the replication regions of non-lambdoid Stx phages that completely lack the O and P genes encoding the proteins involved in initiating replication in the lambdoid phage genome. Instead, they carry sequences encoding replication proteins that have not been described earlier, here referred to as eru genes (after EHEC phage replication unit genes). This study identified three different types of Eru-phages, where the Eru1-type is carried by the highly pathogenic EHEC strains that caused the Norwegian O103:H25 outbreak in 2006 and the O104:H4 strain that caused the large outbreak in Europe in 2011. We show that Eru1-phages exhibit a less stable lysogenic state than the classical lambdoid Stx phages. As production of phage particles is accompanied by production of Stx toxin, the Eru1-phage could be associated with a high-virulence phenotype of the host EHEC strain. This finding emphasizes the importance of classifying Stx phages according to their replication regions in addition to their Stx-type and could be used to develop a novel strategy to identify highly virulent EHEC strains for improved risk assessment and management.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristin O'Sullivan
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Grzegorz Wêgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
7
|
Sváb D, Falgenhauer L, Horváth B, Maróti G, Falgenhauer J, Chakraborty T, Tóth I. Genome Analysis of a Historical Shigella dysenteriae Serotype 1 Strain Carrying a Conserved Stx Prophage Region. Front Microbiol 2021; 11:614793. [PMID: 33488558 PMCID: PMC7819885 DOI: 10.3389/fmicb.2020.614793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Shigella dysenteriae are significant agents of bacillary dysentery, accounting for a considerable number of illnesses with high morbidity worldwide. The Shiga toxin (Stx) encoded by a defective prophage is the key virulence factor of S. dysenteriae type 1 (SD1) strains. Here we present the full genome sequence of an SD1 strain HNCMB 20080 isolated in 1954, compare it to other sequenced SD1 genomes, and assess the diversity of Stx-prophages harbored by previously sequenced SD1 strains. The genome of HNCMB 20080 consists of a chromosome sized 4,393,622 bp containing 5,183 CDSs, as well as two small plasmids. Comparative genomic analysis revealed a high degree of uniformity among SD1 genomes, including the structure of Stx prophage regions, which we found to form two subgroups termed PT-I and PT-II. All PT-I strains are members of the sequence type (ST) 146 or ST260, while the only PT-II harboring strain, Sd1617 proved to be ST untypeable. In accordance with data from previous reports, the Stx1 prophage could not be induced from HNCMB 20080. Our cumulative data do not support the notion that stx-harboring phages in STEC are derived from historical SD1 isolates.
Collapse
Affiliation(s)
- Domonkos Sváb
- Institue for Veterinary Medical Research, Centre for Agricultural Research, Martonvásár, Hungary
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany.,German Centre for Infection Research, Site Giessen-Marburg-Langen, Giessen, Germany
| | | | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.,Faculty of Water Sciences, University of Public Service, Baja, Hungary
| | - Jane Falgenhauer
- German Centre for Infection Research, Site Giessen-Marburg-Langen, Giessen, Germany.,Institute for Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany.,Institute for Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - István Tóth
- Institue for Veterinary Medical Research, Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
8
|
Abstract
Numerous bacteriophages-viruses of bacteria, also known as phages-have been described for hundreds of bacterial species. The Gram-negative Shigella species are close relatives of Escherichia coli, yet relatively few previously described phages appear to exclusively infect this genus. Recent efforts to isolate Shigella phages have indicated these viruses are surprisingly abundant in the environment and have distinct genomic and structural properties. In addition, at least one model system used for experimental evolution studies has revealed a unique mechanism for developing faster infection cycles. Differences between these bacteriophages and other well-described model systems may mirror differences between their hosts' ecology and defense mechanisms. In this review, we discuss the history of Shigella phages and recent developments in their isolation and characterization and the structural information available for three model systems, Sf6, Sf14, and HRP29; we also provide an overview of potential selective pressures guiding both Shigella phage and host evolution.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sarah M Doore
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan 48824, USA;
| |
Collapse
|
9
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Monteiro Pires S, Morabito S, Niskanen T, Scheutz F, da Silva Felício MT, Messens W, Bolton D. Pathogenicity assessment of Shiga toxin‐producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J 2020. [DOI: 10.2903/j.efsa.2020.5967] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
10
|
|
11
|
Hazard Identification and Characterization: Criteria for Categorizing Shiga Toxin-Producing Escherichia coli on a Risk Basis †. J Food Prot 2019; 82:7-21. [PMID: 30586326 DOI: 10.4315/0362-028x.jfp-18-291] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) comprise a large, highly diverse group of strains. Since the emergence of STEC serotype O157:H7 as an important foodborne pathogen, serotype data have been used for identifying STEC strains, and this use continued as other serotypes were implicated in human infections. An estimated 470 STEC serotypes have been identified, which can produce one or more of the 12 known Shiga toxin (Stx) subtypes. The number of STEC serotypes that cause human illness varies but is probably higher than 100. However, many STEC virulence genes are mobile and can be lost or transferred to other bacteria; therefore, STEC strains that have the same serotype may not carry the same virulence genes or pose the same risk. Although serotype information is useful in outbreak investigations and surveillance studies, it is not a reliable means of assessing the human health risk posed by a particular STEC serotype. To contribute to the development of a set of criteria that would more reliably support hazard identification, this review considered each of the factors contributing to a negative human health outcome: mild diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS). STEC pathogenesis involves entry into the human gut (often via ingestion), attachment to the intestinal epithelial cells, and elaboration of Stx. Production of Stx, which disrupts normal cellular functions and causes cell damage, alone without adherence of bacterial cells to gut epithelial cells is insufficient to cause severe illness. The principal adherence factor in STEC is the intimin protein coded by the eae gene. The aggregative adherence fimbriae adhesins regulated by the aggR gene of enteroaggregative E. coli strains are also effective adherence factors. The stx2a gene is most often present in locus of enterocyte effacement ( eae)-positive STEC strains and has consistently been associated with HUS. The stx2a gene has also been found in eae-negative, aggR-positive STEC that have caused HUS. HUS cases where other stx gene subtypes were identified indicate that other factors such as host susceptibility and the genetic cocktail of virulence genes in individual isolates may affect their association with severe diseases.
Collapse
Affiliation(s)
-
- The Joint FAO/WHO Expert Meetings on Microbiological Risk Assessment (JEMRA) Secretariat, * Food Safety and Quality Unit, Agriculture and Consumer Protection Department, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| |
Collapse
|
12
|
Baker KS, Dallman TJ, Thomson NR, Jenkins C. An outbreak of a rare Shiga-toxin-producing Escherichia coli serotype (O117:H7) among men who have sex with men. Microb Genom 2018; 4. [PMID: 29781799 PMCID: PMC6113874 DOI: 10.1099/mgen.0.000181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sexually transmissible enteric infections (STEIs) are commonly associated with transmission among men who have sex with men (MSM). In the past decade, the UK has experienced multiple parallel STEI emergences in MSM caused by a range of bacterial species of the genus Shigella, and an outbreak of an uncommon serotype (O117 : H7) of Shiga-toxin-producing Escherichia coli (STEC). Here, we used microbial genomics on 6 outbreak and 30 sporadic STEC O117 : H7 isolates to explore the origins and pathogenic drivers of the STEC O117 : H7 emergence in MSM. Using genomic epidemiology, we found that the STEC O117 : H7 outbreak lineage was potentially imported from Latin America and likely continues to circulate both in the UK MSM population and in Latin America. We found genomic relationships consistent with existing symptomatic evidence for chronic infection with this STEC serotype. Comparative genomic analysis indicated the existence of a novel Shiga toxin 1-encoding prophage in the outbreak isolates, and evidence of horizontal gene exchange among the STEC O117 : H7 outbreak lineage and other enteric pathogens. There was no evidence of increased virulence in the outbreak strains relative to contextual isolates, but the outbreak lineage was associated with azithromycin resistance. Comparing these findings with similar genomic investigations of emerging MSM-associated Shigella in the UK highlighted many parallels, the most striking of which was the importance of the azithromycin phenotype for STEI emergence in this patient group.
Collapse
Affiliation(s)
- Kate S Baker
- 1Institute for Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
13
|
Li B, Liu H, Wang W. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli. BMC Microbiol 2017; 17:215. [PMID: 29121863 PMCID: PMC5679507 DOI: 10.1186/s12866-017-1123-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. Methods The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. Results The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella enterica, Shigella strains, or any other pathogenic strains tested. Conclusions A multiplex real-time PCR assay that can rapidly and simultaneously detect E. coli O157:H7 and screen for non-O157 STEC strains has been developed and assessed for efficacy. The inclusivity and exclusivity tests demonstrated high sensitivity and specificity of the multiplex real-time PCR assay. In addition, this multiplex assay was shown to be effective for the detection of E. coli O157:H7 from two common food matrices, beef and spinach, and may be applied for detection of E. coli O157:H7 and screening for non-O157 STEC strains from other food matrices as well.
Collapse
Affiliation(s)
- Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Huanli Liu
- Branch of Microbiology, Office of Regulatory Affairs, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Weimin Wang
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
14
|
Sváb D, Bálint B, Vásárhelyi B, Maróti G, Tóth I. Comparative Genomic and Phylogenetic Analysis of a Shiga Toxin Producing Shigella sonnei (STSS) Strain. Front Cell Infect Microbiol 2017; 7:229. [PMID: 28611956 PMCID: PMC5447701 DOI: 10.3389/fcimb.2017.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/17/2017] [Indexed: 01/26/2023] Open
Abstract
Shigella strains are important agents of bacillary dysentery, and in recent years Shigella sonnei has emerged as the leading cause of shigellosis in industrialized and rapidly developing countries. More recently, several S. sonnei and Shigella flexneri strains producing Shiga toxin (Stx) have been reported from sporadic cases and from an outbreak in America. In the present study we aimed to shed light on the evolution of a recently identified Shiga toxin producing S. sonnei (STSS) isolated in Europe. Here we report the first completely assembled whole genome sequence of a multidrug resistant (MDR) Stx-producing S. sonnei (STSS) clinical strain and reveal its phylogenetic relations. STSS 75/02 proved to be resistant to ampicillin, streptomycin, tetracycline, chloramphenicol, thrimetoprim, and sulfomethoxazol. The genome of STSS 75/02 contains a 4,891,717 nt chromosome and seven plasmids including the 214 kb invasion plasmid (pInv) harboring type III secretion system genes and associated effectors. The chromosome harbors 23 prophage regions including the Stx1 converting prophage. The genome carries all virulence determinants necessary for an enteroinvasive lifestyle, as well as the Stx1 encoding gene cluster within an earlier described inducible converting prophage. In silico SNP genotyping of the assembled genome as well as 438 complete or draft S. sonnei genomes downloaded from NCBI GenBank revealed that S. sonnei 75/02 belongs to the more recently diverged global MDR lineage (IIIc). Targeted screening of 1131 next-generation sequencing projects taken from NCBI Short Read Archive of confirms that only a few S. sonnei isolates are Stx positive. Our results suggest that the acquisition of Stx phages could have occurred in different environments as independent events and that multiple horizontal transfers are responsible for the appearance of Stx phages in S. sonnei strains.
Collapse
Affiliation(s)
- Domonkos Sváb
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Hungarian Academy of SciencesBudapest, Hungary
| | | | | | - Gergely Maróti
- Biological Research Centre, Institute of Biochemistry, Hungarian Academy of SciencesSzeged, Hungary
| | - István Tóth
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Hungarian Academy of SciencesBudapest, Hungary
| |
Collapse
|
15
|
Kozyreva VK, Jospin G, Greninger AL, Watt JP, Eisen JA, Chaturvedi V. Recent Outbreaks of Shigellosis in California Caused by Two Distinct Populations of Shigella sonnei with either Increased Virulence or Fluoroquinolone Resistance. mSphere 2016; 1:e00344-16. [PMID: 28028547 PMCID: PMC5177732 DOI: 10.1128/msphere.00344-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Shigella sonnei has caused unusually large outbreaks of shigellosis in California in 2014 and 2015. Preliminary data indicated the involvement of two distinct bacterial populations, one from San Diego and San Joaquin (SDi/SJo) and one from the San Francisco (SFr) Bay area. Whole-genome analysis and antibiotic susceptibility testing of 68 outbreak and archival isolates of S. sonnei were performed to investigate the microbiological factors related to these outbreaks. Both SDi/SJo and SFr populations, as well as almost all of the archival S. sonnei isolates belonged to sequence type 152 (ST152). Genome-wide single nucleotide polymorphism (SNP) analysis clustered the majority of California (CA) isolates to an earlier described lineage III. Isolates in the SDi/SJo population had a novel lambdoid bacteriophage carrying genes encoding Shiga toxin (STX) that were most closely related to that found in Escherichia coli O104:H4. However, the STX genes (stx1A and stx1B) from this novel phage had sequences most similar to the phages from Shigella flexneri and S. dysenteriae. The isolates in the SFr population were resistant to ciprofloxacin due to point mutations in gyrA and parC genes and were related to the fluoroquinolone-resistant S. sonnei clade within lineage III that originated in South Asia. The emergence of a highly virulent S. sonnei strain and introduction of a fluoroquinolone-resistant strain reflect the changing traits of this pathogen in California. An enhanced monitoring is advocated for early detection of future outbreaks caused by such strains. IMPORTANCE Shigellosis is an acute diarrheal disease causing nearly half a million infections, 6,000 hospitalizations, and 70 deaths annually in the United States. S. sonnei caused two unusually large outbreaks in 2014 and 2015 in California. We used whole-genome sequencing to understand the pathogenic potential of bacteria involved in these outbreaks. Our results suggest the persistence of a local S. sonnei SDi/SJo clone in California since at least 2008. Recently, a derivative of the original clone acquired the ability to produce Shiga toxin (STX) via exchanges of bacteriophages with other bacteria. STX production is connected with more severe disease, including bloody diarrhea. A second population of S. sonnei that caused an outbreak in the San Francisco area was resistant to fluoroquinolones and showed evidence of connection to a fluoroquinolone-resistant lineage from South Asia. These emerging trends in S. sonnei populations in California must be monitored for future risks of the spread of increasingly virulent and resistant clones.
Collapse
Affiliation(s)
- Varvara K. Kozyreva
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Guillaume Jospin
- Genome Center, Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Alexander L. Greninger
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - James P. Watt
- Division of Communicable Disease Control, California Department of Public Health, Richmond, California, USA
| | - Jonathan A. Eisen
- Genome Center, Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Vishnu Chaturvedi
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| |
Collapse
|