1
|
Trostle JA, Robbins C, Corozo Angulo B, Acevedo A, Coloma J, Eisenberg JNS. "Dengue fever is not just urban or rural: Reframing its spatial categorization.". Soc Sci Med 2024; 362:117384. [PMID: 39393331 DOI: 10.1016/j.socscimed.2024.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Infectious diseases exploit niches that are often spatially defined as urban and/or rural. Yet spatial research on infectious diseases often fails to define "urban" and "rural" and how these contexts might influence their epidemiology. We use dengue fever, thought to be mostly an urban disease with rural foci, as a device to explore local definitions of urban and rural spaces and the impact of these spaces on dengue risk in the provinfine urban and rural locales. Interviews conducted from 2019 to 2021 with 71 residents and 23 health personce of Esmeraldas, Ecuador. Ecuador, like many countries, only uses population size and administrative function to denel found that they identified the availability of basic services, extent of their control over their environment, and presence of underbrush and weeds (known in Ecuador as monte and maleza and conceptualized in this paper as natural disorder) as important links to their conceptions of space and dengue risk. This broader conceptualization of space articulated by local residents and professionals reflects a more sophisticated approach to characterizing dengue risk than using categories of urban and rural employed by the national census and government. Rather than this dichotomous category of space, dengue fever can be better framed for health interventions in terms of specific environmental features and assemblages of high-risk spaces. An understanding of how community members perceive risk enhances our ability to collaborate with them to develop optimal mitigation strategies.
Collapse
Affiliation(s)
- James A Trostle
- Anthropology Department, Trinity College, 300 Summit St, Hartford, CT, 06106, United states.
| | - Charlotte Robbins
- Departments of Environmental Science and Urban Studies, Trinity College, United states.
| | | | | | | | - Joseph N S Eisenberg
- School of Public Health, University of Michigan and Universidad San Francisco de Quito, Ecuador.
| |
Collapse
|
2
|
Man O, Kraay A, Thomas R, Trostle J, Lee GO, Robbins C, Morrison AC, Coloma J, Eisenberg JNS. Characterizing dengue transmission in rural areas: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011333. [PMID: 37289678 PMCID: PMC10249895 DOI: 10.1371/journal.pntd.0011333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Dengue has historically been considered an urban disease associated with dense human populations and the built environment. Recently, studies suggest increasing dengue virus (DENV) transmission in rural populations. It is unclear whether these reports reflect recent spread into rural areas or ongoing transmission that was previously unnoticed, and what mechanisms are driving this rural transmission. We conducted a systematic review to synthesize research on dengue in rural areas and apply this knowledge to summarize aspects of rurality used in current epidemiological studies of DENV transmission given changing and mixed environments. We described how authors defined rurality and how they defined mechanisms for rural dengue transmission. We systematically searched PubMed, Web of Science, and Embase for articles evaluating dengue prevalence or cumulative incidence in rural areas. A total of 106 articles published between 1958 and 2021 met our inclusion criteria. Overall, 56% (n = 22) of the 48 estimates that compared urban and rural settings reported rural dengue incidence as being as high or higher than in urban locations. In some rural areas, the force of infection appears to be increasing over time, as measured by increasing seroprevalence in children and thus likely decreasing age of first infection, suggesting that rural dengue transmission may be a relatively recent phenomenon. Authors characterized rural locations by many different factors, including population density and size, environmental and land use characteristics, and by comparing their context to urban areas. Hypothesized mechanisms for rural dengue transmission included travel, population size, urban infrastructure, vector and environmental factors, among other mechanisms. Strengthening our understanding of the relationship between rurality and dengue will require a more nuanced definition of rurality from the perspective of DENV transmission. Future studies should focus on characterizing details of study locations based on their environmental features, exposure histories, and movement dynamics to identify characteristics that may influence dengue transmission.
Collapse
Affiliation(s)
- Olivia Man
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alicia Kraay
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, United States of America
- Institution for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Ruth Thomas
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James Trostle
- Department of Anthropology, Trinity College, Hartford, Connecticut, United States of America
| | - Gwenyth O. Lee
- Rutgers Global Health Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
- Rutgers Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Charlotte Robbins
- Department of Anthropology, Trinity College, Hartford, Connecticut, United States of America
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
3
|
Estimating Dengue Transmission Intensity in China Using Catalytic Models Based on Serological Data. Trop Med Infect Dis 2023; 8:tropicalmed8020116. [PMID: 36828532 PMCID: PMC9967418 DOI: 10.3390/tropicalmed8020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
In recent decades, the global incidence of dengue has risen sharply, with more than 75% of infected people showing mild or no symptoms. Since the year 2000, dengue in China has spread quickly. At this stage, there is an urgent need to fully understand its transmission intensity and spread in China. Serological data provide reliable evidence for symptomatic and recessive infections. Through a literature search, we included 23 studies that collected age-specific serological dengue data released from 1980 to 2021 in China. Fitting four catalytic models to these data, we distinguished the transmission mechanisms by deviation information criterion and estimated force of infection and basic reproduction number (R0), important parameters for quantifying transmission intensity. We found that transmission intensity varies over age in most of the study populations, and attenuation of antibody protection is identified in some study populations; the R0 of dengue in China is between 1.04-2.33. Due to the scarceness of the data, the temporal trend cannot be identified, but data shows that transmission intensity weakened from coastal to inland areas and from southern to northern areas in China if assuming it remained temporally steady during the study period. The results should be useful for the effective control of dengue in China.
Collapse
|
4
|
Power GM, Vaughan AM, Qiao L, Sanchez Clemente N, Pescarini JM, Paixão ES, Lobkowicz L, Raja AI, Portela Souza A, Barreto ML, Brickley EB. Socioeconomic risk markers of arthropod-borne virus (arbovirus) infections: a systematic literature review and meta-analysis. BMJ Glob Health 2022; 7:bmjgh-2021-007735. [PMID: 35428678 PMCID: PMC9014035 DOI: 10.1136/bmjgh-2021-007735] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Arthropod-borne viruses (arboviruses) are of notable public health importance worldwide, owing to their potential to cause explosive outbreaks and induce debilitating and potentially life-threatening disease manifestations. This systematic review and meta-analysis aims to assess the relationship between markers of socioeconomic position (SEP) and infection due to arboviruses with mosquito vectors. Methods We conducted a systematic search on PubMed, Embase, and LILACS databases to identify studies published between 1980 and 2020 that measured the association of SEP markers with arbovirus infection. We included observational studies without geographic location or age restrictions. We excluded studies from grey literature, reviews and ecological studies. Study findings were extracted and summarised, and pooled estimates were obtained using random-effects meta-analyses. Results We identified 36 observational studies using data pertaining to 106 524 study participants in 23 geographic locations that empirically examined the relationship between socioeconomic factors and infections caused by seven arboviruses (dengue, chikungunya, Japanese encephalitis, Rift Valley fever, Sindbis, West Nile and Zika viruses). While results were varied, descriptive synthesis pointed to a higher risk of arbovirus infection associated with markers of lower SEP, including lower education, income poverty, low healthcare coverage, poor housing materials, interrupted water supply, marital status (married, divorced or widowed), non-white ethnicities and migration status. Pooled crude estimates indicated an increased risk of arboviral infection associated with lower education (risk ratio, RR 1.5 95% CI 1.3 to 1.9); I2=83.1%), interruption of water supply (RR 1.2; 95% CI 1.1 to 1.3; I2=0.0%) and having been married (RR 1.5 95% CI 1.1 to 2.1; I2=85.2%). Conclusion Evidence from this systematic review suggests that lower SEP increases the risk of acquiring arboviral infection; however, there was large heterogeneity across studies. Further studies are required to delineate the relationship between specific individual, household and community-level SEP indicators and arbovirus infection risks to help inform targeted public health interventions. PROSPERO registration number CRD42019158572.
Collapse
Affiliation(s)
- Grace M Power
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Aisling M Vaughan
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Luxi Qiao
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nuria Sanchez Clemente
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Julia M Pescarini
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Enny S Paixão
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Ludmila Lobkowicz
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Amber I Raja
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - André Portela Souza
- São Paulo School of Economics and Center for Applied Microeconomic Studies, Getulio Vargas Foundation, São Paulo, Brazil
| | - Mauricio Lima Barreto
- Centro de Integração de Dados e Conhecimentos para Saúde, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Elizabeth B Brickley
- Health Equity Action Lab, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
5
|
Ren J, Chen Z, Ling F, Huang Y, Gong Z, Liu Y, Mao Z, Lin C, Yan H, Shi X, Zhang R, Guo S, Chen E, Wang Z, Sun J. Epidemiology of Indigenous Dengue Cases in Zhejiang Province, Southeast China. Front Public Health 2022; 10:857911. [PMID: 35493348 PMCID: PMC9046573 DOI: 10.3389/fpubh.2022.857911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Autochthonous transmission of the dengue virus (DENV) occurred each year from 2014 to 2018 in Zhejiang province, and became an emerging public health problem. We characterized the autochthonous transmission of the DENV and traced the source of infection for further control and prevention of dengue. Methods Descriptive and spatiotemporal cluster analyses were conducted to characterize the epidemiology of autochthonous transmission of the DENV. Molecular epidemiology was used to identify the infection source. Results In total, 1,654 indigenous cases and 12 outbreaks, with no deaths, were reported during 2004-2018. Before 2017, all outbreaks occurred in suburban areas. During 2017-2018, five out of eight outbreaks occurred in urban areas. The median duration of outbreaks (28 days) in 2017-2018 was shortened significantly (P = 0.028) in comparison with that in 2004-2016 (71 days). The median onset-visiting time, visiting-confirmation time, and onset-confirmation time was 1, 3, and 4 days, respectively. The DENV serotypes responsible for autochthonous transmission in Zhejiang Province were DENV 1, DENV 2, and DENV 3, with DENV 1 being the most frequently reported. Southeast Asia was the predominant source of indigenous infection. Conclusions Zhejiang Province witnessed an increase in the frequency, incidence, and geographic expansion of indigenous Dengue cases in recent years. The more developed coastal and central region of Zhejiang Province was impacted the most.
Collapse
Affiliation(s)
- Jiangping Ren
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Station of Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Zhiping Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Feng Ling
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Station of Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Yangmei Huang
- Hangzhou Municipal Center for Disease Control and Prevention, Hangzhou, China
| | - Zhenyu Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, China
| | - Ying Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhiyuan Mao
- Department of Tropical Medicine, Tulane School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Chunping Lin
- The Center for Disease Control and Prevention of Huangyan District, Taizhou, China
| | - Hao Yan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xuguang Shi
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Rong Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Song Guo
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Enfu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Station of Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Zhen Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jimin Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Station of Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Hangzhou, China
| |
Collapse
|
6
|
Wang J, Sun J, Sun L, Ye Y, Chen H, Xiao J, He G, Hu J, Chen G, Zhou H, Dong X, Ma W, Zhang B, Liu T. The Seroprevalence of Dengue Virus Infection and Its Association With Iron (Fe) Level in Pregnant Women in Guangzhou, China. Front Med (Lausanne) 2021; 8:759728. [PMID: 34957145 PMCID: PMC8702999 DOI: 10.3389/fmed.2021.759728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Dengue fever is regarded as the most prevalent mosquito-borne viral disease in humans. However, information of dengue virus (DENV) infection in pregnant women and the influence factors remain unclear. In this study, we extracted information of 2,076 pregnant women from the Prenatal Environment and Offspring Health (PEOH) birth cohort conducted since 2016 in Guangzhou, China. Peripheral blood and clean midstream urine samples of participants were collected during their hospitalization for childbirth. Indirect enzyme-linked immunosorbent assay (ELISA) was used to detect immunoglobulin G (IgG) antibodies of DENV in serum samples, and inductively coupled plasma mass spectrometry (ICP-MS) was applied to determine the Fe concentrations in the urine samples, which were then adjusted for by urine creatinine and transformed by natural logarithm (ln-Fe). The seroprevalence of DENV IgG antibody in all included participants was 2.22% (46/2,076). We observed higher seroprevalence of IgG antibody in women aged ≥35 years (2.9%), education ≤ 12 years (2.5%), yearly income per capita <100,000 yuan (2.4%), no use of air-conditioner (2.4%), no use of mosquito coils (2.3%), and no exercise during pregnancy (4.1%). A U-shaped relationship was found between ln-Fe concentration and the risk of positive IgG antibody. Compared with women with ln-Fe concentration of 2.0–2.9 μg/g creatinine, slightly higher risks of positive IgG antibody were found among women with ≤2.0 (RR = 4.16, 95% CI: 0.78, 19.91), 3.0–3.9 (RR = 1.93, 95% CI: 0.65, 7.08), 4.0–4.9 (RR = 2.19, 95% CI: 0.65, 8.51), and ≥5.0 μg/g creatinine of ln-Fe (RR = 2.42, 95% CI: 0.46, 11.33). Our findings suggested that the seroprevalence of dengue IgG antibody in pregnant women was comparable to the general population in Guangzhou, China. The risk of DENV infection may be associated with maternal demographic characteristics and behaviors. Both maternal low and high Fe concentrations may be positively associated with the risk of DENV infection.
Collapse
Affiliation(s)
- Jiong Wang
- School of Public Health, Southern Medical University, Guangzhou, China.,Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Limei Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yufeng Ye
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hanwei Chen
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guanhao He
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guimin Chen
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - He Zhou
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China.,School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Li Z, Wang J, Cheng X, Hu H, Guo C, Huang J, Chen Z, Lu J. The worldwide seroprevalence of DENV, CHIKV and ZIKV infection: A systematic review and meta-analysis. PLoS Negl Trop Dis 2021; 15:e0009337. [PMID: 33909610 PMCID: PMC8109817 DOI: 10.1371/journal.pntd.0009337] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/10/2021] [Accepted: 03/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND As the three major arthropod-borne viruses, dengue virus (DENV), chikungunya virus (CHIKV), and zika virus (ZIKV) are posing a growing threat to global public health and socioeconomic development. Our study aimed to systematically review the global seroprevalences of these arboviruses from existing publications. METHODS Articles published between Jan 01, 2000 and Dec 31, 2019 in the databases of Embase, Pubmed and Web of Science were searched and collected. Countries or areas with known local presence of Aedes vector mosquitoes were included. Random effects model was utilized to estimate the pooled seroprevalences and the proportion of inapparent infection. RESULTS Out of 1375, a total of 133 articles involving 176,001 subjects were included for our analysis. The pooled seroprevalences of DENV, CHIKV and ZIKV were 38%, 25% and 18%, respectively; and their corresponding proportions of inapparent infections were 80%, 40% and 50%. The South-East Asia Region had the highest seroprevalences of DENV and CHIKV, while the Region of the Americas had the highest seroprevalence of ZIKV. The seroprevalences of DENV and CHIKV were similar when comparing developed and developing countries, urban and rural areas, or among different populations. In addition, we observed a decreased global seroprevalences in the new decade (2010-2019) comparing to the decade before (2000-2009) for CHIKV. For ZIKV, the positive rates tested with the nucleic acid detection method were lower than those tested with the antibody detection method. Lastly, numerous cases of dual seropositivity for CHIKV and DENV were reported. CONCLUSIONS Our results revealed a varied prevalence of arbovirus infections in different geographical regions and countries, and the inapparent infection accounted an unneglected portion of infections that requires more attention. This study will shed lights on our understanding of the true burden of arbovirus infections and promote appropriate vaccination in the future.
Collapse
Affiliation(s)
- Zhihui Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jin Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiaomin Cheng
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huan Hu
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York City, New York, United States of America
| | - Jingyi Huang
- Songgang People’s Hospital of Bao’an District, Shenzhen, Guangdong Province, China
| | - Zeliang Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- * E-mail: (ZC); (JL)
| | - Jiahai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- * E-mail: (ZC); (JL)
| |
Collapse
|
8
|
Liu X, Liu K, Yue Y, Wu H, Yang S, Guo Y, Ren D, Zhao N, Yang J, Liu Q. Determination of Factors Affecting Dengue Occurrence in Representative Areas of China: A Principal Component Regression Analysis. Front Public Health 2021; 8:603872. [PMID: 33537277 PMCID: PMC7848178 DOI: 10.3389/fpubh.2020.603872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Determination of the key factors affecting dengue occurrence is of significant importance for the successful response to its outbreak. Yunnan and Guangdong Provinces in China are hotspots of dengue outbreak during recent years. However, few studies focused on the drive of multi-dimensional factors on dengue occurrence failing to consider the possible multicollinearity of the studied factors, which may bias the results. Methods: In this study, multiple linear regression analysis was utilized to explore the effect of multicollinearity among dengue occurrences and related natural and social factors. A principal component regression (PCR) analysis was utilized to determine the key dengue-driven factors in Guangzhou city of Guangdong Province and Xishuangbanna prefecture of Yunnan Province, respectively. Results: The effect of multicollinearity existed in both Guangzhou city and Xishuangbanna prefecture, respectively. PCR model revealed that the top three contributing factors to dengue occurrence in Guangzhou were Breteau Index (BI) (positive correlation), the number of imported dengue cases lagged by 1 month (positive correlation), and monthly average of maximum temperature lagged by 1 month (negative correlation). In contrast, the top three factors contributing to dengue occurrence in Xishuangbanna included monthly average of minimum temperature lagged by 1 month (positive correlation), monthly average of maximum temperature (positive correlation), monthly average of relative humidity (positive correlation), respectively. Conclusion: Meteorological factors presented stronger impacts on dengue occurrence in Xishuangbanna, Yunnan, while BI and the number of imported cases lagged by 1 month played important roles on dengue transmission in Guangzhou, Guangdong. Our findings could help to facilitate the formulation of tailored dengue response mechanism in representative areas of China in the future.
Collapse
Affiliation(s)
- Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Keke Liu
- Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujuan Yue
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haixia Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shu Yang
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Yuhong Guo
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongsheng Ren
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ning Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Yang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Lin H, Wang X, Li Z, Li K, Lin C, Yang H, Yang W, Ye X. Epidemiological characteristics of dengue in mainland China from 1990 to 2019: A descriptive analysis. Medicine (Baltimore) 2020; 99:e21982. [PMID: 32899041 PMCID: PMC7478525 DOI: 10.1097/md.0000000000021982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the past 30 years, dengue has undergone dramatic changes in China every year. This study explores the epidemiological trend of dengue in China during this period to identify high-risk seasons, regions, ages, susceptible populations, and provide information for dengue prevention and control activities.Dengue data from 1990 to 2019 were derived from the Public Health Science Data Center, Web of Science, China National Knowledge Infrastructure, PubMed, and Centers for Disease Control and Prevention of the corresponding province. GraphPad Prism 7 was conducted to generate disease evolution maps, occupational heat maps, and monthly heat maps of dengue cases and deaths in mainland China and Guangdong Province. Excel 2016 was used to create a cyclone map of age and gender distribution. Powerpoint 2016 was performed to create geographic maps.From 1990 to 2019, the annual number of dengue cases showed an increasing trend and reaching a peak in 2014, with 46,864 dengue cases (incidence rate: 3.4582/100,000), mainly contributed by Guangdong Province (45,189 cases, accounting for 96.43%). Dengue pandemics occurred every 4 to 6 years. The prevalence of dengue fever was Autumn, which was generally prevalent from June to December and reached its peak from September to November. The provinces reporting dengue cases each year have expanded from the southeastern coastal region to the southwest, central, northeast, and northwest regions, and the provinces with a high incidence were Guangdong, Guangxi, Yunnan, Fujian, and Zhejiang. People aged 25 to 44 years were more susceptible to dengue virus infection. And most of them were male patients. Dengue mainly occurs in the following groups: students, business service staffs, workers, farmers, retired staffs, housewives, and the unemployed. Four provinces reported deaths from dengue, namely Guangdong Province, Zhejiang Province, Henan Province, and Hunan Province.The dengue fever epidemic occurred every 4 to 6 years, mostly in autumn. The endemic areas were Guangdong, Guangxi, Yunnan, Fujian, and Zhejiang provinces. People aged 25 to 44 years, men, students, business service staffs, workers, farmers, retired staffs, housewives, and the unemployed were more susceptible to dengue fever. These findings help to develop targeted public health prevention and control measures.
Collapse
Affiliation(s)
- Haixiong Lin
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xiaotong Wang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zige Li
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Kangju Li
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Chunni Lin
- School of Foreign Languages, Xinhua College of Sun Yat-sen University, Dongguan, People's Republic of China
| | - Huijun Yang
- The Six School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Weiqin Yang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xiaopeng Ye
- Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| |
Collapse
|
10
|
Zhang H, Mehmood K, Chang YF, Zhao Y, Lin W, Chang Z. Increase in cases of dengue in China, 2004-2016: A retrospective observational study. Travel Med Infect Dis 2020; 37:101674. [PMID: 32320744 DOI: 10.1016/j.tmaid.2020.101674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/13/2019] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Dengue fever (DF) is a vector-bore infectious disease that can infect humans, and has been recognized as a global public health threat, with significant morbidity and mortality rates. METHOD To describe the epidemiological profile of DF in China during 2004-2016, the morbidity data of DF by age-group, season (different months) and geographic location (different provinces) were obtained from the public health science data center of China for subsequent epidemiological analysis. RESULTS The results showed that the incidence of DF shows striking annual variations, and two large outbreaks occurred in 2006-2007 and during 2012-2015. The results of the average morbidity rates (cases/100,000 population) for human DF indicated that among all dengue fever cases, Guangdong in southern area of China had the highest rates (3.8160 cases/100,000 population), followed by Yunnan (0.6614 cases/100,000 population), Fujian (0.3463 cases/100,000 population) and Guangxi (0.1474 cases/100,000 population). Epidemic peaks occurred in late June and early November, and the incidence rate among middle-aged people (30-45 years old) was relatively high, followed by rates among 15-29 and 45-59 age groups. CONCLUSION In this study, we demonstrated the epidemiological profile of DF circulating in China and revealed the geographic distribution, dynamic transmission, seasonal asymmetries and age distribution, which will provide guidelines on the prevention and control of DF in China. The present investigation is useful in the risk assessment of DF transmission, to predict DF outbreaks and the prevention and control strategies should be used along with surveillance to reduce the spread of DF in China.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, 63100, Pakistan
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Yabo Zhao
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Wencheng Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhenyu Chang
- Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, Tibet, China
| |
Collapse
|
11
|
Arbovirus on board - Predicting dengue importation into China. Travel Med Infect Dis 2019; 31:101476. [PMID: 31499237 DOI: 10.1016/j.tmaid.2019.101476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 11/20/2022]
|