1
|
Munzen ME, Mathew C, Enriquez V, Minhas A, Charles-Niño CL, Saytoo D, Reguera-Gomez M, Dores MR, Martinez LR. Inhibition of RhoA Prevents Cryptococcus neoformans Capsule Glucuronoxylomannan-Stimulated Brain Endothelial Barrier Disruption. J Infect Dis 2024; 230:1042-1051. [PMID: 38622836 PMCID: PMC11481333 DOI: 10.1093/infdis/jiae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Cryptococcus neoformans (Cn) is an opportunistic fungus that causes severe central nervous system (CNS) disease in immunocompromised individuals. Brain parenchyma invasion requires fungal traversal of the blood-brain barrier. In this study, we describe that Cn alters the brain endothelium by activating small GTPase RhoA, causing reorganization of the actin cytoskeleton and tight junction modulation to regulate endothelial barrier permeability. We confirm that the main fungal capsule polysaccharide glucuronoxylomannan is responsible for these alterations. We reveal a therapeutic benefit of RhoA inhibition by CCG-1423 in vivo. RhoA inhibition prolonged survival and reduced fungal burden in a murine model of disseminated cryptococcosis, supporting the therapeutic potential of targeting RhoA in the context of cryptococcal infection. We examine the complex virulence of Cn in establishing CNS disease, describing cellular components of the brain endothelium that may serve as molecular targets for future antifungal therapies to alleviate the burden of life-threatening cryptococcal CNS infection.
Collapse
Affiliation(s)
- Melissa E Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville
| | - Cristian Mathew
- Department of Biology, Hofstra University, Hempstead, New York
| | - Vanessa Enriquez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville
| | - Amanjeet Minhas
- Department of Biology, Hofstra University, Hempstead, New York
| | | | | | - Marta Reguera-Gomez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville
| | - Michael R Dores
- Department of Biology, Hofstra University, Hempstead, New York
| | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville
- Emerging Pathogens Institute
- Center for Immunology and Transplantation
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville
| |
Collapse
|
2
|
Meya DB, Williamson PR. Cryptococcal Disease in Diverse Hosts. N Engl J Med 2024; 390:1597-1610. [PMID: 38692293 DOI: 10.1056/nejmra2311057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Affiliation(s)
- David B Meya
- From the Infectious Diseases Institute and the Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda (D.B.M.); the Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis (D.B.M.); and the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (P.R.W.)
| | - Peter R Williamson
- From the Infectious Diseases Institute and the Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda (D.B.M.); the Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis (D.B.M.); and the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (P.R.W.)
| |
Collapse
|
3
|
Musubire A, Kagimu E, Mugabi T, Meya DB, Boulware DR, Bahr NC. Complex Decisions in HIV-Related Cryptococcosis: Addressing Second Episodes of Cryptococcal Meningitis. Curr HIV/AIDS Rep 2024; 21:75-85. [PMID: 38400871 PMCID: PMC11016006 DOI: 10.1007/s11904-024-00691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE OF REVIEW This review highlights the difficulties in diagnosing and treating persons with a prior history of cryptococcal meningitis who improve but suffer from a recurrence of symptoms. This scenario is well known to those who frequently care for patients with cryptococcal meningitis but is not well understood. We highlight major gaps in knowledge. RECENT FINDINGS We recently summarized our experience with 28 persons with paradoxical immune reconstitution inflammatory syndrome (IRIS) and 81 persons with microbiological relapse. CD4 count and cerebrospinal fluid white blood cell count were higher in IRIS than relapse but neither was reliable enough to routinely differentiate these conditions. Second-episode cryptococcal meningitis remains a difficult clinical scenario as cryptococcal antigen, while excellent for initial diagnosis has no value in differentiating relapse of infection from other causes of recurrent symptoms. Updated research definitions are proposed and rapid, accurate diagnostic tests are urgently needed.
Collapse
Affiliation(s)
- Abdu Musubire
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Enock Kagimu
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Timothy Mugabi
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David B Meya
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, 66160 KS, USA.
| |
Collapse
|
4
|
Melhem MSC, Leite Júnior DP, Takahashi JPF, Macioni MB, Oliveira LD, de Araújo LS, Fava WS, Bonfietti LX, Paniago AMM, Venturini J, Espinel-Ingroff A. Antifungal Resistance in Cryptococcal Infections. Pathogens 2024; 13:128. [PMID: 38392866 PMCID: PMC10891860 DOI: 10.3390/pathogens13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Antifungal therapy, especially with the azoles, could promote the incidence of less susceptible isolates of Cryptococcus neoformans and C. gattii species complexes (SC), mostly in developing countries. Given that these species affect mostly the immunocompromised host, the infections are severe and difficult to treat. This review encompasses the following topics: 1. infecting species and their virulence, 2. treatment, 3. antifungal susceptibility methods and available categorical endpoints, 4. genetic mechanisms of resistance, 5. clinical resistance, 6. fluconazole minimal inhibitory concentrations (MICs), clinical outcome, 7. environmental influences, and 8. the relevance of host factors, including pharmacokinetic/pharmacodynamic (PK/PD) parameters, in predicting the clinical outcome to therapy. As of now, epidemiologic cutoff endpoints (ECVs/ECOFFs) are the most reliable antifungal resistance detectors for these species, as only one clinical breakpoint (amphotericin B and C. neoformans VNI) is available.
Collapse
Affiliation(s)
- Marcia S C Melhem
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Graduate Program in Tropical Diseases, State University of São Paulo, Botucatu 18618-687, SP, Brazil
| | | | - Juliana P F Takahashi
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Pathology Division, Adolfo Lutz Institute, São Paulo 01246-002, SP, Brazil
| | | | | | - Lisandra Siufi de Araújo
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil
| | - Wellington S Fava
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Lucas X Bonfietti
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil
| | - Anamaria M M Paniago
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - James Venturini
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Ana Espinel-Ingroff
- Central Public Health Laboratory-LACEN, Campo Grande 79074-460, MS, Brazil
- VCU Medical Center, Richmond, VA 23284, USA
| |
Collapse
|
5
|
Ordaya EE, Abu Saleh OM, Vergidis P, Deml SM, Wengenack NL, Fida M. Temporal trends in antifungal susceptibility of Cryptococcus neoformans isolates from a reference laboratory in the United States, 2011-2021. Mycoses 2024; 67:e13691. [PMID: 38214377 DOI: 10.1111/myc.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND There are no established clinical breakpoints for antifungal agents against Cryptococcus species; however, epidemiological cut-off values can help distinguish wild-type (WT) isolates without any acquired resistance from non-WT strains, which may harbour resistance mechanisms. PATIENTS/METHODS We describe the trends of antifungal MICs and percentages of WT C. neoformans species complex (CNSC) isolates processed in our reference laboratory from November 2011 to June 2021. There were only nine isolates in 2011, thus, we included them in the year 2012 for data analysis. Clinical data is also described when available. RESULTS We identified 632 CNSC, the majority collected from blood (n = 301), cerebrospinal fluid (n = 230), and respiratory (n = 71) sources. The overall percentage of WT isolates for amphotericin B (AMB), 5-flucytosine, and fluconazole was 77%, 98%, and 91%, respectively. We noticed a statistically significant change in the percentage of AMB WT isolates over the years, with 98% of isolates being WT in 2012 compared to 79% in 2021 (p < .01). A similar change was not observed for other antifungal agents. Clinical data was available for 36 patients, primarily non-HIV immunocompromised patients with disseminated cryptococcosis. There were no statistically significant differences in the clinical characteristics and outcomes between patients with WT (58.3%) versus non-WT (41.7%) isolates, but we noticed higher mortality in patients infected with an AMB non-WT CNSC isolate. CONCLUSIONS We observed an increase in the percentage of AMB non-WT CNSC isolates in the past decade. The clinical implications of this finding warrant further evaluation in larger studies.
Collapse
Affiliation(s)
- Eloy E Ordaya
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Omar M Abu Saleh
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paschalis Vergidis
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sharon M Deml
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nancy L Wengenack
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madiha Fida
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
McHale TC, Akampurira A, Gerlach ES, Mucunguzi A, Nicol MR, Williams DA, Nielsen K, Bicanic T, Fieberg A, Dai B, Meya DB, Boulware DR. 5-Flucytosine Longitudinal Antifungal Susceptibility Testing of Cryptococcus neoformans: A Substudy of the EnACT Trial Testing Oral Amphotericin. Open Forum Infect Dis 2023; 10:ofad596. [PMID: 38143852 PMCID: PMC10745249 DOI: 10.1093/ofid/ofad596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Background The EnACT trial was a phase 2 randomized clinical trial conducted in Uganda, which evaluated a novel orally delivered lipid nanocrystal (LNC) amphotericin B in combination with flucytosine for the treatment of cryptococcal meningitis. When flucytosine (5FC) is used as monotherapy in cryptococcosis, 5FC can induce resistant Cryptococcus mutants. Oral amphotericin B uses a novel drug delivery mechanism, and we assessed whether resistance to 5FC develops during oral LNC-amphotericin B therapy. Methods We enrolled Ugandans with HIV diagnosed with cryptococcal meningitis and who were randomized to receive 5FC and either standard intravenous (IV) amphotericin B or oral LNC-amphotericin B. We used broth microdilution to measure the minimum inhibitory concentration (MIC) of the first and last cryptococcal isolates in each participant. Breakpoints are inferred from 5FC in Candida albicans. We measured cerebral spinal fluid (CSF) 5FC concentrations by liquid chromatography and tandem mass spectrometry. Results Cryptococcus 5FC MIC50 was 4 µg/mL, and MIC90 was 8 µg/mL. After 2 weeks of therapy, there was no evidence of 5FC resistance developing, defined as a >4-fold change in susceptibility in any Cryptococcus isolate tested. The median CSF 5FC concentration to MIC ratio (interquartile range) was 3.0 (1.7-5.5) µg/mL. There was no association between 5FC/MIC ratio and early fungicidal activity of the quantitative rate of CSF yeast clearance (R2 = 0.004; P = .63). Conclusions There is no evidence of baseline resistance to 5FC or incident resistance during combination therapy with oral or IV amphotericin B in Uganda. Oral amphotericin B can safely be used in combination with 5FC.
Collapse
Affiliation(s)
- Thomas C McHale
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Elliot S Gerlach
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Melanie R Nicol
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darlisha A Williams
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kirsten Nielsen
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tihana Bicanic
- Institute of Infection and Immunity, St Georges, University of London, London, UK
| | - Ann Fieberg
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Biyue Dai
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - David B Meya
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Kakizaki MIT, Melhem MDESC. CRYPTOCOCCOSIS: A bibliographic narrative review on antifungal resistance. AN ACAD BRAS CIENC 2023; 95:e20220862. [PMID: 37466540 DOI: 10.1590/0001-3765202320220862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 07/20/2023] Open
Abstract
Cryptococcosis is an infectious fungal disease widely studied for its epidemiological importance in the context of public health, given the high morbidity and mortality associated with this invasive fungal infection. Many cases of the disease present clinical resistance and progress to death, even in the presence of antifungal therapy. The prolonged use of triazole drugs to maintain the treatment of cryptococcosis in AIDS patients, can lead to selective pressure from mutant strains, among other resistance mechanisms, justifying the poor clinical evolution of some cases. In this study, a narrative review of the literature on the occurrence of antifungal resistance in cryptococcosis agents was performed. Publications from 2010 to 2022 that address this topic were selected using Google Scholars and Scopus website. Data from the studies were analyzed for the values of minimum inhibitory concentration (MIC) of drugs used in the management of cryptococcosis. The review showed that the highest MIC values occurred for voriconazole, especially against C. neoformans. It is concluded that there is a lack of studies with statistical analysis of the data obtained, in order to provide a better dimensioning of the resistance rates of cryptococcosis agents to different antifungal agents, both in geographical and temporal context.
Collapse
Affiliation(s)
- Maria Ismênia T Kakizaki
- Instituto de Assistência Médica ao Servidor Público Estadual: Iamspe, Setor de Oncologia e Hematologia, Rua Pedro de Toledo, 1800, Vila Clementino, 04039-901 São Paulo, SP, Brazil
| | - Marcia DE S C Melhem
- Departmento de Micologia, Associado de pesquisa sênior, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
- Universidade Federal do Mato Grosso do Sul, Departamento de Medicina, Av. Costa e Silva, s/n, Pioneiros, 79070-900 Campo Grande, MS, Brazil
| |
Collapse
|
8
|
Zhao H, Cheng J, Zhou L, Luo Y, Zhu R, Jiang Y, Wang X, Zhu L. Induction therapy with high dose fluconazole plus flucytosine for human immunodeficiency virus‐uninfected cryptococcal meningitis patients: Feasible or not? Mycoses 2022; 66:59-68. [PMID: 36111370 PMCID: PMC10087831 DOI: 10.1111/myc.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cryptococcal meningitis (CM) is increasingly recognised in human immunodeficiency virus (HIV)-uninfected patients with high mortality. The efficacy and safety profiles of induction therapy with high-dose fluconazole plus flucytosine remain unclear. METHODS HIV-uninfected CM patients who received high-dose fluconazole (800 mg/d) for initial therapy in Huashan Hospital were included in this retrospective study from January 2013 to December 2018. Efficacy and safety of initial therapy, clinical outcomes and risk factors were evaluated. RESULTS Twenty-seven (71.1%) patients who received high-dose fluconazole with flucytosine combination therapy and 11 (28.9%) having fluconazole alone for induction therapy were included. With a median duration of 42 days (IQR, 28-86), the successful response rate of initial therapy was 76.3% (29/38), while adverse drug reactions occurred in 14 patients (36.8%). The rate of persistently positive cerebrospinal fluid (CSF) culture results was 30.6% at 2 weeks, which was significantly associated with CSF CrAg titre >1:1280 (OR 9.56; 95% CI 1.40-103.65; p = .010) and CSF culture of Cryptococcus >3.9 log10 CFU/ml (OR 19.20; 95% CI 1.60-920.54; p = .011), and decreased to 8.6% at 4 weeks. One-year mortality was 15.8% (6/38), and low serum albumin (35 g/L) was found as an independent risk factor for 1-year mortality (HR 6.31; 95% CI 1.150-34.632; p = .034). CONCLUSIONS Induction therapy with high-dose fluconazole (800 mg/d), combined with flucytosine, effectively treated HIV-uninfected CM and was well tolerated. Long-term fluconazole treatment with continued monitoring is beneficial for patients with persistent infection.
Collapse
Affiliation(s)
- Hua‐Zhen Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital Fudan University Shanghai China
| | - Jia‐Hui Cheng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital Fudan University Shanghai China
| | - Ling‐Hong Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital Fudan University Shanghai China
| | - Yu Luo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital Fudan University Shanghai China
| | - Rong‐Sheng Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital Fudan University Shanghai China
| | - Ying‐Kui Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital Fudan University Shanghai China
| | - Xuan Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital Fudan University Shanghai China
| | - Li‐Ping Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital Fudan University Shanghai China
| |
Collapse
|
9
|
Atim PB, Meya DB, Gerlach ES, Muhanguzi D, Male A, Kanamwanji B, Nielsen K. Lack of Association between Fluconazole Susceptibility and ERG11 Nucleotide Polymorphisms in Cryptococcus neoformans Clinical Isolates from Uganda. J Fungi (Basel) 2022; 8:508. [PMID: 35628763 PMCID: PMC9145384 DOI: 10.3390/jof8050508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Fluconazole is the drug of choice for cryptococcal meningitis (CM) monoprophylaxis in resource-limited settings such as Uganda. Emerging fluconazole resistance linked to mutations in the Cryptococcus neoformansERG11 gene (CYP51) has been observed in clinical isolates. Currently, the single nucleotide polymorphisms [SNPs] in the Cryptococcus spp. ERG11 gene that could be responsible for fluconazole resistance are poorly characterized within Ugandan C. neoformans clinical isolates. If available, this information would be useful in the management of cryptococcosis among HIV patients. This cross-sectional study investigates the SNPs present in the coding region of the C. neoformansERG11 gene to determine the relationship between the SNPs identified and fluconazole susceptibility of the clinical isolates. 310 C. neoformans isolates recovered from the Cerebrospinal Fluid (CSF) of patients with HIV and cryptococcal meningitis were examined. The fluconazole half-maximal inhibitory concentrations (IC50 range: 0.25−32 μg/mL) was determined using the microbroth dilution method. A total of 56.1% of the isolates had low IC50 values of <8 μg/mL while 43.9% had high IC50 values ≥ 8 μg/mL. We amplified and sequenced 600 bp of the ERG11 coding sequence from 40 of the clinical isolates. Novel synonymous and 2 missense mutations, S460T and A457V, were identified in the ERG11 gene. The identified SNPs were not associated with differences in fluconazole IC50 values in vitro (p = 0.179).
Collapse
Affiliation(s)
| | - David B. Meya
- Infectious Diseases Institute, Kampala P.O. Box 22418, Uganda;
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; (E.S.G.); (K.N.)
| | - Elliot S. Gerlach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; (E.S.G.); (K.N.)
| | - Dennis Muhanguzi
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Allan Male
- International Centre for Tropical Agriculture (CIAT)—Uganda, Kampala P.O. Box 6247, Uganda;
| | - Benedict Kanamwanji
- National Microbiology Reference Laboratory (NMRL), Kampala P.O. Box 7272, Uganda;
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; (E.S.G.); (K.N.)
| |
Collapse
|
10
|
Chen YC, Kuo SF, Lin SY, Lin YS, Lee CH. Epidemiological and Clinical Characteristics, Antifungal Susceptibility, and MLST-Based Genetic Analysis of Cryptococcus Isolates in Southern Taiwan in 2013-2020. J Fungi (Basel) 2022; 8:jof8030287. [PMID: 35330289 PMCID: PMC8951076 DOI: 10.3390/jof8030287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cryptococcal meningoencephalitis (CM) is a treatable condition, but it leads to excessive morbidity and mortality. We collected 115 non-duplicated Cryptococcus clinical isolates during 2013−2020 in southern Taiwan to perform antifungal susceptibility testing. Multi-locus sequence typing was performed on 96 strains from patients with CM (n = 47) or cryptococcemia (n = 49). In addition, the epidemiological and clinical characteristics of patients with CM during 2013−2020 (n = 47) were compared with those during 2000−2010 (n = 46). During 2013−2020, only one C. neoformans isolate (0.9%) had a fluconazole minimum inhibitory concentration of >8 μg/mL. Amphotericin B (AMB), flucytosine (5FC), and voriconazole were highly active against all C. neoformans/C. gattii isolates. The most common sequence type was ST5. Among these 47 patients with CM, cerebrospinal fluid cryptococcal antigen (CSF CrAg) titer >1024 was a significant predictor of death (odds ratio, 48.33; 95% CI, 5.17−452.06). A standard induction therapy regimen with AMB and 5FC was used for all patients during 2013−2020, but only for 2.2% of patients in 2000−2010. The in-hospital CM mortality rate declined from 39.1% during 2000−2010 to 25.5% during 2013−2020, despite there being significantly younger patients with less CSF CrAg >1024 during 2000−2010. The study provides insight into the genetic epidemiology and antifungal susceptibility of Cryptococcus strains in southern Taiwan. The recommended antifungal drugs, AMB, 5FC, and FCZ, remained active against most of the Cryptococcus strains. Early diagnosis of patients with CM and adherence to the clinical practice guidelines cannot be overemphasized to improve the outcomes of patients with CM.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-C.C.); (Y.-S.L.)
| | - Shu-Fang Kuo
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yin-Shiou Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-C.C.); (Y.-S.L.)
| | - Chen-Hsiang Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-C.C.); (Y.-S.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8304); Fax: +886-7-7-7322402
| |
Collapse
|
11
|
Bastos RW, Rossato L, Goldman GH, Santos DA. Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathog 2021; 17:e1010073. [PMID: 34882756 PMCID: PMC8659312 DOI: 10.1371/journal.ppat.1010073] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are underestimated threats that affect over 1 billion people, and Candida spp., Cryptococcus spp., and Aspergillus spp. are the 3 most fatal fungi. The treatment of these infections is performed with a limited arsenal of antifungal drugs, and the class of the azoles is the most used. Although these drugs present low toxicity for the host, there is an emergence of therapeutic failure due to azole resistance. Drug resistance normally develops in patients undergoing azole long-term therapy, when the fungus in contact with the drug can adapt and survive. Conversely, several reports have been showing that resistant isolates are also recovered from patients with no prior history of azole therapy, suggesting that other routes might be driving antifungal resistance. Intriguingly, antifungal resistance also happens in the environment since resistant strains have been isolated from plant materials, soil, decomposing matter, and compost, where important human fungal pathogens live. As the resistant fungi can be isolated from the environment, in places where agrochemicals are extensively used in agriculture and wood industry, the hypothesis that fungicides could be driving and selecting resistance mechanism in nature, before the contact of the fungus with the host, has gained more attention. The effects of fungicide exposure on fungal resistance have been extensively studied in Aspergillus fumigatus and less investigated in other human fungal pathogens. Here, we discuss not only classic and recent studies showing that environmental azole exposure selects cross-resistance to medical azoles in A. fumigatus, but also how this phenomenon affects Candida and Cryptococcus, other 2 important human fungal pathogens found in the environment. We also examine data showing that fungicide exposure can select relevant changes in the morphophysiology and virulence of those pathogens, suggesting that its effect goes beyond the cross-resistance.
Collapse
Affiliation(s)
- Rafael W. Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Luana Rossato
- Federal University of Grande Dourados, Dourados-MS, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Daniel A. Santos
- Laboratory of Mycology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| |
Collapse
|
12
|
Gerlach ES, Altamirano S, Yoder JM, Luggya TS, Akampurira A, Meya DB, Boulware DR, Rhein J, Nielsen K. ATI-2307 Exhibits Equivalent Antifungal Activity in Cryptococcus neoformans Clinical Isolates With High and Low Fluconazole IC 50. Front Cell Infect Microbiol 2021; 11:695240. [PMID: 34249782 PMCID: PMC8262267 DOI: 10.3389/fcimb.2021.695240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 01/16/2023] Open
Abstract
Half maximal inhibitory concentrations (IC50) to the experimental drug ATI-2307 and complete inhibition (IC90) of the common clinically used antifungal drug amphotericin B were determined by microbroth dilution assay for a collection of 69 clinical isolates of Cryptococcus neoformans from Uganda that had high fluconazole IC50 values. The majority of the clinical isolates tested had fluconazole IC50 at or above 8 µg/mL, but were susceptible to both amphotericin B (IC90 ≤1 μg/mL) and ATI-2307 (IC50 ≤0.0312 µg/mL). No correlation between increased fluconazole minimum inhibitory concentration (MIC) and ATI-2307 or amphotericin B MIC was observed, suggesting that the cellular changes impacting fluconazole susceptibility did not impact the effectiveness of ATI-2307. Our results suggest that ATI-2307 is a promising new antifungal drug for use in the context of high fluconazole or other antifungal drug MICs and/or in combination drug therapy regimens.
Collapse
Affiliation(s)
- Elliot S. Gerlach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - J. Marina Yoder
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Tony S. Luggya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Andrew Akampurira
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David B. Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David R. Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Successful Treatment of Cryptococcal Meningitis and Cryptococcoma with Isavuconazole in a Patient Living with HIV. J Fungi (Basel) 2021; 7:jof7060425. [PMID: 34071211 PMCID: PMC8228186 DOI: 10.3390/jof7060425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 01/21/2023] Open
Abstract
We describe the successful use of isavuconazole for treatment of an HIV-positive patient with cryptococcal meningitis following induction therapy with liposomal amphotericin B and flucytosine. Because the Cryptococcus neoformans isolate from cerebrospinal fluid had a borderline minimum inhibitory concentration of 8 mg/L, initial consolidation therapy was given with a daily dose of fluconazole 1200 mg based on area under the curve to minimum inhibitory concentration modelling data. Toxicity, and the radiological emergence of a cryptococcoma in the setting of immune reconstitution inflammatory syndrome, prompted a therapeutic switch to isavuconazole. Subsequent imaging after 19 weeks of isavuconazole shows a significant reduction in cryptococcoma size from 11 mm to complete resolution. The patient remains well after 210 days of therapy with a view to completion of treatment after 1 year.
Collapse
|
14
|
Pett SL, Spyer M, Haddow LJ, Nhema R, Benjamin LA, Najjuka G, Bilima S, Daud I, Musoro G, Kitabalwa J, Selemani G, Kandie S, Cornelius KM, Katemba C, Berkley JA, Hassan AS, Kityo C, Hakim J, Heyderman RS, Gibb DM, Walker AS. Benefits of enhanced infection prophylaxis at antiretroviral therapy initiation by cryptococcal antigen status. AIDS 2021; 35:585-594. [PMID: 33306556 PMCID: PMC7613319 DOI: 10.1097/qad.0000000000002781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To assess baseline prevalence of cryptococcal antigen (CrAg) positivity; and its contribution to reductions in all-cause mortality, deaths from cryptococcus and unknown causes, and new cryptococcal disease in the REALITY trial. DESIGN Retrospective CrAg testing of baseline and week-4 plasma samples in all 1805 African adults/children with CD4+ cell count less than 100 cells/μl starting antiretroviral therapy who were randomized to receive 12-week enhanced-prophylaxis (fluconazole 100 mg/day, azithromycin, isoniazid, cotrimoxazole) vs. standard-prophylaxis (cotrimoxazole). METHODS Proportional hazards models were used to estimate the relative impact of enhanced-prophylaxis vs. standard-cotrimoxazole on all, cryptococcal and unknown deaths, and new cryptococcal disease, through 24 weeks, by baseline CrAg positivity. RESULTS Excluding 24 (1.4%) participants with active/prior cryptococcal disease at enrolment (all treated for cryptococcal disease), 133/1781 (7.5%) participants were CrAg-positive. By 24 weeks, 105 standard-cotrimoxazole vs. 78 enhanced-prophylaxis participants died. Of nine standard-cotrimoxazole and three enhanced-prophylaxis cryptococcal deaths, seven and two, respectively, were CrAg-positive at baseline. Among deaths of unknown cause, only 1/46 standard-cotrimoxazole and 1/28 enhanced-prophylaxis were CrAg-positive at baseline. There was no evidence that relative reductions in new cryptococcal disease associated with enhanced-prophylaxis varied between baseline CrAg-positives [hazard-ratio = 0.36 (95% confidence interval 0.13-0.98), incidence 19.5 vs. 56.5/100 person-years] and CrAg-negatives [hazard-ratio = 0.33 (0.03-3.14), incidence 0.3 vs. 0.9/100 person-years; Pheterogeneity = 0.95]; nor for all deaths, cryptococcal deaths or unknown deaths (Pheterogeneity > 0.3). CONCLUSION Relative reductions in cryptococcal disease/death did not depend on CrAg status. Deaths of unknown cause were unlikely to be cryptococcus-related; plausibly azithromycin contributed to their reduction. Findings support including 100 mg fluconazole in an enhanced-prophylaxis package at antiretroviral therapy initiation where CrAg screening is unavailable/impractical.
Collapse
Affiliation(s)
- Sarah L. Pett
- Institute for Global Health
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, UCL, London, UK
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, New South Wales, Australia
| | - Moira Spyer
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, UCL, London, UK
| | | | - Ruth Nhema
- University of Zimbabwe Clinical Research Centre, Harare, Zimbabwe
| | - Laura A. Benjamin
- Institute of Neurology, UCL, London
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Sithembile Bilima
- Department/College of Medicine and Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | - Godfrey Musoro
- University of Zimbabwe Clinical Research Centre, Harare, Zimbabwe
| | | | - George Selemani
- Department/College of Medicine and Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | | | | | | | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - James Hakim
- University of Zimbabwe Clinical Research Centre, Harare, Zimbabwe
| | - Robert S. Heyderman
- Department/College of Medicine and Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Division of Infection and Immunity, UCL, London, UK
| | - Diana M. Gibb
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, UCL, London, UK
| | - Ann S. Walker
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, UCL, London, UK
| |
Collapse
|
15
|
Deus G, Gómez-Zorrilla S, Echeverria-Esnal D, Siverio A, Güerri-Fernandez R, Ares J, Campillo N, Letang E, Knobel H, Grau S, Horcajada JP. Osteoarticular Cryptococcosis Successfully Treated with High-Dose Liposomal Amphotericin B Followed by Oral Fluconazole. Infect Drug Resist 2021; 14:719-722. [PMID: 33658808 PMCID: PMC7917311 DOI: 10.2147/idr.s294299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background Skeletal involvement of Cryptococcus neoformans is infrequent and usually associated with disseminated cryptococcosis or underlying predisposing conditions. We present an atypical case of osteoarticular cryptococcosis in an immunocompetent patient. Case Presentation We herein report a case of bone and soft tissue cryptococcal infection in a 42-year-old male from Pakistan with well-controlled diabetes without other associated immunodeficiencies treated with antifungal therapy without surgical debridement. Furthermore, the patient developed toxidermia due to fluconazole use, so a fluconazole desensitization was performed. Therapeutic management also included the performance of therapeutic drug monitoring of fluconazole plasma concentrations. Conclusion To our knowledge, this is the first case of osteoarticular cryptococcosis treated with this treatment regimen. This strategy may be of interest to try to reduce hospital stay and associated complications.
Collapse
Affiliation(s)
- Guillem Deus
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Echeverria-Esnal
- Pharmacy Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ana Siverio
- Microbiology Service, Laboratori de Referència de Catalunya, Hospital del Mar, Barcelona, Spain
| | - Robert Güerri-Fernandez
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Jesús Ares
- Department of Radiology, Hospital del Mar, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Nuria Campillo
- Pharmacy Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Emili Letang
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain.,ISGlobal, Barcelona Institute for Global, Universitat de BarcelonaHealth, Barcelona, Spain
| | - Hernando Knobel
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
16
|
Roth C, Murray D, Scott A, Fu C, Averette AF, Sun S, Heitman J, Magwene PM. Pleiotropy and epistasis within and between signaling pathways defines the genetic architecture of fungal virulence. PLoS Genet 2021; 17:e1009313. [PMID: 33493169 PMCID: PMC7861560 DOI: 10.1371/journal.pgen.1009313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/04/2021] [Accepted: 12/17/2020] [Indexed: 01/11/2023] Open
Abstract
Cryptococcal disease is estimated to affect nearly a quarter of a million people annually. Environmental isolates of Cryptococcus deneoformans, which make up 15 to 30% of clinical infections in temperate climates such as Europe, vary in their pathogenicity, ranging from benign to hyper-virulent. Key traits that contribute to virulence, such as the production of the pigment melanin, an extracellular polysaccharide capsule, and the ability to grow at human body temperature have been identified, yet little is known about the genetic basis of variation in such traits. Here we investigate the genetic basis of melanization, capsule size, thermal tolerance, oxidative stress resistance, and antifungal drug sensitivity using quantitative trait locus (QTL) mapping in progeny derived from a cross between two divergent C. deneoformans strains. Using a "function-valued" QTL analysis framework that exploits both time-series information and growth differences across multiple environments, we identified QTL for each of these virulence traits and drug susceptibility. For three QTL we identified the underlying genes and nucleotide differences that govern variation in virulence traits. One of these genes, RIC8, which encodes a regulator of cAMP-PKA signaling, contributes to variation in four virulence traits: melanization, capsule size, thermal tolerance, and resistance to oxidative stress. Two major effect QTL for amphotericin B resistance map to the genes SSK1 and SSK2, which encode key components of the HOG pathway, a fungal-specific signal transduction network that orchestrates cellular responses to osmotic and other stresses. We also discovered complex epistatic interactions within and between genes in the HOG and cAMP-PKA pathways that regulate antifungal drug resistance and resistance to oxidative stress. Our findings advance the understanding of virulence traits among diverse lineages of Cryptococcus, and highlight the role of genetic variation in key stress-responsive signaling pathways as a major contributor to phenotypic variation.
Collapse
Affiliation(s)
- Cullen Roth
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Debra Murray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alexandria Scott
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anna F. Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
17
|
HIV-associated Cryptococcal Meningitis: a Review of Novel Short-Course and Oral Therapies. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose of review
HIV-associated cryptococcal meningitis remains a significant public health problem in parts of Africa and Asia and a major cause of AIDS-related mortality, accounting for 15% of all AIDS-related deaths worldwide. Cryptococcal meningitis is uniformly fatal if untreated, and access to antifungal therapy in regions with the highest burden is often limited. Outcomes with fluconazole monotherapy are poor, and induction treatment with amphotericin B and high-dose fluconazole for 2 weeks is associated with significant drug-related toxicities and prolonged hospital admissions. This review focuses on the potential of novel short-course and oral combination therapies for cryptococcal meningitis.
Recent findings
Recent clinical trials have shown that shorter courses of amphotericin, if paired with oral flucytosine, rather than fluconazole, can achieve non-inferior mortality outcomes. In addition, an oral combination of fluconazole and flucytosine is a potential alternative. Liposomal amphotericin B may further simplify treatment; it is associated with fewer drug-related toxicities, and a recent phase II randomised controlled trial demonstrated that a single, high dose of liposomal amphotericin is non-inferior to 14 standard daily doses at clearing Cryptococcus from cerebrospinal fluid. This has been taken forward to an ongoing phase III, clinical endpoint study.
Summary
The incidence and mortality associated with cryptococcal meningitis is still unacceptably high. There is evidence supporting the use of short-course amphotericin B and oral combination antifungal treatment regimens for cryptococcal meningitis (CM). Ongoing research into short-course, high-dose treatment with liposomal amphotericin may also help reduce the impact of this devastating disease.
Collapse
|
18
|
Naicker SD, Mpembe RS, Maphanga TG, Zulu TG, Desanto D, Wadula J, Mvelase N, Maluleka C, Reddy K, Dawood H, Maloba M, Govender NP. Decreasing fluconazole susceptibility of clinical South African Cryptococcus neoformans isolates over a decade. PLoS Negl Trop Dis 2020; 14:e0008137. [PMID: 32231354 PMCID: PMC7108701 DOI: 10.1371/journal.pntd.0008137] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Fluconazole is used in combination with amphotericin B for induction treatment of cryptococcal meningitis and as monotherapy for consolidation and maintenance treatment. More than 90% of isolates from first episodes of cryptococcal disease had a fluconazole minimum inhibitory concentration (MIC) ≤4 μg/ml in a Gauteng population-based surveillance study of Cryptococcus neoformans in 2007–2008. We assessed whether fluconazole resistance had emerged in clinical cryptococcal isolates over a decade. Methodology and principal findings We prospectively collected C. neoformans isolates from 1 January through 31 March 2017 from persons with a first episode of culture-confirmed cryptococcal disease at 37 South African hospitals. Isolates were phenotypically confirmed to C. neoformans species-complex level. We determined fluconazole MICs (range: 0.125 μg/ml to 64 μg/ml) of 229 C. neoformans isolates using custom-made broth microdilution panels prepared, inoculated and read according to Clinical and Laboratory Standards Institute M27-A3 and M60 recommendations. These MIC values were compared to MICs of 249 isolates from earlier surveillance (2007–2008). Clinical data were collected from patients during both surveillance periods. There were more males (61% vs 39%) and more participants on combination induction antifungal treatment (92% vs 32%) in 2017 compared to 2007–2008. The fluconazole MIC50, MIC90 and geometric mean MIC was 4 μg/ml, 8 μg/ml and 4.11 μg/ml in 2017 (n = 229) compared to 1 μg/ml, 2 μg/ml and 2.08 μg/ml in 2007–2008 (n = 249) respectively. Voriconazole, itraconazole and posaconazole Etests were performed on 16 of 229 (7%) C. neoformans isolates with a fluconazole MIC value of ≥16 μg/ml; only one had MIC values of >32 μg/ml for these three antifungal agents. Conclusions and significance Fluconazole MIC50 and MIC90 values were two-fold higher in 2017 compared to 2007–2008. Although there are no breakpoints, higher fluconazole doses may be required to maintain efficacy of standard treatment regimens for cryptococcal meningitis. Cryptococcus neoformans, a pathogenic fungal species-complex with an environmental niche, is the most common cause of meningitis among HIV-seropositive adults in sub-Saharan Africa. Fluconazole is recommended in combination with amphotericin B for induction treatment of cryptococcal meningitis and as monotherapy for consolidation and maintenance treatment. Fluconazole is also commonly prescribed to HIV-seropositive individuals for other indications; fluconazole exposure may result in secondary resistance if patients have concurrent active cryptococcal disease. Azole fungicides used in agriculture may potentially drive primary cryptococcal resistance when the fungus is exposed to these fungicides in the environment. We aimed to determine fluconazole MICs in 2017 and compare these values to those obtained in a 2007–2008 South African survey to assess whether fluconazole resistance had emerged in C. neoformans over a decade. We found that the proportion of isolates with an MIC of ≥16 μg/ml increased from 0% in 2007–2008 to 7% in 2017. MIC50 and MIC90 values were also two-fold higher in 2017 compared to 2007–2008. These study findings provided evidence for higher fluconazole dose recommendations (in combination with amphotericin B for the induction phase and as monotherapy for consolidation and maintenance phases) in the 2019 Southern African guideline for HIV-associated cryptococcosis.
Collapse
Affiliation(s)
- Serisha D. Naicker
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Ruth S. Mpembe
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Tsidiso G. Maphanga
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Thokozile G. Zulu
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Daniel Desanto
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeannette Wadula
- National Health Laboratory Service, Microbiology Laboratory, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Nomonde Mvelase
- National Health Laboratory Service, Department of Medical Microbiology, RK Khan Hospital, Durban, South Africa
| | - Caroline Maluleka
- National Health Laboratory Service, Microbiology Laboratory, Dr George Mukhari Academic Hospital, Pretoria, South Africa
| | - Kessendri Reddy
- National Health Laboratory Service, Microbiology Laboratory, Tygerberg Academic Hospital, Cape Town, South Africa
| | - Halima Dawood
- National Health Laboratory Service, Microbiology Laboratory, Edendale Hospital, Pietermaritzburg, South Africa
| | - Motlatji Maloba
- National Health Laboratory Service, Department of Medical Microbiology, Universitas Academic Laboratory Complex, Bloemfontein, South Africa
| | - Nelesh P. Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
19
|
Walker SM, Cox E, Revill P, Musiime V, Bwakura‐Dangarembizi M, Mallewa J, Cheruiyot P, Maitland K, Ford N, Gibb DM, Walker AS, Soares M. The cost-effectiveness of prophylaxis strategies for individuals with advanced HIV starting treatment in Africa. J Int AIDS Soc 2020; 23:e25469. [PMID: 32219991 PMCID: PMC7099175 DOI: 10.1002/jia2.25469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Many HIV-positive individuals in Africa have advanced disease when initiating antiretroviral therapy (ART) so have high risks of opportunistic infections and death. The REALITY trial found that an enhanced-prophylaxis package including fluconazole reduced mortality by 27% in individuals starting ART with CD4 <100 cells/mm3 . We investigated the cost-effectiveness of this enhanced-prophylaxis package versus other strategies, including using cryptococcal antigen (CrAg) testing, in individuals with CD4 <200 cells/mm3 or <100 cells/mm3 at ART initiation and all individuals regardless of CD4 count. METHODS The REALITY trial enrolled from June 2013 to April 2015. A decision-analytic model was developed to estimate the cost-effectiveness of six management strategies in individuals initiating ART in the REALITY trial countries. Strategies included standard-prophylaxis, enhanced-prophylaxis, standard-prophylaxis with fluconazole; and three CrAg testing strategies, the first stratifying individuals to enhanced-prophylaxis (CrAg-positive) or standard-prophylaxis (CrAg-negative), the second to enhanced-prophylaxis (CrAg-positive) or enhanced-prophylaxis without fluconazole (CrAg-negative) and the third to standard-prophylaxis with fluconazole (CrAg-positive) or without fluconazole (CrAg-negative). The model estimated costs, life-years and quality-adjusted life-years (QALY) over 48 weeks using three competing mortality risks: cryptococcal meningitis; tuberculosis, serious bacterial infection or other known cause; and unknown cause. RESULTS Enhanced-prophylaxis was cost-effective at cost-effectiveness thresholds of US$300 and US$500 per QALY with an incremental cost-effectiveness ratio (ICER) of US$157 per QALY in the CD4 <200 cells/mm3 population providing enhanced-prophylaxis components are sourced at lowest available prices. The ICER reduced in more severely immunosuppressed individuals (US$113 per QALY in the CD4 <100 cells/mm3 population) and increased in all individuals regardless of CD4 count (US$722 per QALY). Results were sensitive to prices of the enhanced-prophylaxis components. Enhanced-prophylaxis was more effective and less costly than all CrAg testing strategies as enhanced-prophylaxis still conveyed health gains in CrAg-negative patients and savings from targeting prophylaxis based on CrAg status did not compensate for costs of CrAg testing. CrAg testing strategies did not become cost-effective unless the price of CrAg testing fell below US$2.30. CONCLUSIONS The REALITY enhanced-prophylaxis package in individuals with advanced HIV starting ART reduces morbidity and mortality, is practical to administer and is cost-effective. Efforts should continue to ensure that components are accessed at lowest available prices.
Collapse
Affiliation(s)
| | - Edward Cox
- Centre for Health EconomicsUniversity of YorkYorkUK
| | - Paul Revill
- Centre for Health EconomicsUniversity of YorkYorkUK
| | | | | | - Jane Mallewa
- College of MedicineUniversity of Malawi and Malawi‐Liverpool‐Wellcome Trust Clinical Research ProgrammeBlantyreMalawi
| | | | - Kathryn Maitland
- KEMRI Wellcome Trust Research ProgrammeKilifiKenya
- Department of Infectious DiseasesImperial CollegeLondonUK
| | - Nathan Ford
- HIV/AIDS Department and Global Hepatitis ProgrammeWorld Health OrganizationGenevaSwitzerland
| | | | | | - Marta Soares
- Centre for Health EconomicsUniversity of YorkYorkUK
| |
Collapse
|