1
|
Chang CM, Ramesh KK, Huang V, Gurbani S, Kleinberg LR, Weinberg BD, Shim H, Shu HKG. Mutant Isocitrate Dehydrogenase 1 Expression Enhances Response of Gliomas to the Histone Deacetylase Inhibitor Belinostat. Tomography 2023; 9:942-954. [PMID: 37218937 PMCID: PMC10204413 DOI: 10.3390/tomography9030077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Histone deacetylase inhibitors (HDACis) are drugs that target the epigenetic state of cells by modifying the compaction of chromatin through effects on histone acetylation. Gliomas often harbor a mutation of isocitrate dehydrogenase (IDH) 1 or 2 that leads to changes in their epigenetic state presenting a hypermethylator phenotype. We postulated that glioma cells with IDH mutation, due to the presence of epigenetic changes, will show increased sensitivity to HDACis. This hypothesis was tested by expressing mutant IDH1 with a point alteration-converting arginine 132 to histidine-within glioma cell lines that contain wild-type IDH1. Glioma cells engineered to express mutant IDH1 produced D-2-hydroxyglutarate as expected. When assessed for response to the pan-HDACi drug belinostat, mutant IDH1-expressing glioma cells were subjected to more potent inhibition of growth than the corresponding control cells. Increased sensitivity to belinostat correlated with the increased induction of apoptosis. Finally, a phase I trial assessing the addition of belinostat to standard-of-care therapy for newly diagnosed glioblastoma patients included one patient with a mutant IDH1 tumor. This mutant IDH1 tumor appeared to display greater sensitivity to the addition of belinostat than the other cases with wild-type IDH tumors based on both standard magnetic resonance imaging (MRI) and advanced spectroscopic MRI criteria. These data together suggest that IDH mutation status within gliomas may serve as a biomarker of response to HDACis.
Collapse
Affiliation(s)
- Chi-Ming Chang
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | - Karthik K. Ramesh
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Vicki Huang
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Saumya Gurbani
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | | | - Brent D. Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Govindarajan V, Shah AH, Di L, Rivas S, Suter RK, Eichberg DG, Luther E, Lu V, Morell AA, Ivan ME, Komotar RJ, Ayad N, De La Fuente M. Systematic Review of Epigenetic Therapies for Treatment of IDH-mutant Glioma. World Neurosurg 2022; 162:47-56. [PMID: 35314408 PMCID: PMC9177782 DOI: 10.1016/j.wneu.2022.03.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) mutations are present in 70% of World Health Organization grade II and III gliomas. IDH mutation induces accumulation of the oncometabolite 2-hydroxyglutarate. Therefore, therapies targeting reversal of epigenetic dysregulation in gliomas have been suggested. However, the utility of epigenetic treatments in gliomas remains unclear. Here, we present the first clinical systematic review of epigenetic therapies in treatment of IDH-mutant gliomas and highlight their safety and efficacy. METHODS We conducted a systematic search of electronic databases from 2000 to January 2021 following PRISMA guidelines. Articles were screened to include clinical usage of epigenetic therapies in case reports, prospective case series, or clinical trials. Primary and secondary outcomes included safety/tolerability of epigenetic therapies and progression-free survival/overall survival, respectively. RESULTS A total of 133 patients across 8 clinical studies were included in our analysis. IDH inhibitors appear to have the best safety profile, with an overall grade 3/grade 4 adverse event rate of 9%. Response rates to IDH-mutant inhibitors were highest in nonenhancing gliomas (stable disease achieved in 55% of patients). In contrast, histone deacetylase inhibitors demonstrate a lower safety profile with single-study adverse events as high as 28%. CONCLUSION IDH inhibitors appear promising given their benign toxicity profile and ease of monitoring. Histone deacetylase inhibitors appear to have a narrow therapeutic index, as lower concentrations do not appear effective, while increased doses can produce severe immunosuppressive effects. Preliminary data suggest that epigenetic therapies are generally well tolerated and may control disease in certain patient groups, such as those with nonenhancing lesions.
Collapse
Affiliation(s)
- Vaidya Govindarajan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Long Di
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sarah Rivas
- Surgical Neurology Branch, National Institute of Health, Bethesda, Maryland, USA
| | - Robert K Suter
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Daniel G Eichberg
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Evan Luther
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Victor Lu
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alexis A Morell
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nagi Ayad
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Macarena De La Fuente
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Xu K, Ramesh K, Huang V, Gurbani SS, Cordova JS, Schreibmann E, Weinberg BD, Sengupta S, Voloschin AD, Holdhoff M, Barker PB, Kleinberg LR, Olson JJ, Shu HKG, Shim H. Final Report on Clinical Outcomes and Tumor Recurrence Patterns of a Pilot Study Assessing Efficacy of Belinostat (PXD-101) with Chemoradiation for Newly Diagnosed Glioblastoma. Tomography 2022; 8:688-700. [PMID: 35314634 PMCID: PMC8938806 DOI: 10.3390/tomography8020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is highly aggressive and has a poor prognosis. Belinostat is a histone deacetylase inhibitor with blood-brain barrier permeability, anti-GBM activity, and the potential to enhance chemoradiation. The purpose of this clinical trial was to assess the efficacy of combining belinostat with standard-of-care therapy. Thirteen patients were enrolled in each of control and belinostat cohorts. The belinostat cohort was given a belinostat regimen (500-750 mg/m2 1×/day × 5 days) every three weeks (weeks 0, 3, and 6 of RT). All patients received temozolomide and radiation therapy (RT). RT margins of 5-10 mm were added to generate clinical tumor volumes and 3 mm added to create planning target volumes. Median overall survival (OS) was 15.8 months for the control cohort and 18.5 months for the belinostat cohort (p = 0.53). The recurrence volumes (rGTVs) for the control cohort occurred in areas that received higher radiation doses than that in the belinostat cohort. For those belinostat patients who experienced out-of-field recurrence, tumors were detectable by spectroscopic MRI before RT. Recurrence analysis suggests better in-field control with belinostat. This study highlights the potential of belinostat as a synergistic therapeutic agent for GBM. It may be particularly beneficial to combine this radio-sensitizing effect with spectroscopic MRI-guided RT.
Collapse
Affiliation(s)
- Karen Xu
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA; (K.X.); (K.R.); (V.H.); (S.S.G.); (J.S.C.); (E.S.)
| | - Karthik Ramesh
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA; (K.X.); (K.R.); (V.H.); (S.S.G.); (J.S.C.); (E.S.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vicki Huang
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA; (K.X.); (K.R.); (V.H.); (S.S.G.); (J.S.C.); (E.S.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Saumya S. Gurbani
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA; (K.X.); (K.R.); (V.H.); (S.S.G.); (J.S.C.); (E.S.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James Scott Cordova
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA; (K.X.); (K.R.); (V.H.); (S.S.G.); (J.S.C.); (E.S.)
| | - Eduard Schreibmann
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA; (K.X.); (K.R.); (V.H.); (S.S.G.); (J.S.C.); (E.S.)
| | - Brent D. Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA;
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Soma Sengupta
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (S.S.); (A.D.V.)
| | - Alfredo D. Voloschin
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (S.S.); (A.D.V.)
| | - Matthias Holdhoff
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Peter B. Barker
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Jeffrey J. Olson
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA; (K.X.); (K.R.); (V.H.); (S.S.G.); (J.S.C.); (E.S.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA; (K.X.); (K.R.); (V.H.); (S.S.G.); (J.S.C.); (E.S.)
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA;
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| |
Collapse
|
4
|
Peng Q, Weng K, Li S, Xu R, Wang Y, Wu Y. A Perspective of Epigenetic Regulation in Radiotherapy. Front Cell Dev Biol 2021; 9:624312. [PMID: 33681204 PMCID: PMC7930394 DOI: 10.3389/fcell.2021.624312] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) has been employed as a tumoricidal modality for more than 100 years and on 470,000 patients each year in the United States. The ionizing radiation causes genetic changes and results in cell death. However, since the biological mechanism of radiation remains unclear, there is a pressing need to understand this mechanism to improve the killing effect on tumors and reduce the side effects on normal cells. DNA break and epigenetic remodeling can be induced by radiotherapy. Hence the modulation of histone modification enzymes may tune the radiosensitivity of cancer cells. For instance, histone deacetylase (HDAC) inhibitors sensitize irradiated cancer cells by amplifying the DNA damage signaling and inhibiting double-strand DNA break repair to influence the irradiated cells’ survival. However, the combination of epigenetic drugs and radiotherapy has only been evaluated in several ongoing clinical trials for limited cancer types, partly due to a lack of knowledge on the potential mechanisms on how radiation induces epigenetic regulation and chromatin remodeling. Here, we review recent advances of radiotherapy and radiotherapy-induced epigenetic remodeling and introduce related technologies for epigenetic monitoring. Particularly, we exploit the application of fluorescence resonance energy transfer (FRET) biosensors to visualize dynamic epigenetic regulations in single living cells and tissue upon radiotherapy and drug treatment. We aim to bridge FRET biosensor, epigenetics, and radiotherapy, providing a perspective of using FRET to assess epigenetics and provide guidance for radiotherapy to improve cancer treatment. In the end, we discuss the feasibility of a combination of epigenetic drugs and radiotherapy as new approaches for cancer therapeutics.
Collapse
Affiliation(s)
- Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States.,Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| | - Shitian Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Richard Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yongzhong Wu
- Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|