1
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
2
|
Bai Q, Shao E, Ma D, Jiao B, Scheetz SD, Hartnett-Scott KA, Ilin VA, Aizenman E, Kofler J, Burton EA. A human Tau expressing zebrafish model of progressive supranuclear palsy identifies Brd4 as a regulator of microglial synaptic elimination. Nat Commun 2024; 15:8195. [PMID: 39294122 PMCID: PMC11410960 DOI: 10.1038/s41467-024-52173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is an incurable neurodegenerative disease characterized by 4-repeat (0N/4R)-Tau protein accumulation in CNS neurons. We generated transgenic zebrafish expressing human 0N/4R-Tau to investigate PSP pathophysiology. Tau zebrafish replicated multiple features of PSP, including: decreased survival; hypokinesia; impaired optokinetic responses; neurodegeneration; neuroinflammation; synapse loss; and Tau hyperphosphorylation, misfolding, mislocalization, insolubility, truncation, and oligomerization. Using automated assays, we screened 147 small molecules for activity in rescuing neurological deficits in Tau zebrafish. (+)JQ1, a bromodomain inhibitor, improved hypokinesia, survival, microgliosis, and brain synapse elimination. A heterozygous brd4+/- mutant reducing expression of the bromodomain protein Brd4 similarly rescued these phenotypes. Microglial phagocytosis of synaptic material was decreased by (+)JQ1 in both Tau zebrafish and rat primary cortical cultures. Microglia in human PSP brains expressed Brd4. Our findings implicate Brd4 as a regulator of microglial synaptic elimination in tauopathy and provide an unbiased approach for identifying mechanisms and therapeutic targets in PSP.
Collapse
Affiliation(s)
- Qing Bai
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Enhua Shao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Denglei Ma
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Binxuan Jiao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Seth D Scheetz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Karen A Hartnett-Scott
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Vladimir A Ilin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Elias Aizenman
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Edward A Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatrics Research, Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
3
|
Britton KN, Judson RS, Hill BN, Jarema KA, Olin JK, Knapp BR, Lowery M, Feshuk M, Brown J, Padilla S. Using Zebrafish to Screen Developmental Toxicity of Per- and Polyfluoroalkyl Substances (PFAS). TOXICS 2024; 12:501. [PMID: 39058153 PMCID: PMC11281043 DOI: 10.3390/toxics12070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found in many consumer and industrial products. While some PFAS, notably perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are developmentally toxic in mammals, the vast majority of PFAS have not been evaluated for developmental toxicity potential. A concentration-response study of 182 unique PFAS chemicals using the zebrafish medium-throughput, developmental vertebrate toxicity assay was conducted to investigate chemical structural identifiers for toxicity. Embryos were exposed to each PFAS compound (≤100 μM) beginning on the day of fertilization. At 6 days post-fertilization (dpf), two independent observers graded developmental landmarks for each larva (e.g., mortality, hatching, swim bladder inflation, edema, abnormal spine/tail, or craniofacial structure). Thirty percent of the PFAS were developmentally toxic, but there was no enrichment of any OECD structural category. PFOS was developmentally toxic (benchmark concentration [BMC] = 7.48 μM); however, other chemicals were more potent: perfluorooctanesulfonamide (PFOSA), N-methylperfluorooctane sulfonamide (N-MeFOSA), ((perfluorooctyl)ethyl)phosphonic acid, perfluoro-3,6,9-trioxatridecanoic acid, and perfluorohexane sulfonamide. The developmental toxicity profile for these more potent PFAS is largely unexplored in mammals and other species. Based on these zebrafish developmental toxicity results, additional screening may be warranted to understand the toxicity profile of these chemicals in other species.
Collapse
Affiliation(s)
- Katy N. Britton
- Oak Ridge Associated Universities Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, Computational Toxicology and Bioinformatics Branch, Research Triangle Park, NC 27711, USA;
| | - Bridgett N. Hill
- Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (B.N.H.); (B.R.K.)
| | - Kimberly A. Jarema
- Center for Public Health and Environmental Assessment, Immediate Office, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jeanene K. Olin
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| | - Bridget R. Knapp
- Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (B.N.H.); (B.R.K.)
| | - Morgan Lowery
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| | - Madison Feshuk
- Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Data Extraction and Quality Evaluation Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jason Brown
- Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Application Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| |
Collapse
|
4
|
Hamed M, Vats A, Lim IE, Sapkota B, Abdelmoneim A. Effects of developmental exposure to individual and combined PFAS on development and behavioral stress responses in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123912. [PMID: 38570156 DOI: 10.1016/j.envpol.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread use and persistence in the environment. Laboratory and epidemiological studies investigating these compounds have signaled their neurotoxic and endocrine-disrupting propensities, prompting further research into their effects on behavioral stress responses and their potential role as risk factors for stress-related disorders such as anxiety and depression. This study elucidates the ramifications of early developmental exposures to individual and combined PFAS on the development and behavioral stress responses of larval zebrafish (Danio rerio), an established model in toxicological research. Wild-type zebrafish embryos were enzymatically dechorionated and exposed to PFOS, PFOA, PFHxS, and PFHxA between 6 and 120 h post-fertilization (hpf). We targeted environmentally relevant concentrations stemming from the USEPA 2016 Hazard Advisory Limit (HAL, 0.07 μg/L) and folds higher (0.35, 0.7, 1.75, and 3.5 μg/L). Evaluations at 120 hpf encompassed mortality, overall development, developmental defects, and larval activity both at baseline stress levels and following exposure to acute stressors (acoustic and visual). Larval exposure to PFOA, PFOS, or PFHxS (0.07 μg/L or higher) elicited significant increases in mortality rates, which capped at 23.1%. Exposure to individual chemicals resulted in limited effects on overall development but increased the prevalence of developmental defects in the body axis, swim bladder, pigmentation, and eyes, as well as the prevalence of yolk sac and pericardial edemas. Larval activity at baseline stress levels and following exposure to acute stimuli was significantly altered. Combined exposure to all four chemicals intensified the breadth of developmental and behavioral alterations, suggesting possible additive or synergistic effects. Our findings shed light on the developmental and neurobehavioral disturbances associated with developmental exposure to PFAS at environmentally relevant concentrations, the added risks of combined exposures to these chemicals, and their possible role as environmental risk factors for stress-related disorders.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ajn Vats
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ignitius Ezekiel Lim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Biplov Sapkota
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
5
|
Pramanik S, Bala A, Pradhan A. Zebrafish in understanding molecular pathophysiology, disease modeling, and developing effective treatments for Rett syndrome. J Gene Med 2024; 26:e3677. [PMID: 38380785 DOI: 10.1002/jgm.3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024] Open
Abstract
Rett syndrome (RTT) is a rare but dreadful X-linked genetic disease that mainly affects young girls. It is a neurological disease that affects nerve cell development and function, resulting in severe motor and intellectual disabilities. To date, no cure is available for treating this disease. In 90% of the cases, RTT is caused by a mutation in methyl-CpG-binding protein 2 (MECP2), a transcription factor involved in the repression and activation of transcription. MECP2 is known to regulate several target genes and is involved in different physiological functions. Mouse models exhibit a broad range of phenotypes in recapitulating human RTT symptoms; however, understanding the disease mechanisms remains incomplete, and many potential RTT treatments developed in mouse models have not shown translational effectiveness in human trials. Recent data hint that the zebrafish model emulates similar disrupted neurological functions following mutation of the mecp2 gene. This suggests that zebrafish can be used to understand the onset and progression of RTT pathophysiology and develop a possible cure. In this review, we elaborate on the molecular basis of RTT pathophysiology in humans and model organisms, including rodents and zebrafish, focusing on the zebrafish model to understand the molecular pathophysiology and the development of therapeutic strategies for RTT. Finally, we propose a rational treatment strategy, including antisense oligonucleotides, small interfering RNA technology and induced pluripotent stem cell-derived cell therapy.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences; Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute Under - Department of Science & Technology (Govt. of India) Vigyan Path, Guwahati, Assam, India
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
6
|
Sarasamma S, Karim A, Orengo JP. Zebrafish Models of Rare Neurological Diseases like Spinocerebellar Ataxias (SCAs): Advantages and Limitations. BIOLOGY 2023; 12:1322. [PMID: 37887032 PMCID: PMC10604122 DOI: 10.3390/biology12101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous group of rare familial neurodegenerative disorders that share the key feature of cerebellar ataxia. Clinical heterogeneity, diverse gene mutations and complex neuropathology pose significant challenges for developing effective disease-modifying therapies in SCAs. Without a deep understanding of the molecular mechanisms involved for each SCA, we cannot succeed in developing targeted therapies. Animal models are our best tool to address these issues and several have been generated to study the pathological conditions of SCAs. Among them, zebrafish (Danio rerio) models are emerging as a powerful tool for in vivo study of SCAs, as well as rapid drug screens. In this review, we will summarize recent progress in using zebrafish to study the pathology of SCAs. We will discuss recent advancements on how zebrafish models can further clarify underlying genetic, neuroanatomical, and behavioral pathogenic mechanisms of disease. We highlight their usefulness in rapid drug discovery and large screens. Finally, we will discuss the advantages and limitations of this in vivo model to develop tailored therapeutic strategies for SCA.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Departments of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Anwarul Karim
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - James P. Orengo
- Departments of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. Scalable Apparatus to Measure Posture and Locomotion (SAMPL): a high-throughput solution to study unconstrained vertical behavior in small animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523102. [PMID: 36712122 PMCID: PMC9881893 DOI: 10.1101/2023.01.07.523102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Balance and movement are impaired in a wide variety of neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics, but without the throughput and scalability necessary to screen candidate genes / potential therapeutics. We present a powerful solution: a Scalable Apparatus to Measure Posture and Locomotion (SAMPL). SAMPL includes extensible imaging hardware and low-cost open-source acquisition software with real-time processing. We first demonstrate that SAMPL's hardware and acquisition software can acquire data from from D. melanogaster, C. elegans, and D. rerio as they move vertically. Next, we leverage SAMPL's throughput to rapidly (two weeks) gather a new zebrafish dataset. We use SAMPL's analysis and visualization tools to replicate and extend our current understanding of how zebrafish balance as they navigate through a vertical environment. Next, we discover (1) that key kinematic parameters vary systematically with genetic background, and (2) that such background variation is small relative to the changes that accompany early development. Finally, we simulate SAMPL's ability to resolve differences in posture or vertical navigation as a function of affect size and data gathered -- key data for screens. Taken together, our apparatus, data, and analysis provide a powerful solution for labs using small animals to investigate balance and locomotor disorders at scale. More broadly, SAMPL is both an adaptable resource for labs looking process videographic measures of behavior in real-time, and an exemplar of how to scale hardware to enable the throughput necessary for screening.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Franziska Auer
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hannah Gelnaw
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Samantha N. Davis
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Kyla R. Hamling
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Christina E. May
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Katherine I. Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - David Schoppik
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
- Lead Contact
| |
Collapse
|