1
|
Jhanji M, Krall CL, Guevara A, Yoon B, Sajish M, Boccuto L, Lizarraga SB. The intersection of inflammation and DNA damage as a novel axis underlying the pathogenesis of autism spectrum disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627854. [PMID: 39713319 PMCID: PMC11661205 DOI: 10.1101/2024.12.11.627854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Autism spectrum disorders (ASD) affects 1 in 36 children and is characterized by repetitive behaviors and difficulties in social interactions and social communication. The etiology of ASD is extremely heterogeneous, with a large number of ASD cases that are of unknown or complex etiology, which suggests the potential contribution of epigenetic risk factors. In particular, epidemiological and animal model studies suggest that inflammation during pregnancy could lead to an increased risk of ASD in the offspring. However, the molecular mechanisms that contribute to ASD pathogenesis in relation to maternal inflammation during pregnancy in humans are underexplored. Several pro-inflammatory cytokines have been associated with increased autistic-like behaviors in animal models of maternal immune activation, including IL-17A. Using a combination of ASD patient lymphocytes and stem cell-derived human neurons exposed to IL-17A we discovered a shared molecular signature that highlights a metabolic and translational node that could lead to altered neuronal excitability. Further, our work on human neurons brings forward the possibility that defects in the DNA damage response could be underlying the effect of IL-17A on human excitatory neurons, linking exacerbated unrepaired DNA damage to the pathogenicity of maternal inflammation in connection to ASD.
Collapse
|
2
|
Stojanovic M, Kalanj-Bognar S. Toll-like receptors as a missing link in Notch signaling cascade during neurodevelopment. Front Mol Neurosci 2024; 17:1465023. [PMID: 39664114 PMCID: PMC11631889 DOI: 10.3389/fnmol.2024.1465023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024] Open
Abstract
Neurodevelopment encompasses a complex series of molecular events occuring at defined time points distinguishable by the specific genetic readout and active protein machinery. Due to immense intricacy of intertwined molecular pathways, extracting and describing all the components of a single pathway is a demanding task. In other words, there is always a risk of leaving potential transient molecular partners unnoticed while investigating signaling cascades with core functions-and the very neglected ones could be the turning point in understanding the context and regulation of the signaling events. For example, signaling pathways of Notch and Toll-like receptors (TLRs) have been so far unrelated in the vast body of knowledge about neurodevelopment, however evidence from available literature points to their remarkable overlap in influence on identical molecular processes and reveals their potential functional links. Based on data demonstrating Notch and TLR structural engagement and functions during neurodevelopment, along with our description of novel molecular binding models, here we hypothesize that TLR proteins act as likely crucial components in the Notch signaling cascade. We advocate for the hypothesized role of TLRs in Notch signaling by: elaborating components and features of their pathways; reviewing their effects on fates of neural progenitor cells during neurodevelopment; proposing molecular and functional aspects of the hypothesis, along with venues for testing it. Finally, we discuss substantial indications of environmental influence on the proposed Notch-TLR system and its impact on neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Mario Stojanovic
- Laboratory for Neurochemistry and Molecular Neurobiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Laboratory for Cell Biology and Signalling, Department for Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- Laboratory for Neurochemistry and Molecular Neurobiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Scuto M, Majzúnová M, Torcitto G, Antonuzzo S, Rampulla F, Di Fatta E, Trovato Salinaro A. Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health. Int J Mol Sci 2024; 25:12155. [PMID: 39596221 PMCID: PMC11594618 DOI: 10.3390/ijms252212155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between functional food nutrients and neurosteroids has garnered significant attention for its potential to enhance stress resilience in health and/or disease. Several bioactive nutrients, including medicinal herbs, flavonoids, and bioavailable polyphenol-combined nanoparticles, as well as probiotics, vitamin D and omega-3 fatty acids, have been shown to improve blood-brain barrier (BBB) dysfunction, endogenous neurosteroid homeostasis and brain function. These nutrients can inhibit oxidative stress and neuroinflammation, which are linked to the pathogenesis of various neurological disorders. Interestingly, flavonoids exhibit dose-dependent effects, activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway at the physiological/low dose (neurohormesis). This leads to the upregulation of antioxidant phase II genes and proteins such as heme oxygenase-1 (HO-1) and sirtuin-1 (Sirt1), which are activated by curcumin and resveratrol, respectively. These adaptive neuronal response mechanisms help protect against reactive oxygen species (ROS) and neurotoxicity. Impaired Nrf2 and neurosteroid hormone signaling in the brain can exacerbate selective vulnerability to neuroinflammatory conditions, contributing to the onset and progression of neurodegenerative and psychiatric disorders, including Alzheimer's disease, anxiety and depression and other neurological disorders, due to the vulnerability of neurons to stress. This review focuses on functional food nutrients targeting Nrf2 antioxidant pathway and redox resilience genes to regulate the neurosteroid homeostasis and BBB damage associated with altered GABAergic neurotransmission. By exploring the underlying molecular mechanisms using innovative technologies, we aim to develop promising neuroprotective strategies and personalized nutritional and neuroregenerative therapies to prevent or attenuate oxidative stress and neuroinflammation, ultimately promoting brain health.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | - Miroslava Majzúnová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia;
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371 Bratislava, Slovakia
| | - Gessica Torcitto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | - Silvia Antonuzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.T.); (S.A.); (F.R.)
| |
Collapse
|
4
|
Oei JL. Improving neurological and mental health outcomes for children with prenatal drug exposure. Semin Fetal Neonatal Med 2024; 29:101557. [PMID: 39537449 DOI: 10.1016/j.siny.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Prenatal drug exposure is a global public health problem that will never be completely eliminated. Some drugs are essential for maternal health but many others are used recreationally and for non-medical reasons. Both legal and illegal drugs of addiction and dependency have the potential to cause permanent and even intergenerational harm to the developing child and understanding the direct impact of drugs of addiction on child neurodevelopmental and mental health is difficult and confounded by many social, environmental and possibly, genetic factors. Furthermore, many drugs are not clear neuroteratogens and their impact on the child may be indolent and not appreciated for a long time after exposure has occurred. Despite this, there are numerous windows of opportunity to improve the eventual outcomes of the child including utilising the enormous benefits of neuroplasticity and general principles of basic health care and support. This chapter will discuss current understanding of the impact of drugs of addiction on the growing child and offer possible mitigation strategies to improve outcomes.
Collapse
Affiliation(s)
- Ju Lee Oei
- Department of Newborn Care, the Royal Hospital for Women, Randwick, NSW, Australia; School of Paediatrics, Faculty of Medicine, University of New South Wales, NSW, Australia.
| |
Collapse
|
5
|
Elgenidy A, Gad EF, Shabaan I, Abdelrhem H, Wassef PG, Elmozugi T, Abdelfattah M, Mousa H, Nasr M, Salah-Eldin M, Altaweel A, Hussein A, Bazzazeh M, Elganainy MA, Ali AM, Ezzat M, Elhoufey A, Alatram AA, Hammour A, Saad K. Examining the association between autism spectrum disorder and atopic eczema: meta-analysis of current evidence. Pediatr Res 2024:10.1038/s41390-024-03456-1. [PMID: 39128926 DOI: 10.1038/s41390-024-03456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVES This study aims to investigate the association between autism spectrum disorder (ASD) and atopic eczema (AE), shedding light on potential associations and underlying mechanisms. METHODS A comprehensive review of literature was conducted to identify relevant studies published up to August 2023. Various electronic databases, including PubMed, Embase, Scopus, Web of Science, and Cochrane, were searched using specific keywords related to ASD and AE. RESULTS The meta-analysis covered a total of 30 studies. The first analysis included 23 studies with a combined total of 147430 eczema patients in the ASD group and 8895446 eczema patients in non-ASD group. We calculated the risk ratio of eczema in ASD and non-ASD groups, which revealed a significantly higher risk of eczema in patients with ASD (RR 1.34; 95% CI 1.03, 1.76). The second analysis included seven studies with a combined total of 3570449 ASD patients in the AE group and 3253973 in the non-Eczema group. The risk ratio of ASD in the Eczema and Non-Eczema groups showed an insignificantly increased risk of ASD in patients with eczema (RR 1.67; 95% CI 0.91, 3.06). CONCLUSION This study underscores the possible link between ASD and atopic eczema, shedding light on their potential association. IMPACT Our study conducted a meta-analysis on the association between autism spectrum disorder (ASD) and atopic eczema (AE), shedding light on potential associations and underlying mechanisms. The review we conducted covered a total of 30 studies. This study underscores the possible link between ASD and atopic eczema, shedding light on their potential association.
Collapse
Affiliation(s)
| | - Eman F Gad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Islam Shabaan
- Department of Psychiatry, Faculty of Medicine, Al Azhar University, Assiut, Egypt
| | | | | | - Taher Elmozugi
- Faculty of Medicine, Benghazi University, Benghazi, Libya
| | | | - Hisham Mousa
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Nasr
- Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| | | | - Ahmed Altaweel
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | | | - Ahmed M Ali
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Ezzat
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amira Elhoufey
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Abdulrahman A Alatram
- Department of Psychiatry, College of Medicine, Majmaah University, Al Majmaah, Saudi Arabia
| | - Ahmed Hammour
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
6
|
Kiran NS, Yashaswini C, Chatterjee A. Zebrafish: A trending model for gut-brain axis investigation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106902. [PMID: 38537435 DOI: 10.1016/j.aquatox.2024.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Zebrafish (Danio rerio) has ascended as a pivotal model organism in the realm of gut-brain axis research, principally owing to its high-throughput experimental capabilities and evolutionary alignment with mammals. The inherent transparency of zebrafish embryos facilitates unprecedented real-time imaging, affording unparalleled insights into the intricate dynamics of bidirectional communication between the gut and the brain. Noteworthy are the structural and functional parallels shared between the zebrafish and mammalian gut-brain axis components, rendering zebrafish an invaluable model for probing the molecular and cellular intricacies inherent in this critical physiological interaction. Recent investigations in zebrafish have systematically explored the impact of gut microbiota on neurodevelopment, behaviour, and disease susceptibility, underscoring the model's prowess in unravelling the multifaceted influence of microbial communities in shaping gut-brain interactions. Leveraging the genetic manipulability inherent in zebrafish, researchers have embarked on targeted explorations of specific pathways and molecular mechanisms, providing nuanced insights into the fundamental functioning of the gut-brain axis. This comprehensive review synthesizes pivotal findings and methodological advancements derived from zebrafish-based gut-brain axis research, accentuating the model's potential to significantly advance our understanding of this complex interplay. Furthermore, it underscores the translational significance of these insights, offering promising avenues for the identification of therapeutic targets in neuro-gastroenterological disorders and psychiatric conditions intricately linked with gut-brain interactions.
Collapse
Affiliation(s)
- Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|