1
|
Mukhiya R, Fleischmann WA, Loughland JR, Chan JA, de Labastida Rivera F, Andrew D, Beeson JG, McCarthy JS, Barber BE, Lopez JA, Engwerda C, Thomson-Luque R, Boyle MJ. Heterogeneity of the human immune response to malaria infection and vaccination driven by latent cytomegalovirus infection. EBioMedicine 2024; 109:105419. [PMID: 39490199 PMCID: PMC11576503 DOI: 10.1016/j.ebiom.2024.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Human immune responses to infection and vaccination are heterogenous, driven by multiple factors including genetics, environmental exposures and personal infection histories. For malaria caused by Plasmodium falciparum parasites, host factors that impact on humoral immunity are poorly understood. METHODS We investigated the role of latent cytomegalovirus (CMV) on the host immune response to malaria using samples obtained from individuals in previously conducted Phase 1 trials of blood stage P. falciparum Controlled Human Malaria Infection (CHMI) and in a MSP1 vaccine clinical trial. Induced antibody and functions of antibodies, as well as CD4 T cell responses were quantified. FINDINGS CMV seropositivity was associated with reduced induction of parasite specific antibodies following malaria infection and vaccination. During infection, reduced antibody induction was associated with modifications to the T -follicular helper (Tfh) cell compartment. CMV seropositivity was associated with a skew towards Tfh1 cell subsets before and after malaria infection, and reduced activation of Tfh2 cells. Protective Tfh2 cell activation was only associated with antibody development in individuals who were CMV seronegative, and a higher proportion of Tfh1 cells was associated with lower antibody development in individuals who were CMV seropositive. During MSP1 vaccination, reduced antibody induction in individuals who were CMV seropositive was associated with CD4 T cell expression of terminal differentiation marker CD57. INTERPRETATION These findings suggest that CMV seropositivity may be negatively associated with malaria antibody development. Further studies in larger cohorts, particularly in malaria endemic regions are required to investigate whether CMV infection may modify immunity to malaria gained during infection or vaccination in children. FUNDING Work was funded by National Health and Medical Research Council of Australia, CSL Australia and Snow Medical Foundation. Funders had no role in data generation, writing of manuscript of decision to submit for publication.
Collapse
Affiliation(s)
- Reena Mukhiya
- Burnet Institute, Melbourne, Australia; School of Environmental Sciences, Griffith University, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Wim A Fleischmann
- Center for Infectious Diseases, Virology, Heidelberg University, Medical Faculty, University Hospital Heidelberg, Germany
| | - Jessica R Loughland
- Burnet Institute, Melbourne, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jo-Anne Chan
- Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, University of Melbourne, Australia; Department of Microbiology and School of Translational Medicine, Monash University, Australia
| | | | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, University of Melbourne, Australia; Department of Microbiology and School of Translational Medicine, Monash University, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | - J Alejandro Lopez
- School of Environmental Sciences, Griffith University, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Christian Engwerda
- School of Environmental Sciences, Griffith University, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Richard Thomson-Luque
- Sumaya-Biotech GmbH & Co. KG, Germany; Centre for Infectious Diseases, Parasitology, Heidelberg University, Medical Faculty, University Hospital Heidelberg, Germany
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Australia; School of Environmental Sciences, Griffith University, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia; Department of Infectious Diseases, University of Melbourne, Australia; Department of Microbiology and School of Translational Medicine, Monash University, Australia.
| |
Collapse
|
2
|
Thawornpan P, Salsabila ZZ, Kochayoo P, Khunsri T, Malee C, Wangriatisak K, Leepiyasakulchai C, Ntumngia FB, Adams JH, Chootong P. Polarization toward Tfh2 cell involved in development of MBC and antibody responses against Plasmodium vivax infection. PLoS Negl Trop Dis 2024; 18:e0012625. [PMID: 39475899 PMCID: PMC11524495 DOI: 10.1371/journal.pntd.0012625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Plasmodium vivax is the dominant Plasmodium spp. causing malaria throughout tropical and sub-tropical countries. Humoral immunity is induced during P. vivax infection. However, data on longevity of antibody and memory B cell (MBC) responses is lacking. Follicular helper T cells (Tfh) are drivers of high-affinity and long-lived antibody responses. Understanding of Tfh-mediated immunity against malaria is valuable for vaccine development. METHODOLOGY/PRINCIPAL FINDINGS We enrolled 31 acutely infected P. vivax patients in low malaria transmission areas of Thailand to detect frequencies, phenotypes and kinetics of different subsets of circulating Tfh (cTfh) and MBCs, and to evaluate their association with humoral immunity following natural P. vivax infection. Expansion of cTfh2 cells, activated and atypical MBCs were shown during acute malaria. To relate increased cTfh2 cells to humoral immunity, P. vivax-specific MBCs and antibodies were assessed. High anti-PvCSP and -PvDBPII seropositivity was detected and most subjects produced MBCs specific to these antigens. The increased cTfh2 cells were positively related to atypical MBCs, plasmablasts/plasma cells, and anti-PvDBPII IgM and IgG levels. Distributions of memory cTfh cell subsets were altered from central memory (CM) to effector memory (EM) during infection. The highest ratios of cTfh-EM/cTfh-CM were represented in cTfh2 cells. Positive correlation of cTfh17-EM with activated and atypical MBCs was observed, while cTfh2-CM and cTfh17-CM cells were positively related to PvDBPII-specific MBCs and IgM levels. CONCLUSIONS/SIGNIFICANCE Present study demonstrated that P. vivax infection induced cTfh polarization into cTfh2 subset, and alteration of memory cTfh2 phenotype from CM to EM phase. These P. vivax-induced cTfh responses significantly associated with generation of MBCs and antibody responses. Therefore, cTfh2 cells might possibly influence humoral immunity by inducing expansion of activated and atypical MBCs, and by generating P. vivax-specific MBCs and antibody responses following natural infection.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Zulfa Zahra Salsabila
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Tipanan Khunsri
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chayapat Malee
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Francis Babila Ntumngia
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Vaishalli PM, Das R, Cheema HS, Ghosh S, Chandana M, Anand A, Murmu KC, Padmanaban G, Ravindran B, Nagaraj VA. Plasmodium berghei HMGB1 controls the host immune responses and splenic clearance by regulating the expression of pir genes. J Biol Chem 2024; 300:107829. [PMID: 39341498 PMCID: PMC11541847 DOI: 10.1016/j.jbc.2024.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
High mobility group box (HMGB) proteins belong to the high mobility group (HMG) superfamily of non-histone nuclear proteins that are involved in chromatin remodeling, regulation of gene expression, and DNA repair. When extracellular, HMGBs serve as alarmins inducing inflammation, and this is attributed to the proinflammatory activity of box B. Here, we show that Plasmodium HMGB1 has key amino acid changes in box B resulting in the loss of TNF-α stimulatory activity. Site-directed mutagenesis of the critical amino acids in box B with respect to mouse HMGB1 renders recombinant Plasmodium berghei (Pb) HMGB1 capable of inducing TNF-α release. Targeted deletion of PbHMGB1 and a detailed in vivo phenotyping show that PbHMGB1 knockout (KO) parasites can undergo asexual stage development. Interestingly, Balb/c mice-infected with PbHMGB1KO parasites display a protective phenotype with subsequent clearance of blood parasitemia and develop long-lasting protective immunity against the challenges performed with Pb wildtype parasites. The characterization of splenic responses shows prominent germinal centers leading to effective humoral responses and enhanced T follicular helper cells. There is also complete protection from experimental cerebral malaria in CBA/CaJ mice susceptible to cerebral pathogenesis with subsequent parasite clearance. Transcriptomic studies suggest the involvement of PbHMGB1 in pir expression. Our findings highlight the gene regulatory function of parasite HMGB1 and its in vivo significance in modulating the host immune responses. Further, clearance of asexual stages in PbHMGB1KO-infected mice underscores the important role of parasite HMGB1 in host immune evasion. These findings have implications in developing attenuated blood-stage vaccines for malaria.
Collapse
Affiliation(s)
- Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Harveer Singh Cheema
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Department of Botany, Meerut College, Meerut, Uttar Pradesh, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | | | |
Collapse
|
4
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Cheng Q, Yang X, Zou T, Sun L, Zhang X, Deng L, Wu M, Gai W, Jiang H, Guo T, Lu Y, Dong J, Niu C, Pan W, Zhang J. RACK1 enhances STAT3 stability and promotes T follicular helper cell development and function during blood-stage Plasmodium infection in mice. PLoS Pathog 2024; 20:e1012352. [PMID: 39024388 PMCID: PMC11288429 DOI: 10.1371/journal.ppat.1012352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/30/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.
Collapse
Affiliation(s)
- Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Zou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lin Sun
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijiao Deng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Mengyao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenbin Gai
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tingting Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuchen Lu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Weiqing Pan
- Department of Tropical Diseases, Navy Medical University, Shanghai, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
6
|
Miura K, Flores-Garcia Y, Long CA, Zavala F. Vaccines and monoclonal antibodies: new tools for malaria control. Clin Microbiol Rev 2024; 37:e0007123. [PMID: 38656211 PMCID: PMC11237600 DOI: 10.1128/cmr.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
SUMMARYMalaria remains one of the biggest health problems in the world. While significant reductions in malaria morbidity and mortality had been achieved from 2000 to 2015, the favorable trend has stalled, rather significant increases in malaria cases are seen in multiple areas. In 2022, there were 249 million estimated cases, and 608,000 malaria-related deaths, mostly in infants and children aged under 5 years, globally. Therefore, in addition to the expansion of existing anti-malarial control measures, it is critical to develop new tools, such as vaccines and monoclonal antibodies (mAbs), to fight malaria. In the last 2 years, the first and second malaria vaccines, both targeting Plasmodium falciparum circumsporozoite proteins (PfCSP), have been recommended by the World Health Organization to prevent P. falciparum malaria in children living in moderate to high transmission areas. While the approval of the two malaria vaccines is a considerable milestone in vaccine development, they have much room for improvement in efficacy and durability. In addition to the two approved vaccines, recent clinical trials with mAbs against PfCSP, blood-stage vaccines against P. falciparum or P. vivax, and transmission-blocking vaccine or mAb against P. falciparum have shown promising results. This review summarizes the development of the anti-PfCSP vaccines and mAbs, and recent topics in the blood- and transmission-blocking-stage vaccine candidates and mAbs. We further discuss issues of the current vaccines and the directions for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Kimenyi KM, Akinyi MY, Mwikali K, Gilmore T, Mwangi S, Omer E, Gichuki B, Wambua J, Njunge J, Obiero G, Bejon P, Langhorne J, Abdi A, Ochola-Oyier LI. Distinct transcriptomic signatures define febrile malaria depending on initial infective states, asymptomatic or uninfected. BMC Infect Dis 2024; 24:140. [PMID: 38287287 PMCID: PMC10823747 DOI: 10.1186/s12879-024-08973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cumulative malaria parasite exposure in endemic regions often results in the acquisition of partial immunity and asymptomatic infections. There is limited information on how host-parasite interactions mediate the maintenance of chronic symptomless infections that sustain malaria transmission. METHODS Here, we determined the gene expression profiles of the parasite population and the corresponding host peripheral blood mononuclear cells (PBMCs) from 21 children (< 15 years). We compared children who were defined as uninfected, asymptomatic and those with febrile malaria. RESULTS Children with asymptomatic infections had a parasite transcriptional profile characterized by a bias toward trophozoite stage (~ 12 h-post invasion) parasites and low parasite levels, while early ring stage parasites were characteristic of febrile malaria. The host response of asymptomatic children was characterized by downregulated transcription of genes associated with inflammatory responses, compared with children with febrile malaria,. Interestingly, the host responses during febrile infections that followed an asymptomatic infection featured stronger inflammatory responses, whereas the febrile host responses from previously uninfected children featured increased humoral immune responses. CONCLUSIONS The priming effect of prior asymptomatic infection may explain the blunted acquisition of antibody responses seen to malaria antigens following natural exposure or vaccination in malaria endemic areas.
Collapse
Affiliation(s)
- Kelvin M Kimenyi
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | - Kioko Mwikali
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Shaban Mwangi
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | - Elisha Omer
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - James Njunge
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Philip Bejon
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
8
|
Dooley NL, Chabikwa TG, Pava Z, Loughland JR, Hamelink J, Berry K, Andrew D, Soon MSF, SheelaNair A, Piera KA, William T, Barber BE, Grigg MJ, Engwerda CR, Lopez JA, Anstey NM, Boyle MJ. Single cell transcriptomics shows that malaria promotes unique regulatory responses across multiple immune cell subsets. Nat Commun 2023; 14:7387. [PMID: 37968278 PMCID: PMC10651914 DOI: 10.1038/s41467-023-43181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Plasmodium falciparum malaria drives immunoregulatory responses across multiple cell subsets, which protects from immunopathogenesis, but also hampers the development of effective anti-parasitic immunity. Understanding malaria induced tolerogenic responses in specific cell subsets may inform development of strategies to boost protective immunity during drug treatment and vaccination. Here, we analyse the immune landscape with single cell RNA sequencing during P. falciparum malaria. We identify cell type specific responses in sub-clustered major immune cell types. Malaria is associated with an increase in immunosuppressive monocytes, alongside NK and γδ T cells which up-regulate tolerogenic markers. IL-10-producing Tr1 CD4 T cells and IL-10-producing regulatory B cells are also induced. Type I interferon responses are identified across all cell types, suggesting Type I interferon signalling may be linked to induction of immunoregulatory networks during malaria. These findings provide insights into cell-specific and shared immunoregulatory changes during malaria and provide a data resource for further analysis.
Collapse
Affiliation(s)
- Nicholas L Dooley
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | | | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Julianne Hamelink
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - Kiana Berry
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kim A Piera
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
- Subang Jaya Medical Centre, Selangor, Malaysia
| | - Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | | | - J Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Program, Kota Kinabalu, Sabah, Malaysia
| | - Michelle J Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia.
- University of Queensland, Brisbane, QLD, Australia.
- Queensland University of Technology, Brisbane, QLD, Australia.
- Burnet Institute, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Meredith S, Majam V, Zheng H, Verma N, Puri A, Akue A, KuKuruga M, Oakley M, Kumar S. Protective efficacy and correlates of immunity of immunodominant recombinant Babesia microti antigens. Infect Immun 2023; 91:e0016223. [PMID: 37728332 PMCID: PMC10580920 DOI: 10.1128/iai.00162-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 09/21/2023] Open
Abstract
Babesia microti, an intraerythrocytic apicomplexan parasite, is the primary causative agent of human babesiosis and an emerging threat to public health in the United States and elsewhere. An effective vaccine against B. microti would reduce disease severity in acute babesiosis patients and shorten the parasitemic period in asymptomatic individuals, thereby minimizing the risk of transfusion-transmitted babesiosis. Here we report on immunogenicity, protective efficacy, and correlates of immunity following immunization with four immunodominant recombinantly produced B. microti antigens-Serine Reactive Antigen 1 (SERA1), Maltese Cross Form Related Protein 1 (MCFRP1), Piroplasm β-Strand Domain 1 (PiβS1), and Babesia microti Alpha Helical Cell Surface Protein 1 (BAHCS1)-delivered subcutaneously in Montanide ISA 51/CpG adjuvant in three doses to BALB/c mice. Following B. microti parasite challenge, BAHCS1 led to the highest reduction in peak parasitemia (67.8%), followed by SERA1 (44.8%) and MCFRP1 (41.9%); PiβS1 (27.6%) had minimal protective effect. All four B. microti antigens induced high ELISA total IgG and each isotype; however, antibody levels did not directly correlate with anti-parasitic activity in mice. Increased prechallenge levels of some cell populations including follicular helper T cells (TFH) and memory B cells, along with a set of six cytokines [IL-1α, IL-2, IL-3, IL-6, IL-12(p40), and G-CSF] that belong to both innate and adaptive immune responses, were generally associated with protective immunity. Our results indicate that mechanisms driving recombinant B. microti antigen-induced immunity are complex and multifactorial. We think that BAHCS1 warrants further evaluation in preclinical studies.
Collapse
Affiliation(s)
- Scott Meredith
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Victoria Majam
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hong Zheng
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nitin Verma
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ankit Puri
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Adovi Akue
- Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mark KuKuruga
- Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Miranda Oakley
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
10
|
Smith MR, Gbedande K, Johnson CM, Campbell LA, Onjiko RS, Domingo ND, Opata MM. Model of severe malaria in young mice suggests unique response of CD4 T cells. Parasite Immunol 2022; 44:e12952. [PMID: 36131528 PMCID: PMC9787679 DOI: 10.1111/pim.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/30/2022]
Abstract
Severe malaria occurs most in young children but is poorly understood due to the absence of a developmentally-equivalent rodent model to study the pathogenesis of the disease. Though functional and quantitative deficiencies in innate response and a biased T helper 1 (Th1) response are reported in newborn pups, there is little information available about this intermediate stage of the adaptive immune system in murine neonates. To fill this gap in knowledge, we have developed a mouse model of severe malaria in young mice using 15-day old mice (pups) infected with Plasmodium chabaudi. We observe similar parasite growth pattern in pups and adults, with a 60% mortality and a decrease in the growth rate of the surviving young mice. Using a battery of behavioral assays, we observed neurological symptoms in pups that do not occur in infected wildtype adults. CD4+ T cells were activated and differentiated to an effector T cell (Teff) phenotype in both adult and pups. However, there were relatively fewer and less terminally differentiated pup CD4+ Teff than adult Teff. Interestingly, despite less activation, the pup Teff expressed higher T-bet than adults' cells. These data suggest that Th1 cells are functional in pups during Plasmodium infection but develop slowly.
Collapse
Affiliation(s)
- Margaret R. Smith
- Department of Biology, College of Arts and SciencesAppalachian State UniversityBooneNorth CarolinaUSA
- Present address:
Cancer Biology Ph.D. ProgramWake Forest College of MedicineWinston SalemNorth CarolinaUSA
| | - Komi Gbedande
- Division of Infectious Diseases, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Corey M. Johnson
- Department of Biology, College of Arts and SciencesAppalachian State UniversityBooneNorth CarolinaUSA
| | - Logan A. Campbell
- Department of Biology, College of Arts and SciencesAppalachian State UniversityBooneNorth CarolinaUSA
| | - Robert S. Onjiko
- Department of Biology, College of Arts and SciencesAppalachian State UniversityBooneNorth CarolinaUSA
| | - Nadia D. Domingo
- Division of Infectious Diseases, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Michael M. Opata
- Department of Biology, College of Arts and SciencesAppalachian State UniversityBooneNorth CarolinaUSA
| |
Collapse
|
11
|
Chan JA, Loughland JR, de la Parte L, Okano S, Ssewanyana I, Nalubega M, Nankya F, Musinguzi K, Rek J, Arinaitwe E, Tipping P, Bourke P, Andrew D, Dooley N, SheelaNair A, Wines BD, Hogarth PM, Beeson JG, Greenhouse B, Dorsey G, Kamya M, Hartel G, Minigo G, Feeney M, Jagannathan P, Boyle MJ. Age-dependent changes in circulating Tfh cells influence development of functional malaria antibodies in children. Nat Commun 2022; 13:4159. [PMID: 35851033 PMCID: PMC9293980 DOI: 10.1038/s41467-022-31880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/08/2022] [Indexed: 01/29/2023] Open
Abstract
T-follicular helper (Tfh) cells are key drivers of antibodies that protect from malaria. However, little is known regarding the host and parasite factors that influence Tfh and functional antibody development. Here, we use samples from a large cross-sectional study of children residing in an area of high malaria transmission in Uganda to characterize Tfh cells and functional antibodies to multiple parasites stages. We identify a dramatic re-distribution of the Tfh cell compartment with age that is independent of malaria exposure, with Th2-Tfh cells predominating in early childhood, while Th1-Tfh cell gradually increase to adult levels over the first decade of life. Functional antibody acquisition is age-dependent and hierarchical acquired based on parasite stage, with merozoite responses followed by sporozoite and gametocyte antibodies. Antibodies are boosted in children with current infection, and are higher in females. The children with the very highest antibody levels have increased Tfh cell activation and proliferation, consistent with a key role of Tfh cells in antibody development. Together, these data reveal a complex relationship between the circulating Tfh compartment, antibody development and protection from malaria.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica R Loughland
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | | | - Satomi Okano
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Mayimuna Nalubega
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Peta Tipping
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | - Peter Bourke
- Division of Medicine, Cairns Hospital, Manunda, QLD, Australia
| | - Dean Andrew
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nicholas Dooley
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Griffith University, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Grant Dorsey
- University of California San Francisco, San Francisco, CA, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Gunter Hartel
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
- College of Health and Human Sciences, Charles Darwin University, Darwin, NT, Australia
| | - Margaret Feeney
- University of California San Francisco, San Francisco, CA, USA
| | | | - Michelle J Boyle
- Burnet Institute, Melbourne, VIC, Australia.
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia.
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|