1
|
Uno Y, Shimizu M, Yamazaki H. A variety of cytochrome P450 enzymes and flavin-containing monooxygenases in dogs and pigs commonly used as preclinical animal models. Biochem Pharmacol 2024; 228:116124. [PMID: 38490520 DOI: 10.1016/j.bcp.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Drug oxygenation is mainly mediated by cytochromes P450 (P450s, CYPs) and flavin-containing monooxygenases (FMOs). Polymorphic variants of P450s and FMOs are known to influence drug metabolism. Species differences exist in terms of drug metabolism and can be important when determining the contributions of individual enzymes. The success of research into drug-metabolizing enzymes and their impacts on drug discovery and development has been remarkable. Dogs and pigs are often used as preclinical animal models. This research update provides information on P450 and FMO enzymes in dogs and pigs and makes comparisons with their human enzymes. Newly identified dog CYP3A98, a testosterone 6β- and estradiol 16α-hydroxylase, is abundantly expressed in small intestine and is likely the major CYP3A enzyme in small intestine, whereas dog CYP3A12 is the major CYP3A enzyme in liver. The roles of recently identified dog CYP2J2 and pig CYP2J33/34/35 were investigated. FMOs have been characterized in humans and several other species including dogs and pigs. P450 and FMO family members have been characterized also in cynomolgus macaques and common marmosets. P450s have industrial applications and have been the focus of attention of many pharmaceutical companies. The techniques used to investigate the roles of P450/FMO enzymes in drug oxidation and clinical treatments have not yet reached maturity and require further development. The findings summarized here provide a foundation for understanding individual pharmacokinetic and toxicological results in dogs and pigs as preclinical models and will help to further support understanding of the molecular mechanisms of human P450/FMO functionality.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
2
|
Jimenez TP, Zhu Z, Court MH. Association of cytochrome P450 2D15 (CYP2D15) nonsynonymous polymorphisms and exon 3 deleted RNA splice variant with CYP2D15 protein content and enzyme function in dog liver microsomes. J Vet Pharmacol Ther 2023; 46:77-90. [PMID: 36691326 DOI: 10.1111/jvp.13113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
CYP2D15 is a major drug metabolizing P450 in canine liver. Like the human orthologue (CYP2D6), this enzyme is highly polymorphic with at least five common nonsynonymous variants reported that result in amino acid changes, including p.Ile109Val, p.Leu115Phe, p.Gly186Ser, p.Ile250Phe and p.Ile307Val. Furthermore, a mRNA splice variant of CYP2D15 has been found in canine liver that lacks the exon 3 gene region resulting in an inactive enzyme. The objective of this study was to evaluate whether any of these amino acid variants or the exon 3 deletion mRNA variant (exon3-delta) was associated with differences in CYP2D15-selective activities or protein content in a bank of canine livers. Livers were obtained from 25 Beagles and 34 dogs of various other breeds. CYP2D15-selective activities measured included dextromethorphan o-demethylation and tramadol o-demethylation. Reverse transcription PCR showed that 76% of livers (44/58) expressed both exon3-delta and normally spliced CYP2D15 RNA, while the remaining 24% (14/58) expressed only normally spliced RNA. The presence of exon3-delta was not correlated with CYP2D15 activities or protein content. Compared with wild-type livers, Beagle dog livers heterozygous for the p.Ile109Val and p.Gly186Ser variants showed from 40 to 50% reductions in median enzyme activities, while heterozygous p.Gly186Ser livers were associated with a 41% reduction in median CYP2D15 protein content (p < .05; Dunn's test). In the entire liver bank, livers homozygous for p.Ile109Val were also associated with a 40% reduction in median dextromethorphan O-demethylation activities versus wild-type livers (p < .05). These results identify several nonsynonymous CYP2D15 gene variants associated with variable CYP2D15 metabolism in canine liver.
Collapse
Affiliation(s)
- Tania Perez Jimenez
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Zhaohui Zhu
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Michael H Court
- Program in Individualized Medicine, Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Sun B, Jiang S, Li M, Zhang Y, Zhou Y, Wei X, Wang H, Si N, Bian B, Zhao H. Lipidomics combined with transcriptomic and mass spectrometry imaging analysis of the Asiatic toad (Bufo gargarizans) during metamorphosis and bufadienolide accumulation. Chin Med 2022; 17:123. [PMID: 36333760 PMCID: PMC9636624 DOI: 10.1186/s13020-022-00676-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Background To adapt to life on land, Asiatic toads (Bufo gargarizans) must remodel their bodies and refine their chemical defenses in water. The full scope of the mechanisms underlying these processes has yet to be revealed. Bufadienolides (BDs) are chemical defense substances secreted by toads when they are in danger, and they have high medicinal value in treating heart failure, cancer, and hepatitis. However, the artificial breeding of toads to increase BDs has been unsuccessful due to the high mortality of toad larvae during metamorphosis. Method Toad larvae at different growth stages were selected to study the changes in the metamorphosis process under the same growth conditions. The differences of tadpoles were explored, including body remodeling, energy metabolism, synthesis and regulation of BDs, through lipidomic technology, transcriptomic technology, and mass spectrometry imaging technology during metamorphosis. Results During metamorphosis, tadpoles underwent significant changes in lipid metabolism due to body remodeling to adapt to terrestrial life, which involved ketosis, lipogenesis, cholesterol metabolism, and fatty acid oxidation. The accumulation trend of BDs was observed. “Pentose phosphate pathway” and “Aromatase activity” may be the critical pathway and GO term in BD synthesis, involving 16 genes predominantly expressed in the liver. The involved genes were mainly expressed in the liver, consistent with the synthetic site observed by mass spectrometry imaging. Conclusion Together, our findings presented the changes in the toad larvae during metamorphosis and highlighted the accumulation process of BDs as well as the regulatory pathways and synthetic site, providing research and theoretical basis for future development of the toad resources. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00676-7.
Collapse
|
4
|
Rua F, Sadeghi SJ, Castrignanò S, Valetti F, Gilardi G. Electrochemistry of Canis familiaris cytochrome P450 2D15 with gold nanoparticles: An alternative to animal testing in drug discovery. Bioelectrochemistry 2015; 105:110-6. [DOI: 10.1016/j.bioelechem.2015.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/05/2015] [Accepted: 03/22/2015] [Indexed: 11/15/2022]
|
5
|
Cai H, Jiang J, Yang Q, Chen Q, Deng Y. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49). PLoS One 2012; 7:e38395. [PMID: 22675558 PMCID: PMC3366968 DOI: 10.1371/journal.pone.0038395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/09/2012] [Indexed: 12/01/2022] Open
Abstract
The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49) was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.
Collapse
Affiliation(s)
- Hua Cai
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Jun Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Qi Yang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Qingmei Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yiqun Deng
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Abstract
Pharmacogenomics is the study of the impact of genetic variation on drug effects, with the ultimate goal of achieving "personalised medicine". Since the completion of the Human Genome Project, great strides have been made towards the goal of personalised dosing of drugs in people, as exemplified by the development of gene-guided dosing of the anticoagulant drug, warfarin. Although the pharmacogenomics of domestic animals is still at an early stage of development, there is great potential for advances in the coming years as the direct result of complete genome sequences currently being derived for many of the species of significance to veterinary and comparative medicine. This sequence information is being used to discover sequence variants in candidate genes associated with altered drug response, as well as to develop whole genome high density single nucleotide polymorphism arrays for genotype-phenotype linkage analysis. This review summarises the current state of veterinary pharmacogenomics research, including drug response variability phenotypes with either known genetic aetiology or strong circumstantial evidence for genetic involvement. Polymorphisms and rarer gene variants affecting drug disposition (pharmacokinetics) and drug effect (pharmacodynamics) are discussed. In addition to providing the veterinary clinician with useful information for the practise of therapeutics, it is envisaged that the increasing knowledge base will also provide a resource for individuals involved in veterinary and comparative biomedical research.
Collapse
Affiliation(s)
- Carrie M Mosher
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
7
|
Ishizuka M, Lee JJ, Masuda M, Akahori F, Kazusaka A, Fujita S. CYP2D-related metabolism in animals of the Canoidea superfamily - species differences. Vet Res Commun 2006; 30:505-12. [PMID: 16755362 DOI: 10.1007/s11259-006-3213-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2005] [Indexed: 11/29/2022]
Abstract
CYP2D-related drug metabolism in liver microsomes from animals of the Canoidea super family, i.e. mink (Mustela vison), bears (Ursus arctos), foxes (Vulpes vulpes) and dogs, were investigated. Propranolol, bunitrolol and imipramine, which are typically substrates of CYP2D subfamilies, were used in the experiment. All the animals of the Canoidea superfamily that were tested lacked the ability to catalyse 7-hydroxylation of propranolol, which is one of the major metabolic pathways in rats. Stereoselectivity of propranolol metabolism was towards (S)-propranolol in all the reactions of the animals tested with the exception of mink, which showed a selective tendency towards (R)-propranolol in N-dealkylation. As far as metabolic patterns of (R)- and (S)-propranolol are concerned, bears, foxes and dogs are alike, but minks are somewhat different. Liver microsomes from mink showed, among the animals of the Canoidea superfamily, the lowest propranolol hydroxylase activity at 4- and 5-positions and imipramine 2-hydroxylation and {N-}demethylation activities. We could not detect bunitrolol 4-hydroxylation in mink liver microsomes at the low substrate concentration used. We conclude that mink have the lowest activity of CYP2D-related xenobiotic metabolism among the Canoidea superfamily.
Collapse
Affiliation(s)
- M Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Kamimura H. Genetic polymorphism of cytochrome P450s in beagles: possible influence of CYP1A2 deficiency on toxicological evaluations. Arch Toxicol 2006; 80:732-8. [PMID: 16639591 DOI: 10.1007/s00204-006-0100-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 03/22/2006] [Indexed: 01/22/2023]
Abstract
A number of human cytochrome P450 (CYP) isozymes have been shown to be genetically polymorphic, and extensive pharmaceutical studies have been conducted to characterize the clinical relevance of the polymorphism. Although the beagle is extensively used in the safety assessment studies of new drug candidates and agricultural chemicals, only a limited number of studies have been reported on the significance of the CYP isozyme polymorphism in dogs. Recently, a single nucleotide polymorphism that results in a deficiency of canine CYP1A2 was discovered. This deficiency was shown to significantly alter the pharmacokinetic behavior of two drugs, and can be associated with a large inter-individual difference in the kinetic behavior of a third. In this article, the five genetically polymorphic canine CYP isozymes that have been reported so far are reviewed, and the altered pharmacokinetics of the drugs concerned are described. Although little information on toxicological relevance has been reported, it is possible that the modified pharmacokinetics may also cause altered toxic responses as well. This phenomenon may occur only with the types of chemicals that are eliminated mainly through polymorphic-enzyme mediated metabolism. However, it is recommended that genetically pure beagles are used for the toxicity studies and safety assessment of new chemical entities in order to reduce the potential inter-individual differences.
Collapse
Affiliation(s)
- H Kamimura
- Drug Metabolism Research Laboratories, Astellas Pharma Inc., Azusawa 1-1-8, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Hichiya H, Takemi C, Tsuzuki D, Yamamoto S, Asaoka K, Suzuki S, Satoh T, Shinoda S, Kataoka H, Narimatsu S. Complementary DNA cloning and characterization of cytochrome P450 2D29 from Japanese monkey liver. Biochem Pharmacol 2002; 64:1101-10. [PMID: 12234613 DOI: 10.1016/s0006-2952(02)01287-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A cDNA was cloned from Japanese monkey liver mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR) using oligonucleotide primers based on the marmoset cytochrome P450 2D19 (CYP2D19) nucleotide sequence. The full-length cDNA encoded a 497 amino acid protein (designated CYP2D29) that is 96, 91, and 88% homologous to human CYP2D6, cynomolgus monkey CYP2D17, and marmoset monkey CYP2D19, respectively. Yeast cells (Saccharomyces cerevisiae AH-22 strain) transfected with pGYR1 vectors containing the CYP2D29 cDNA were cultured, and microsomal fractions were obtained. Reduced carbon monoxide-difference spectra and western blot analysis using polyclonal antibodies raised against rat CYP2D2 demonstrated that in yeast cell microsomal fractions, the level of CYP2D29 holoenzyme was similar to that of CYP2D6 holoenzyme. However, western blot analysis indicated that the level of CYP2D29 in Japanese monkey liver microsomes might be much higher than that of CYP2D6 in human liver microsomes. Japanese monkey liver microsomes exhibited much higher activities than did human liver microsomes, expressed as nmol/min/mg protein, for debrisoquine (DB) 4-hydroxylation and bufuralol (BF) 1"-hydroxylation (typical reactions catalyzed by CYP2D6), whereas recombinant CYP2D29 activity, expressed as nmol/min/nmol CYP, was similar to that of CYP2D6 for DB and BF hydroxylation. In kinetic analyses, the K(m) value of CYP2D29 for DB 4-hydroxylation was much lower than that of Japanese monkey liver microsomes, whereas the K(m) value of CYP2D6 for DB 4-hydroxylation was similar to that of human liver microsomes. In contrast, K(m) values for BF 1"-hydroxylation were similar for Japanese monkey and human liver microsomes and yeast cell microsomal fractions expressing recombinant CYP2D29 or CYP2D6. These results suggest that the properties of Japanese monkey CYP2D29 are similar to those of human CYP2D6, but their populations and/or some other factors in liver microsomes may cause the difference in microsomal DB 4-hydroxylase activities between Japanese monkeys and humans.
Collapse
Affiliation(s)
- Hiroyuki Hichiya
- Laboratory of Health Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|