1
|
Ishida T. [Overview of structural study on conformations and intermolecular interactions of biomolecules]. YAKUGAKU ZASSHI 2012; 132:785-816. [PMID: 22790026 DOI: 10.1248/yakushi.132.785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Information on the conformational feature and specific intermolecular interaction of biomolecules is important to understand the biological function and to develop device for treating disorder caused by the abnormal function. Thus the 3D structures of the biologically active molecules and the specific interactions with their target molecules at the atomic level have been investigated by various physicochemical approaches. Herein, the following five subjects are reviewed: (1) function-linked conformations of biomolecules including natural annular products, opioid peptides and neuropeptides; (2) π-π stacking interactions of tryptophan derivatives with coenzymes and nucleic acid bases; (3) mRNA cap recognition of eukaryotic initiation factor 4E and its regulation by 4E-binding protein; (4) conformational feature of histamine H2 receptor antagonists and design of cathepsin B inhibitors; (5) self-aggregation mechanism of tau protein and its inhibition.
Collapse
Affiliation(s)
- Toshimasa Ishida
- Laboratory of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan.
| |
Collapse
|
2
|
Ishida T. Structural studies of specific intermolecular interactions and self-aggregation of biomolecules and their application to drug design. Chem Pharm Bull (Tokyo) 2010; 57:1309-34. [PMID: 19952439 DOI: 10.1248/cpb.57.1309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Information on the structural basis of intermolecular recognition or self-aggregation of biomolecules at the atomic level is important to understand biological functions and to develop devices for treating disorders caused by abnormal functions. Thus structural analysis of specific intermolecular or intramolecular interactions of biomolecules has been performed using various physicochemical approaches. Herein, the following three subjects are reviewed: (1) structural analyses of mRNA cap structure recognition by eukaryotic initiation factor 4E and its functional regulation by endogenous 4E-binding protein; (2) structural studies of self-aggregation mechanism of microtubule-binding domain in tau protein and aggregation inhibitor; and (3) molecular design of cathepsin B-specific inhibitor.
Collapse
Affiliation(s)
- Toshimasa Ishida
- Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Japan.
| |
Collapse
|
3
|
Ghosh P, Cheng J, Chou TF, Jia Y, Avdulov S, Bitterman PB, Polunovsky VA, Wagner CR. Expression, purification and characterization of recombinant mouse translation initiation factor eIF4E as a dihydrofolate reductase (DHFR) fusion protein. Protein Expr Purif 2008; 60:132-9. [PMID: 18479935 PMCID: PMC2617730 DOI: 10.1016/j.pep.2008.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 11/23/2022]
Abstract
One of the earliest steps in translation initiation is recognition of the mRNA cap structure (m7GpppX) by the initiation factor eIF4E. Studies of interactions between purified eIF4E and its binding partners provide important information for understanding mechanisms underlying translational control in normal and cancer cells. Numerous impediments of the available methods used for eIF4E purification led us to develop a novel methodology for obtaining fractions of eIF4E free from undesired by-products. Herein we report methods for bacterial expression of eIF4E tagged with mutant dihydrofolate reductase (DHFR) followed by isolation and purification of the DHFR-eIF4E protein by using affinity and anion exchange chromatography. Fluorescence quenching experiments indicated the cap-analog, 7MeGTP, bound to DHFR-eIF4E and eIF4E with a dissociation constant (K(d)) of 6+/-5 and 10+/-3 nM, respectively. Recombinant eIF4E and DHFR-eIF4E were both shown to significantly enhance in vitro translation in dose dependent manner by 75% at 0.5 microM. Nevertheless increased concentrations of eIF4E and DHFR-eIF4E significantly inhibited translation in a dose dependent manner by a maximum at 2 microM of 60% and 90%, respectively. Thus, we have demonstrated that we have developed an expression system for fully functional recombinant eIF4E. We have also shown that the fusion protein DHFR-eIF4E is functional and thus may be useful for cell based affinity tag studies with fluorescently labeled trimethoprim analogs.
Collapse
Affiliation(s)
- Phalguni Ghosh
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jilin Cheng
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tsui-Fen Chou
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yan Jia
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Svetlana Avdulov
- Department of Pulmonary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter B. Bitterman
- Department of Pulmonary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vitaly A. Polunovsky
- Department of Pulmonary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Abiko F, Tomoo K, Mizuno A, Morino S, Imataka H, Ishida T. Binding preference of eIF4E for 4E-binding protein isoform and function of eIF4E N-terminal flexible region for interaction, studied by SPR analysis. Biochem Biophys Res Commun 2007; 355:667-72. [PMID: 17316564 DOI: 10.1016/j.bbrc.2007.01.198] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 01/30/2007] [Indexed: 11/30/2022]
Abstract
To investigate the binding preference of eIF4E for the three eIF4E-binding isoforms (4E-BP1-3) and the function of N-terminal flexible region of eIF4E for their interactions, the binding parameters of recombinant full-length and N-terminal residues-deleted eIF4Es with 4E-BP1-3 were investigated by the surface plasmon resonance (SPR) analysis. Consequently, it was clarified that 4E-BP2 exhibits the highest binding affinity for both m7GTP-bound and -unbound full-length eIF4Es when compared with 4E-BP1 and 4E-BP3. This is primarily due to the difference among their dissociation rates, because their association rates are almost the same. Interestingly, the deletion of the 33 N-terminal residues of eIF4E increased its binding affinities for 4E-BP1 and 4E-BP2 markedly, whereas such a change was not observed by at least the N-terminal deletion up to 26 residues. In contrast, the binding parameters of 4E-BP3 were hardly influenced by N-terminal deletion up to 33 residues. From the comparison of the amino acid sequences of 4E-BP1-3, the present result indicates the importance of N-terminal flexible region of eIF4E for the suppressive binding with 4E-BP1 and 2, together with the possible contribution of N-terminal sequence of 4E-BP isoform to the regulative binding to eIF4E.
Collapse
Affiliation(s)
- Fumi Abiko
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Tomoo K, Matsushita Y, Fujisaki H, Abiko F, Shen X, Taniguchi T, Miyagawa H, Kitamura K, Miura KI, Ishida T. Structural basis for mRNA Cap-Binding regulation of eukaryotic initiation factor 4E by 4E-binding protein, studied by spectroscopic, X-ray crystal structural, and molecular dynamics simulation methods. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1753:191-208. [PMID: 16271312 DOI: 10.1016/j.bbapap.2005.07.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 07/23/2005] [Accepted: 07/26/2005] [Indexed: 11/17/2022]
Abstract
Taking advantage of the Trp73 residue located close to the 4E-BP binding site of eIF4E, the interaction between the 4E-BP isoform and eIF4E was investigated by the Trp fluorescence titration method. Although no significant difference was observed among the association constants of three 4E-BP isoforms, the binding preference of 4E-BP2 over 4E-BP1 and -BP3 was shown, probably due to the effect of a 4E-BP2-specific LDRR (60-63) sequence for the binding with eIF4E. By contrast, surface plasmon resonance (SPR) analyses showed the binding preference of 4E-BP1, although the difference among the isoforms was also not significant. This inconsistency with fluorescence analysis likely resulted from the different observation points of the interaction, i.e., local and overall interactions observed by the fluorescence and SPR methods, respectively. To clarify the structural basis for these spectroscopic results, the crystal structure of the ternary complex of m7GpppA-eIF4E-4E-BP1 fragment (Thr36-Thr70) was analyzed by the X-ray diffraction method. Crystal structure analysis at 2.1 A resolution revealed that the 4E-BP1 fragment, assigned to the Pro47-Pro66 peptide moiety, adopted a reverse L-shaped conformation involving the beta sheet and alpha-helical structures and was located at the root of the handle of the temple-bell-shaped eIF4E through hydrophilic and hydrophobic interactions. Based on the observed binding mode, possible interactions with the three 4E-BP isoforms have been discussed. On the other hand, since the crystal structural comparison with the previously determined m7GpppA-eIF4E-4E binary complex showed that the docking of the 4E-BP1 fragment does not significantly affect the overall tertiary structure and cap-binding scaffold of eIF4E, the dynamic regulation of the cap-binding of eIF4E by 4E-BP1 was investigated by molecular dynamics (MD) simulations. Consequently, the simulation suggested that (i) the helical region of the 4E-BP1 peptide is important for the binding with eIF4E, (ii) the existence of a cap structure stabilizes the binding of eIF4E with 4E-BP, (iii) the binding of 4E-BP stabilizes the cap-binding pocket of eIF4E, and (iv) the phosphorylation of Ser67 alone does not induce the separation of 4E-BP from eIF4E, but increases the structural rigidity of 4E-BP. These results provide the structural basis for the mRNA cap-binding regulation of eIF4E by 4E-BP.
Collapse
Affiliation(s)
- Koji Tomoo
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tomoo K, Shen X, Okabe K, Nozoe Y, Fukuhara S, Morino S, Sasaki M, Taniguchi T, Miyagawa H, Kitamura K, Miura KI, Ishida T. Structural features of human initiation factor 4E, studied by X-ray crystal analyses and molecular dynamics simulations. J Mol Biol 2003; 328:365-83. [PMID: 12691746 DOI: 10.1016/s0022-2836(03)00314-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural features of human eIF4E were investigated by X-ray crystal analyses of its cap analog (m(7)GTP and m(7)GpppA) complexes and molecular dynamics (MD) simulations of cap-free and cap-bound eIF4Es, as well as the cap-bound Ser209-phosphorylated eIF4E. Crystal structure analyses at 2.0 A resolution revealed that the molecule forms a temple-bell-shaped surface of eight antiparallel beta-structures, three alpha-helices and ten loop structures, where the N-terminal region corresponds to the handle of the bell. This concave backbone provides a scaffold for the mRNA cap-recognition pocket consisting of three receiving parts for the 5'-terminal m(7)G base, the triphosphate, and the second nucleotide. The m(7)G base is sandwiched between the two aromatic side-chains of Trp102 and Trp56. The two (m(7)G)NH-O (Glu103 carboxy group) hydrogen bonds stabilize the stacking interaction. The basic residues of Arg157 and Lys162 and water molecules construct a binding pocket for the triphosphate moiety, where a universal hydrogen-bonding network is formed. The flexible C-terminal loop region unobserved in the m(7)GTP complex was clearly observed in the m(7)GpppA complex, as a result of the fixation of this loop by the interaction with the adenosine moiety, indicating the function of this loop as a receiving pocket for the second nucleotide. On the other hand, MD simulation in an aqueous solution system revealed that the cap-binding pocket, especially its C-terminal loop structure, is flexible in the cap-free eIF4E, and the entrance of the cap-binding pocket becomes narrow, although the depth is relatively unchanged. SDS-PAGE analyses showed that this structural instability is highly related to the fast degradation of cap-free eIF4E, compared with cap-bound or 4E-BP/cap-bound eIF4E, indicating the conferment of structural stability of eIF4E by the binary or ternary complex formation. MD simulation of m(7)GpppA-bound Ser209-phosphorylated eIF4E showed that the size of the cap-binding entrance is dependent on the ionization state in the Ser209 phosphorylation, which is associated with the regulatory function through the switching on/off of eIF4E phosphorylation.
Collapse
Affiliation(s)
- Koji Tomoo
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Niedzwiecka A, Marcotrigiano J, Stepinski J, Jankowska-Anyszka M, Wyslouch-Cieszynska A, Dadlez M, Gingras AC, Mak P, Darzynkiewicz E, Sonenberg N, Burley SK, Stolarski R. Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol 2002; 319:615-35. [PMID: 12054859 DOI: 10.1016/s0022-2836(02)00328-5] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
mRNA 5'-cap recognition by the eukaryotic translation initiation factor eIF4E has been exhaustively characterized with the aid of a novel fluorometric, time-synchronized titration method, and X-ray crystallography. The association constant values of recombinant eIF4E for 20 different cap analogues cover six orders of magnitude; with the highest affinity observed for m(7)GTP (approximately 1.1 x 10(8) M(-1)). The affinity of the cap analogues for eIF4E correlates with their ability to inhibit in vitro translation. The association constants yield contributions of non-covalent interactions involving single structural elements of the cap to the free energy of binding, giving a reliable starting point to rational drug design. The free energy of 7-methylguanine stacking and hydrogen bonding (-4.9 kcal/mol) is separate from the energies of phosphate chain interactions (-3.0, -1.9, -0.9 kcal/mol for alpha, beta, gamma phosphates, respectively), supporting two-step mechanism of the binding. The negatively charged phosphate groups of the cap act as a molecular anchor, enabling further formation of the intermolecular contacts within the cap-binding slot. Stabilization of the stacked Trp102/m(7)G/Trp56 configuration is a precondition to form three hydrogen bonds with Glu103 and Trp102. Electrostatically steered eIF4E-cap association is accompanied by additional hydration of the complex by approximately 65 water molecules, and by ionic equilibria shift. Temperature dependence reveals the enthalpy-driven and entropy-opposed character of the m(7)GTP-eIF4E binding, which results from dominant charge-related interactions (DeltaH degrees =-17.8 kcal/mol, DeltaS degrees= -23.6 cal/mol K). For recruitment of synthetic eIF4GI, eIF4GII, and 4E-BP1 peptides to eIF4E, all the association constants were approximately 10(7) M(-1), in decreasing order: eIF4GI>4E-BP1>eIF4GII approximately 4E-BP1(P-Ser65) approximately 4E-BP1(P-Ser65/Thr70). Phosphorylation of 4E-BP1 at Ser65 and Thr70 is insufficient to prevent binding to eIF4E. Enhancement of the eIF4E affinity for cap occurs after binding to eIF4G peptides.
Collapse
Affiliation(s)
- Anna Niedzwiecka
- Department of Biophysics, Institute of Experimental Physics, Warsaw University, 93 Zwirki & Wigury Street, 02-089 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shen X, Tomoo K, Uchiyama S, Kobayashi Y, Ishida T. Structural and thermodynamic behavior of eukaryotic initiation factor 4E in supramolecular formation with 4E-binding protein 1 and mRNA cap analogue, studied by spectroscopic methods. Chem Pharm Bull (Tokyo) 2001; 49:1299-303. [PMID: 11605658 DOI: 10.1248/cpb.49.1299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural and thermodynamic behavior of the complex formation of eIF4E with either or both mRNA cap analogue (m7GTP, m7GpppA, or m7GpppG) and 4EBP1 has been investigated by spectroscopic measurements. Although the circular dichroism (CD) spectrum of eIF4E was little affected by the association with any cap analogue, the association constant of eIF4E with m7GpppA/G, estimated from the fluorescence quenching, was about 10 times larger than that with m7GTP. The van't Hoff analyses showed that the m7GpppA/G binding is enthalpy-driven with a large negative deltaH(o), and this is in contrast with the entropy-driven binding of m7GTP, where the positive deltaS(o) is large enough to overcome an increase of deltaH(o). This different behavior obviously originates in the interaction of the second nucleotide in m7GpppA with eIF4E, suggesting the importance of the nucleotide sequence linked to the m7Gppp terminal moiety, in addition to the specific interaction with the m7G base, for the recognition of mRNA cap structure by eIF4E. On the other hand, the CD spectra indicated that the binding of 4EBP1, an endogenous eIF4E-regulatory protein without having any defined secondary structure, shifted the m7GTP- or m7GpppA/G-bound eIF4E to an irregular structure, although such a structural change was not observed for eIF4E alone. The association constant of 4EBP1 with m7GTP- or m7GpppA/G-bound eIF4E was by two orders of magnitude larger than that with eIF4E alone. These results suggest the close interrelation in the supramolecular formation of 4EBP-eIF4E-mRNA cap structure.
Collapse
Affiliation(s)
- X Shen
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | | | | | | | | |
Collapse
|
9
|
Shibata S, Morino S, Tomoo K, In Y, Ishida T. Effect of mRNA cap structure on eIF-4E phosphorylation and cap binding analyses using Ser209-mutated eIF-4Es. Biochem Biophys Res Commun 1998; 247:213-6. [PMID: 9642105 DOI: 10.1006/bbrc.1998.8761] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The in vitro phosphorylation of human recombinant eIF-4E by protein kinase C was most effective in the absence of m7GTP, supporting a 'performed complex model' as the mRNA binding step of initiation, i. e., eIF-4E first forms an initiation complex eIF-4F and is phosphorylated before interacting with mRNA. On the other hand, the comparison of m7GTP-binding ability of wild-type eIF-4E with those of four Ser209-mutated ones (S209A, S209D, S209E and S209K) showed that the addition of anionic charge on Ser209 increases the cap affinity of eIF-4E by repressing the release of the cap from the complex, not by increasing the complex formation, suggesting the importance of a retractable ionic bridge between Ser209 and Lys159 in controlling the cap binding by eIF-4E phosphorylation.
Collapse
Affiliation(s)
- S Shibata
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, 569-1094, Japan
| | | | | | | | | |
Collapse
|
10
|
Wieczorek Z, Darzynkiewicz E, Lönnberg H. A fluorescence spectroscopic study on the binding of mRNA 5'-cap-analogs to human translation initiation factor eIF4E: a critical evaluation of the sources of error. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1998; 43:158-63. [PMID: 9679316 DOI: 10.1016/s1011-1344(98)00100-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Equilibrium constants for the association of human protein translation initiation factor eIF4E with two mRNA 5'-cap analogs, namely 7-methylguanosine 5'-triphosphate and P1-(7-methylguanosine-5') P3-(guanosine-5') triphosphate, and with guanosine 5'-monophosphate have been redetermined by the fluorescence quenching method taking the inner filter effect of the cap-analog into account. It has been shown that neglecting the latter correction may lead to either underestimation or overestimation of the association constant obtained by applying the Eadie-Hofstee plot: the reasonably firm binding of 7-methylated cap-analogs becomes underestimated, while the weak binding of non-methylated nucleotides becomes overestimated.
Collapse
Affiliation(s)
- Z Wieczorek
- Department of Physics and Biophysics, University of Agriculture and Technology, Olsztyn, Poland.
| | | | | |
Collapse
|
11
|
Morino S, Hazama H, Ozaki M, Teraoka Y, Shibata S, Doi M, Ueda H, Ishida T, Uesugi S. Analysis of the mRNA cap-binding ability of human eukaryotic initiation factor-4E by use of recombinant wild-type and mutant forms. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:597-601. [PMID: 8774702 DOI: 10.1111/j.1432-1033.1996.0597u.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to identify the amino acid residues necessary for the selective recognition of the mRNA cap structure by human eukaryotic initiation factor-4E (eIF-4E), which plays a central role in the first step of mRNA translation, we prepared recombinant wild-type and fourteen mutant forms and compared their cap-binding abilities by affinity chromatography. By the direct expression of a synthetic gene encoding human eIF-4E as the soluble form in Escherichia coli and the application on a 7-methylguanosine-5'-triphosphate-Sepharose 4B cap affinity column, pure recombinant eIF-4E was prepared; the optimum pH for the binding of the mRNA cap was 7.5. Among the amino acid residues conserved among various eIF-4E species, each of 14 functional residues was replaced with a nonpolar amino acid (alanine or leucine). All mutant eIF-4E genes, which were constructed by site-directed mutagenesis, were expressed in the same way as the wild type, and their cap-binding abilities were compared with that of the wild type. Consequently, all eight tryptophan residues. Glu103, and two histidine residues at positions 37 and 200 in human recombinant eIF-4E were suggested to be important for the recognition of the mRNA cap structure through direct interaction and/or indirect contributions. Indirect contributions included the construction of the overall protein structure, especially the cap-binding pocket.
Collapse
Affiliation(s)
- S Morino
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|