1
|
Zhang J, Jie Y, Yan L, Wang M, Dong Y, Pang Y, Ren C, Song J, Chen X, Li X, Zhang P, Yang D, Zhang Y, Qi Z, Ru Z. Development and identification of a novel wheat-Thinopyrum ponticum disomic substitution line DS5Ag(5D) with new genes conferring resistance to powdery mildew and leaf rust. BMC PLANT BIOLOGY 2024; 24:718. [PMID: 39069623 DOI: 10.1186/s12870-024-05433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Powdery mildew (caused by Blumeria graminis f. sp. tritici (Bgt)) and leaf rust (caused by Puccinia triticina (Pt)) are prevalent diseases in wheat (Triticum aestivum L.) production. Thinopyrum ponticum (2n = 10x = 70, EeEeEbEbExExStStStSt) contains genes that confer high levels of resistance to these diseases. RESULTS An elite wheat-Th. ponticum disomic substitution line, DS5Ag(5D), was developed in the Bainong Aikang 58 (AK58) background. The line was assessed using genomic in situ hybridization (GISH), oligo-nucleotide probe multiplex (ONPM) fluorescence in situ hybridization (FISH), and molecular markers. Twenty eight chromosome-specific molecular markers were identified for the alien chromosome, and 22 of them were co-dominant. Additionally, SNP markers from the wheat 660 K SNP chip were utilized to confirm chromosome identification and they provide molecular tools for tagging the chromosome in concern. The substitution line demonstrated high levels of resistance to powdery mildew throughout its growth period and to leaf rust at the adult stage. Based on the resistance evaluation of five F5 populations between the substitution lines and wheat genotypes with different levels of sensitivity to the two diseases. Results showed that the resistance genes located on 5Ag confered stable resistance against both diseases across different backgrounds. Resistance spectrum analysis combined with diagnostic marker detection of known resistance genes of Th. ponticum revealed that 5Ag contained two novel genes, Pm5Ag and Lr5Ag, which conferred resistance to powdery mildew and leaf rust, respectively. CONCLUSIONS In this study, a novel wheat-Th. ponticum disomic substitution line DS5Ag(5D) was successfully developed. The Th. ponticum chromosome 5Ag contain new resistance genes for powdery mildew and leaf rust. Chromosomic-specific molecular markers were generated and they can be used to track the 5Ag chromosome fragments. Consequently, this study provides new elite germplasm resources and molecular markers to facilitate the breeding of wheat varieties that is resistant to powdery mildew and leaf rust.
Collapse
Affiliation(s)
- Jinlong Zhang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yize Jie
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Linjie Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mengmeng Wang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Yilong Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yunfei Pang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Cuicui Ren
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Jie Song
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiangdong Chen
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiaojun Li
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Peipei Zhang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Dongyan Yang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Yang Zhang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Zhengang Ru
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
2
|
Wu D, Yang N, Xiang Q, Zhu M, Fang Z, Zheng W, Lu J, Sha L, Fan X, Cheng Y, Wang Y, Kang H, Zhang H, Zhou Y. Pseudorogneria libanotica Intraspecific Genetic Polymorphism Revealed by Fluorescence In Situ Hybridization with Newly Identified Tandem Repeats and Wheat Single-Copy Gene Probes. Int J Mol Sci 2022; 23:ijms232314818. [PMID: 36499149 PMCID: PMC9737853 DOI: 10.3390/ijms232314818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae) with its genome abbreviated 'St' accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome. Therefore, investigating its chromosomes could provide some fundamental information required for subsequent studies of St genome evolution. Here, 24 wheat cDNA probes covering seven chromosome groups were mapped in P. libanotica to distinguish homoelogous chromosomes, and newly identified tandem repeats were performed to differentiate seven chromosome pairs. Using these probes, we investigated intraspecific population chromosomal polymorphism of P. libanotica. We found that (i) a duplicated fragment of the 5St long arm was inserted into the short arm of 2St; (ii) asymmetrical fluorescence in situ hybridization (FISH) hybridization signals among 2St, 5St, and 7St homologous chromosome pairs; and (iii) intraspecific population of polymorphism in P. libanotica. These observations established the integrated molecular karyotype of P. libanotica. Moreover, we suggested heterozygosity due to outcrossing habit and adaptation to the local climate of P. libanotica. Specifically, the generated STlib_96 and STlib_98 repeats showed no cross-hybridization signals with wheat chromosomes, suggesting that they are valuable for identifying alien chromosomes or introgressed fragments of wild relatives in wheat.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Namei Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingkun Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongyan Fang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiale Lu
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lina Sha
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiran Cheng
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.Z.); (Y.Z.); Tel./Fax: +86-028-8629-0022 (Y.Z.)
| | - Yonghong Zhou
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.Z.); (Y.Z.); Tel./Fax: +86-028-8629-0022 (Y.Z.)
| |
Collapse
|
3
|
Jha TB. Critical review on karyotype diversity in lentil based on classical and molecular cytogenetics. Mol Biol Rep 2022; 49:9699-9714. [PMID: 35461437 DOI: 10.1007/s11033-022-07441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
Lentil is an annual protein rich valuable edible crop with only one cultivated and six wild taxa. Keeping in mind its narrow gene pool, the genus deserves critical assessment of genomic diversity at the chromosomal level. Genetic diversity represents the heritable variation within and between populations of organisms. Over the decades classical and molecular cytogenetics have played an immense role in the field of crop improvement. Lentil, though grown in different countries, country-wise chromosomal information is inadequate. Critical evaluation of more than seven decades chromosomal information has revealed unique karyotype diversity within the landraces of different countries. Application of fluorescent banding and fluorescent in situ hybridization (FISH) has helped to segregate cultivars based on cultivar specific chromosomal markers and landmarks. Selection of cultivated and wild cultivars based on qualitative and diseases related morpho-traits and new information from this critical review especially on molecular cytogenetics may provide more options for crop improvement. More research in the field of molecular cytogenetics from country specific species and cultivars are needed to enrich the repository of gene pool. Alien gene introgression from extended gene pool through the advanced genomics and biotechnological tools could facilitate the path of sustainable improvement of this crop.
Collapse
Affiliation(s)
- Timir Baran Jha
- Department of Botany, Maulana Azad College, Rafi Ahmed Kidwai Road, Kolkata, West Bengal, 700013, India.
| |
Collapse
|
4
|
Tao X, Liu B, Dou Q. The Kengyiliahirsuta karyotype polymorphisms as revealed by FISH with tandem repeats and single-gene probes. COMPARATIVE CYTOGENETICS 2021; 15:375-392. [PMID: 34804380 PMCID: PMC8580955 DOI: 10.3897/compcytogen.v15.i4.71525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Kengyiliahirsuta (Keng, 1959) J. L. Yang, C. Yen et B. R. Baum, 1992, a perennial hexaploidy species, is a wild relative species to wheat with great potential for wheat improvement and domestication. The genome structure and cross-species homoeology of K.hirsuta chromosomes with wheat were assayed using 14 single-gene probes covering all seven homoeologous groups, and four repetitive sequence probes 45S rDNA, 5S rDNA, pAs1, and (AAG)10 by FISH. Each chromosome of K.hirsuta was well characterized by homoeological determination and repeats distribution patterns. The synteny of chromosomes was strongly conserved in the St genome, whereas synteny of the Y and P genomes was more distorted. The collinearity of 1Y, 2Y, 3Y and 7Y might be interrupted in the Y genome. A new 5S rDNA site on 2Y might be translocated from 1Y. The short arm of 3Y might involve translocated segments from 7Y. The 7 Y was identified as involving a pericentric inversion. A reciprocal translocation between 2P and 4P, and tentative structural aberrations in the subtelomeric region of 1PL and 4PL, were observed in the P genome. Chromosome polymorphisms, which were mostly characterized by repeats amplification and deletion, varied between chromosomes, genomes, and different populations. However, two translocations involving a P genome segmental in 3YL and a non-Robertsonial reciprocal translocation between 4Y and 3P were identified in two independent populations. Moreover, the proportion of heterozygous karyotypes reached almost 35% in all materials, and almost 80% in the specific population. These results provide new insights into the genome organization of K.hirsuta and will facilitate genome dissection and germplasm utilization of this species.
Collapse
Affiliation(s)
- Xiaoyan Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Quanwen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Crop Molecular Breeding, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
5
|
Characterization of Chromosomal Rearrangement in New Wheat—Thinopyrum intermedium Addition Lines Carrying Thinopyrum—Specific Grain Hardness Genes. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9010018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The wild species, Thinopyrum intermedium. (Genome StStJSJSJJ), serves as a valuable germplasm resource providing novel genes for wheat improvement. In the current study, non-denaturing fluorescence in situ hybridization (ND-FISH) with multiple probes and comparative molecular markers were applied to characterize two wheat-Th. intermedium chromosome additions. Sequential ND-FISH with new labeled Th. intermedium specific oligo-probes were used to precisely determine the chromosomal constitution of Th. intermedium, wheat—Th. intermedium partial amphiploids and addition lines Hy36 and Hy37. The ND-FISH results showed that the added JS-St translocated chromosomes in Hy36 had minor Oligo-5S ribosomal DNA (rDNA) signals at the short arm, while a pair of J-St chromosomes in Hy37 had major Oligo-pTa71 and minor Oligo-5S rDNA signals. The 90K SNP array and PCR-based molecular markers that mapped on wheat linkage group 5 and 3 facilitated the identification of Thinopyrum chromosome introgressions in the addition lines, and confirmed that added chromosomes in Hy36 and Hy37 were 5JSS.3StS and 5JS.3StS, respectively. Complete coding sequences at the paralogous puroindoline-a (Pina) loci from Th. intermedium were cloned and localized on the short arm of chromosome 5JS of Hy36. Line Hy36 showed a reduction in the hardness index, which suggested that Th. intermedium-specific Pina gene sequences may be associated with the softness trait in wheat background. The molecular cytogenetic identification of novel wheat—Th. intermedium derivatives indicated that the frequent chromosome rearrangement occurred in the progenies of wheat-Thinopyrum hybridization. The new wheat-Thinopyrum derived lines may increase the genetic diversity for wheat breeding.
Collapse
|
6
|
Said M, Hřibová E, Danilova TV, Karafiátová M, Čížková J, Friebe B, Doležel J, Gill BS, Vrána J. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2213-2227. [PMID: 30069594 PMCID: PMC6154037 DOI: 10.1007/s00122-018-3148-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/23/2018] [Indexed: 05/04/2023]
Abstract
Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Eva Hřibová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Tatiana V Danilova
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bikram S Gill
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic.
| |
Collapse
|
7
|
Ruban AS, Badaeva ED. Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1756. [PMID: 30564254 PMCID: PMC6288319 DOI: 10.3389/fpls.2018.01756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/12/2018] [Indexed: 05/20/2023]
Abstract
Five diploid Aegilops species of the Sitopsis section: Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, and Ae. bicornis, two tetraploid species Ae. peregrina (= Ae. variabilis) and Ae. kotschyi (Aegilops section) and hexaploid Ae. vavilovii (Vertebrata section) carry the S-genomes. The B- and G-genomes of polyploid wheat are also the derivatives of the S-genome. Evolution of the S-genome species was studied using Giemsa C-banding and fluorescence in situ hybridization (FISH) with DNA probes representing 5S (pTa794) and 18S-5.8S-26S (pTa71) rDNAs as well as nine tandem repeats: pSc119.2, pAesp_SAT86, Spelt-1, Spelt-52, pAs1, pTa-535, and pTa-s53. To correlate the C-banding and FISH patterns we used the microsatellites (CTT)10 and (GTT)9, which are major components of the C-banding positive heterochromatin in wheat. According to the results obtained, diploid species split into two groups corresponding to Emarginata and Truncata sub-sections, which differ in the C-banding patterns, distribution of rDNA and other repeats. The B- and G-genomes of polyploid wheat are most closely related to the S-genome of Ae. speltoides. The genomes of allopolyploid wheat have been evolved as a result of different species-specific chromosome translocations, sequence amplification, elimination and re-patterning of repetitive DNA sequences. These events occurred independently in different wheat species and in Ae. speltoides . The 5S rDNA locus of chromosome 1S was probably lost in ancient Ae. speltoides prior to formation of Timopheevii wheat, but after the emergence of ancient emmer. Evolution of Emarginata species was associated with an increase of C-banding and (CTT)10-positive heterochromatin, amplification of Spelt-52, re-pattering of the pAesp_SAT86, and a gradual decrease in the amount of the D-genome-specific repeats pAs1, pTa-535, and pTa-s53. The emergence of Ae. peregrina and Ae. kotschyi did not lead to significant changes of the S*-genomes. However, partial elimination of 45S rDNA repeats from 5S* and 6S* chromosomes and alterations of C-banding and FISH-patterns have been detected. Similarity of the Sv-genome of Ae. vavilovii with the Ss genome of diploid Ae. searsii confirmed the origin of this hexaploid. A model of the S-genome evolution is suggested.
Collapse
Affiliation(s)
- Alevtina S. Ruban
- Laboratory of Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ekaterina D. Badaeva
- Laboratory of Genetic Basis of Plant Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ekaterina D. Badaeva
| |
Collapse
|
8
|
Fernandes CA, Baumgärtner L, Paiz LM, Margarido VP, de Brito Portela-Castro AL. Chromosomal characteristics of rDNA in a conserved karyotype of two Sternopygus macrurus (Gymnotiformes: Sternopygidae) populations from upper Paraná River basin. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Sergeeva EM, Shcherban AB, Adonina IG, Nesterov MA, Beletsky AV, Rakitin AL, Mardanov AV, Ravin NV, Salina EA. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome. BMC PLANT BIOLOGY 2017; 17:183. [PMID: 29143604 PMCID: PMC5688495 DOI: 10.1186/s12870-017-1120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. RESULTS Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. CONCLUSION A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread wheat has been established. These two regions differ in the organization of both 5S rDNA and the neighboring sequences comprised of transposable elements, implying different modes of evolution for these regions.
Collapse
Affiliation(s)
- Ekaterina M Sergeeva
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Andrey B Shcherban
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia.
| | - Irina G Adonina
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Michail A Nesterov
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Alexey V Beletsky
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Andrey L Rakitin
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Andrey V Mardanov
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Nikolai V Ravin
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| |
Collapse
|
10
|
Liu R, Wang RRC, Yu F, Lu X, Dou Q. Characterization of genome in tetraploid StY species of Elymus (Triticeae: Poaceae) using sequential FISH and GISH. Genome 2017; 60:679-685. [PMID: 28666092 DOI: 10.1139/gen-2017-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomes of ten species of Elymus, either presumed or known as tetraploid StY, were characterized using fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH). These tetraploid species could be grouped into three categories. Type I included StY genome reported species-Roegneria pendulina, R. nutans, R. glaberrima, R. ciliaris, and Elymus nevskii, and StY genome presumed species-R. sinica, R. breviglumis, and R. dura, whose genome could be separated into two sets based on different GISH intensities. Type I genome constitution was deemed as putative StY. The St genome were mainly characterized with intense hybridization with pAs1, fewer AAG sites, and linked distribution of 5S rDNA and 18S-26S rDNA, while the Y genome with less intense hybridization with pAs1, more varied AAG sites, and isolated distribution of 5S rDNA and 18S-26S rDNA. Nevertheless, further genomic variations were detected among the different StY species. Type II included E. alashanicus, whose genome could be easily separated based on GISH pattern. FISH and GISH patterns suggested that E. alashanicus comprised a modified St genome and an unknown genome. Type III included E. longearistatus, whose genome could not be separated by GISH and was designated as StlYl. Notably, a close relationship between Sl and Yl genomes was observed.
Collapse
Affiliation(s)
- Ruijuan Liu
- a Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.,b University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard R-C Wang
- c U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Feng Yu
- a Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.,b University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Lu
- a Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.,b University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanwen Dou
- a Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.,d Key Laboratory of Crop Molecular Breeding, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| |
Collapse
|
11
|
Fernandes CA, Paiz LM, Baumgärtner L, Margarido VP, Vieira MMDR. Comparative Cytogenetics of the Black Ghost Knifefish (Gymnotiformes: Apteronotidae): Evidence of Chromosomal Fusion and Pericentric Inversions in Karyotypes of Two Apteronotus Species. Zebrafish 2017; 14:471-476. [PMID: 28557696 DOI: 10.1089/zeb.2017.1432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The karyotype and chromosomal characteristics of Apteronotus albifrons and Apteronotus caudimaculosus collected from populations of two different large Brazilian river basins were analyzed by conventional and molecular cytogenetic techniques, to contribute to the differentiation and identification of the species in this genus. The diploid chromosome number was 2n = 24 for A. albifrons, but with difference in the karyotype structure and fundamental number values between two populations under study. In A. caudimaculosus, the diploid chromosome number was 2n = 26, which was classified as 22 metacentric (m), 2 submetacentric (sm), and 2 acrocentric (a) chromosomes. Heterochromatins were preferentially located in pericentromeric regions for both species. However, there are more C-banded chromosomes in A. caudimaculosus than A. albifrons. The sites of 18S DNA as revealed by fluorescence in situ hybridization (FISH) in the karyotypes of both species corresponded to sites revealed by Ag impregnation, although some additional 18S rDNA sites were observed in the genome of A. caudimaculosus. FISH with 5S rDNA-probe revealed interstitial sites on the m pair No. 1 for individuals of both A. albifrons populations, and in pericentromeric regions on the long arm of pair Nos. 5 and 9 in those of A. caudimaculosus. The karyotypes of A. albifrons and A. caudimaculosus indicated a reduction of 2n resulting from chromosomal fusion, as could be hypothesized from the presence of an interstitial telomere sequence in two chromosome pairs in karyotype of A. caudimaculosus. Thus, the present study demonstrated species-specific cytogenetic markers of otherwise morphologically very similar species A. albifrons and A. caudimaculosus.
Collapse
Affiliation(s)
- Carlos Alexandre Fernandes
- 1 Universidade Estadual de Mato Grosso do Sul, Unidade Universitária de Mundo Novo , Mato Grosso do Sul, Brazil
| | - Leonardo Marcel Paiz
- 2 Centro de Ciências Biológicas, Universidade Estadual de Maringá , Maringá, Paraná, Brazil .,3 Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná , Cascavel, Paraná, Brazil
| | - Lucas Baumgärtner
- 3 Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná , Cascavel, Paraná, Brazil
| | - Vladimir Pavan Margarido
- 2 Centro de Ciências Biológicas, Universidade Estadual de Maringá , Maringá, Paraná, Brazil .,3 Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná , Cascavel, Paraná, Brazil
| | | |
Collapse
|
12
|
Mukai Y, Okamoto G, Kiryu S, Takemoto S, Sharma SK, Suzuki G, Yamamoto M. The D-genome plays a critical role in the formation of haploid Aegilops tauschii through Imperata cylindrica mediated uniparental chromosome elimination. THE NUCLEUS 2015. [DOI: 10.1007/s13237-015-0151-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Molecular cytogenetic use of BAC clones in Neofinetia falcata and Rhynchostylis coelestis. THE NUCLEUS 2015. [DOI: 10.1007/s13237-015-0147-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
CABO SANDRA, CARVALHO ANA, MARTÍN ANTÓNIO, LIMA-BRITO JOSÉ. Structural rearrangements detected in newly-formed hexaploid tritordeum after three sequential FISH experiments with repetitive DNA sequences. J Genet 2014; 93:183-8. [DOI: 10.1007/s12041-014-0328-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Kotani Y, Henderson ST, Suzuki G, Johnson SD, Okada T, Siddons H, Mukai Y, Koltunow AMG. The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure. THE NEW PHYTOLOGIST 2014; 201:973-981. [PMID: 24400904 DOI: 10.1111/nph.12574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/26/2013] [Indexed: 05/14/2023]
Abstract
Apomixis or asexual seed formation in Hieracium praealtum (Asteraceae) is controlled by two independent dominant loci. One of these, the LOSS OF APOMEIOSIS (LOA) locus, controls apomixis initiation, mitotic embryo sac formation (apospory) and suppression of the sexual pathway. The LOA locus is found near the end of a hemizygous chromosome surrounded by extensive repeats extending along the chromosome arm. Similar apomixis-carrying chromosome structures have been found in some apomictic grasses, suggesting that the extensive repetitive sequences may be functionally relevant to apomixis. Fluorescence in situ hybridization (FISH) was used to examine chromosomes of apomeiosis deletion mutants and rare recombinants in the critical LOA region arising from a cross between sexual Hieracium pilosella and apomictic H. praealtum. The combined analyses of aposporous and nonaposporous recombinant progeny and chromosomal karyotypes were used to determine that the functional LOA locus can be genetically separated from the very extensive repeat regions found on the LOA-carrying chromosome. The large-scale repetitive sequences associated with the LOA locus in H. praealtum are not essential for apospory or suppression of sexual megasporogenesis (female meiosis).
Collapse
Affiliation(s)
- Yoshiko Kotani
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Steven T Henderson
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Go Suzuki
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Susan D Johnson
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Takashi Okada
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Hayley Siddons
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Yasuhiko Mukai
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| |
Collapse
|
16
|
Civáň P, Ivaničová Z, Brown TA. Reticulated origin of domesticated emmer wheat supports a dynamic model for the emergence of agriculture in the fertile crescent. PLoS One 2013; 8:e81955. [PMID: 24312385 PMCID: PMC3843696 DOI: 10.1371/journal.pone.0081955] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/18/2013] [Indexed: 01/04/2023] Open
Abstract
We used supernetworks with datasets of nuclear gene sequences and novel markers detecting retrotransposon insertions in ribosomal DNA loci to reassess the evolutionary relationships among tetraploid wheats. We show that domesticated emmer has a reticulated genetic ancestry, sharing phylogenetic signals with wild populations from all parts of the wild range. The extent of the genetic reticulation cannot be explained by post-domestication gene flow between cultivated emmer and wild plants, and the phylogenetic relationships among tetraploid wheats are incompatible with simple linear descent of the domesticates from a single wild population. A more parsimonious explanation of the data is that domesticated emmer originates from a hybridized population of different wild lineages. The observed diversity and reticulation patterns indicate that wild emmer evolved in the southern Levant, and that the wild emmer populations in south-eastern Turkey and the Zagros Mountains are relatively recent reticulate descendants of a subset of the Levantine wild populations. Based on our results we propose a new model for the emergence of domesticated emmer. During a pre-domestication period, diverse wild populations were collected from a large area west of the Euphrates and cultivated in mixed stands. Within these cultivated stands, hybridization gave rise to lineages displaying reticulated genealogical relationships with their ancestral populations. Gradual movement of early farmers out of the Levant introduced the pre-domesticated reticulated lineages to the northern and eastern parts of the Fertile Crescent, giving rise to the local wild populations but also facilitating fixation of domestication traits. Our model is consistent with the protracted and dispersed transition to agriculture indicated by the archaeobotanical evidence, and also with previous genetic data affiliating domesticated emmer with the wild populations in southeast Turkey. Unlike other protracted models, we assume that humans played an intuitive role throughout the process.
Collapse
Affiliation(s)
- Peter Civáň
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Zuzana Ivaničová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Terence A. Brown
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Baum BR, Edwards T, Johnson DA. What does the 5S rRNA multigene family tell us about the origin of the annual Triticeae (Poaceae)? Genome 2013; 56:245-66. [PMID: 23789993 DOI: 10.1139/gen-2012-0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the complex relationships among the annual genera within the tribe Triticeae through phylogenetic analyses of the 5S rRNA multigene family. Cloned sequences were assigned to groups of orthologous sequences, called unit classes, that were subjected to several analyses including BLAST (Basic Local Alignment Search Tool) searches to assess possible ancestral relationships with perennial genera; phylogenetic analyses using parsimony (Pars), maximum likelihood (ML), and Bayesian methods; and minimum reticulation networks from the Pars, ML, and Bayesian trees. In this study, we included genera with both annual and perennial species, such as Dasypyrum, Hordeum, and Secale. BLAST pointed to Pseudoroegneria (carrier of the St genome) and possibly Thinopyrum (carrier of the J genome) as the potential next of kin. However, Thinopyrum and Pseudoroegneria have never fallen together on the individual trees with the former generally associated with Crithopsis, Aegilops, Triticum, and Dasypyrum, while the latter is usually associated with the rest of the genera within Triticeae. The "long" unit classes placed Dasypyrum breviaristatum together with Dasypyrum villosum, whereas the "short" unit classes put them far apart on the trees. None of the gene trees alone was able to summarize the complex relationships among the genera, in line with previous results in the Triticeae. However, the application of tools designed to display phylogenetic networks was able to depict the complex links among the genera based on the short and the long gene trees, including the close link between Thinopyrum and Pseudoroegneria suggested by the phylogenetic analyses. In addition, our analyses provide support for the hypothesis that at least some annual Triticeae taxa are derived from their perennial relatives.
Collapse
Affiliation(s)
- B R Baum
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Neatby Building, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | | | | |
Collapse
|
18
|
Seo JH, Bae HG, Park DH, Kim BS, Lee JW, Lee JI, Kim DH, Lee SW, Seo BB. Sequence polymorphisms in ribosomal RNA genes and variations in chromosomal loci of Oenothera odorata and O. laciniata. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Badaeva ED, Friebe B, Gill BS. Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species. Genome 2012; 39:1150-8. [PMID: 18469963 DOI: 10.1139/g96-145] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of the 5S and 18S-5.8S-26S (18S-26S) ribosomal RNA (rRNA) gene families on chromosomes of all diploid Aegilops species was studied by in situ hybridization with pTa71 (18S-26S rDNA) and pTa794 (5S rDNA) DNA clones. One major 18S-26S rDNA locus was found in the nucleolus organizer region (NOR) of each of the species Aegilops tauschii and Aegilops uniaristata and two loci were detected in the remaining species. In addition to major NORs, from one to nine minor loci were observed; their numbers and chromosomal locations were species-specific. Some minor loci were polymorphic, whereas others were conserved. One or two 5S rDNA loci were observed in the short arms of the chromosomes of groups 1 and 5 of all diploid Aegilops species except Ae. uniaristata, where one 5S rDNA site was located in the distal part of the long arm of chromosome 1N. The 5S rDNA loci were not associated with NORs; however, the relative positions of two ribosomal RNA gene families were diagnostic for chromosomes of homoeologous groups 1, 5, and 6. Implications of these results for establishing phylogenetic relationships of diploid Aegilops species and mechanisms of genome differentiation are discussed. Key words : wheat, Triticum, Aegilops, 5S rRNA, 18S-26S rRNA, in situ hybridization, evolution.
Collapse
|
20
|
Cabrera A, Friebe B, Jiang J, Gill BS. Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome 2012; 38:435-42. [PMID: 18470181 DOI: 10.1139/g95-057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C-banding patterns of Hordeum chilense and of Triticum aestivum 'Chinese Spring' - H. chilense disomic addition lines were analyzed and compared with in situ hybridization patterns using a biotin-labeled highly repetitive Triticum tauschii DNA sequence, pAs1, and a wheat 18S-26S rDNA probe. All seven H. chilense chromosomes pairs and the added H. chilense chromosomes present in the addition lines were identified by their characteristic C-banding pattern. Chromosome morphology and banding patterns were similar to those of the corresponding chromosomes present in the parent H. chilense accession. A C-banded karyotype of the added H. chilense chromosomes was constructed and chromosome lengths, arm ratios, and relative length, as compared with chromosome 3B, were determined. The probe pAs1 was found to hybridize to specific areas on telomeres and interstitial sites along the chromosomes, allowing the identification of all seven pairs of the H. chilense chromosomes. Comparison of the patterns of distribution of the hybridization sites of clone pAs1 in the T. tauschii and H. chilense chromosomes was carried out by in situ hybridization on somatic metaphase chromosomes of the HchHchDD amphiploid. In situ hybridization using the 18S-26S rDNA probe confirmed that the H. chilense chromosomes 5Hch and 6Hch were carrying nucleolus organizer regions. The results are discussed on the basis of phylogenetic relationships between D and Hch genomes.
Collapse
|
21
|
Dou QW, Lei Y, Li X, Mott IW, Wang RRC. Characterization of alien chromosomes in backcross derivatives of Triticum aestivum × Elymus rectisetus hybrids by using molecular markers and sequential multicolor FISH/GISH. Genome 2012; 55:337-47. [DOI: 10.1139/g2012-018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wild Triticeae grasses serve as important gene pools for forage and cereal crops. Based on DNA sequences of genome-specific RAPD markers, sequence-tagged site (STS) markers specific for W and Y genomes have been obtained. Coupling with the use of genomic in situ hybridization, these STS markers enabled the identification of the W- and Y-genome chromosomes in backcross derivatives from hybrids of bread wheat Triticum aestivum L. (2n = 42; AABBDD) and Elymus rectisetus (Nees in Lehm.) Á. Löve & Connor (2n = 42; StStWWYY). The detection of six different alien chromosomes in five of these derivatives was ascertained by quantitative PCR of STS markers, simple sequence repeat markers, rDNA genes, and (or) multicolor florescence in situ hybridization. Disomic addition line 4687 (2n = 44) has the full complement of 42 wheat chromosomes and a pair of 1Y chromosomes that carry genes for resistance to tan spot (caused by Pyrenophora tritici-repentis (Died.) Drechs.) and Stagonospora nodorum blotch (caused by Stagonospora nodorum (Berk.) Castellani and Germano). The disomic addition line 4162 has a pair of 1St chromosomes and 21 pairs of wheat chromosomes. Lines 4319 and 5899 are two triple substitution lines (2n = 42) having the same chromosome composition, with 2A, 4B, and 6D of wheat substituted by one pair of W- and two pairs of St-genome chromosomes. Line 4434 is a substitution–addition line (2n = 44) that has the same W- and St-genome chromosomes substituting 2A, 4B, and 6D of wheat as in lines 4319 and 5899 but differs by having an additional pair of Y-genome chromosome, which is not the 1Y as in line 4687. The production and identification of these alien cytogenetic stocks may help locate and isolate genes for useful agronomic traits.
Collapse
Affiliation(s)
- Quan-Wen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yunting Lei
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiaomei Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ivan W. Mott
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Richard R.-C. Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| |
Collapse
|
22
|
Suzuki G, Ogaki Y, Hokimoto N, Xiao L, Kikuchi-Taura A, Harada C, Okayama R, Tsuru A, Onishi M, Saito N, Do GS, Lee SH, Ito T, Kanno A, Yamamoto M, Mukai Y. Random BAC FISH of monocot plants reveals differential distribution of repetitive DNA elements in small and large chromosome species. PLANT CELL REPORTS 2012; 31:621-628. [PMID: 22083649 DOI: 10.1007/s00299-011-1178-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/06/2011] [Accepted: 10/12/2011] [Indexed: 05/31/2023]
Abstract
BAC FISH (fluorescence in situ hybridization using bacterial artificial chromosome probes) is a useful cytogenetic technique for physical mapping, chromosome marker screening, and comparative genomics. As a large genomic fragment with repetitive sequences is inserted in each BAC clone, random BAC FISH without adding competitive DNA can unveil complex chromosome organization of the repetitive elements in plants. Here we performed the comparative analysis of the random BAC FISH in monocot plants including species having small chromosomes (rice and asparagus) and those having large chromosomes (hexaploid wheat, onion, and spider lily) in order to understand a whole view of the repetitive element organization in Poales and Asparagales monocots. More unique and less dense dispersed signals of BAC FISH were observed in species with smaller chromosomes in both the Poales and Asparagales species. In the case of large-chromosome species, 75-85% of the BAC clones were detected as dispersed repetitive FISH signals along entire chromosomes. The BAC FISH of Lycoris did not even show localized repetitive patterns (e.g., centromeric localization) of signals.
Collapse
Affiliation(s)
- Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Suzuki G, Wada H, Goto H, Nakano A, Oba H, Deno T, Rahman S, Mukai Y. Transgenic rice plants harboring the grain hardness-locus region of Aegilops tauschii. PLANT CELL REPORTS 2011; 30:2293-2301. [PMID: 21850595 DOI: 10.1007/s00299-011-1134-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/27/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
Grain hardness of wheat is determined by the hardness (Ha)-locus region, which contains three friabilin-related genes: puroindoline-a (Pina), puroindoline-b (Pinb) and GSP-1. In our previous study, we produced the transgenic rice plants harboring the large genomic fragment of the Ha-locus region of Aegilops tauschii containing Pina and GSP-1 genes by Agrobacterium-mediated transformation. To examine the effects of the transgenes in the rice endosperms, we firstly confirmed the homozygosity of the T-DNAs in four independent T2 lines by using fluorescence in situ hybridization (FISH) and DNA gel blot analyses. The transgenes, Pina and GSP-1, were stably expressed in endosperms of the T3 and T4 seeds at RNA and protein levels, indicating that the promoters and other regulatory elements on the wheat Ha-locus region function in rice, and that multigene transformation using a large genomic fragment is a useful strategy. The functional contribution of the transgene-derived friabilins to the rice endosperm structure was considered as an increase of spaces between compound starch granules, resulting in a high proportion of white turbidity seeds.
Collapse
Affiliation(s)
- Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka, 582-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chahota RK, Mukai Y, Chaudhary H, Kishore N, Sharma T. Karyotyping and in situ chromosomal localization of rDNA sites in black cumin Bunium persicum (Boiss) B. Fedtsch,1915 (Apiaceae). COMPARATIVE CYTOGENETICS 2011; 5:345-353. [PMID: 24260640 PMCID: PMC3833784 DOI: 10.3897/compcytogen.v5i4.965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/05/2011] [Indexed: 06/02/2023]
Abstract
The fluorescent in situ hybridization (FISH) technique has been applied to somatic chromosomes in the medicinally important species, Bunium persicum, to elucidate its karyotypes. The bicolour FISH technique involving 18S-5.8S-26S and 5S ribosomal RNA genes as probes was used to assign physical localization and measurement of rDNA sites on homologous pairs of chromosomes. The two 18S-5.8S-26S rRNA gene sites were at the terminal regions of the short arms of the chromosomes 1 and 2 involving NOR region of chromosome 1. The 5S rDNA sites were found on subtelomeric region of the long arm of the chromosome number 5 and at interstitial regions of the short arm of chromosome 7. Based on direct visual analysis of chromosome length, morphology and position of FISH signals, a pioneer attempt has been made to construct metaphase karyotype in Bunium persicum, an endangered medicinal plant of North Western Himalayas.
Collapse
Affiliation(s)
- R. K. Chahota
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur- 176 062 (HP) India
| | - Y. Mukai
- Laboratory of Plant Molecular Genetics, Division of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
| | - H.K. Chaudhary
- Molecular Cytogenetics and Tissue Culture Lab, Department of Crop Improvement, CSK, Himachal Pradesh Agricultural University, Palampur- 176 062 (HP) India
| | - Naval Kishore
- Molecular Cytogenetics and Tissue Culture Lab, Department of Crop Improvement, CSK, Himachal Pradesh Agricultural University, Palampur- 176 062 (HP) India
| | - T.R. Sharma
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur- 176 062 (HP) India
| |
Collapse
|
25
|
Okada T, Ito K, Johnson SD, Oelkers K, Suzuki G, Houben A, Mukai Y, Koltunow AM. Chromosomes carrying meiotic avoidance loci in three apomictic eudicot Hieracium subgenus Pilosella species share structural features with two monocot apomicts. PLANT PHYSIOLOGY 2011; 157:1327-41. [PMID: 21896890 PMCID: PMC3252177 DOI: 10.1104/pp.111.181164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/03/2011] [Indexed: 05/02/2023]
Abstract
The LOSS OF APOMEIOSIS (LOA) locus is one of two dominant loci known to control apomixis in the eudicot Hieracium praealtum. LOA stimulates the differentiation of somatic aposporous initial cells after the initiation of meiosis in ovules. Aposporous initial cells undergo nuclear proliferation close to sexual megaspores, forming unreduced aposporous embryo sacs, and the sexual program ceases. LOA-linked genetic markers were used to isolate 1.2 Mb of LOA-associated DNAs from H. praealtum. Physical mapping defined the genomic region essential for LOA function between two markers, flanking 400 kb of identified sequence and central unknown sequences. Cytogenetic and sequence analyses revealed that the LOA locus is located on a single chromosome near the tip of the long arm and surrounded by extensive, abundant complex repeat and transposon sequences. Chromosomal features and LOA-linked markers are conserved in aposporous Hieracium caespitosum and Hieracium piloselloides but absent in sexual Hieracium pilosella. Their absence in apomictic Hieracium aurantiacum suggests that meiotic avoidance may have evolved independently in aposporous subgenus Pilosella species. The structure of the hemizygous chromosomal region containing the LOA locus in the three Hieracium subgenus Pilosella species resembles that of the hemizygous apospory-specific genomic regions in monocot Pennisetum squamulatum and Cenchrus ciliaris. Analyses of partial DNA sequences at these loci show no obvious conservation, indicating that they are unlikely to share a common ancestral origin. This suggests convergent evolution of repeat-rich hemizygous chromosomal regions containing apospory loci in these monocot and eudicot species, which may be required for the function and maintenance of the trait.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anna M. Koltunow
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Glen Osmond, South Australia 5064, Australia (T.O., S.D.J., K.O., A.M.K.); Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka 582–8582, Japan (K.I., G.S., Y.M.); Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany (A.H.)
| |
Collapse
|
26
|
Nag A, Rajkumar S. Chromosome identification and karyotype analysis of Podophyllum hexandrum Roxb. ex Kunth using FISH. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2011; 17:313-6. [PMID: 23573024 PMCID: PMC3550575 DOI: 10.1007/s12298-011-0072-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Podophyllum hexandrum is an important high altitude medicinal plant from Himalaya. Somatic chromosomes of this species were studied to delineate and physical mapping of repetitive rDNA sites to provide landmarks in chromosome identification. The karyotype formula of this species was found to be 6m + 2sm + 2st + 2t with secondary constriction in the chromosome 1 and 7. The FISH analysis of rDNA sites showed 4 sites for 18S rDNA and 2 sites for 5S rDNA. The chromosome number 1, 2, 5 and 6 can be identified based on 18S rDNA sites in their short arm and chromosome 1 and 2 can be identified by 5S rDNA site in the centromere region. The estimated genome size of this plant is 16.07 pg (1C).
Collapse
Affiliation(s)
- Akshay Nag
- />Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, P.O. Box. 6, Palampur, 176 061 India
| | - Subramani Rajkumar
- />Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, P.O. Box. 6, Palampur, 176 061 India
- />National Research Centre on DNA Fingerprinting, National Bureau of Plant Genetic Resources (ICAR), Pusa Campus, New Delhi, 110 012 India
| |
Collapse
|
27
|
Koltunow AMG, Johnson SD, Rodrigues JCM, Okada T, Hu Y, Tsuchiya T, Wilson S, Fletcher P, Ito K, Suzuki G, Mukai Y, Fehrer J, Bicknell RA. Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:890-902. [PMID: 21418351 DOI: 10.1111/j.1365-313x.2011.04556.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Asexual seed formation, or apomixis, in the Hieracium subgenus Pilosella is controlled by two dominant independent genetic loci, LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP). We examined apomixis mutants that had lost function in one or both loci to establish their developmental roles during seed formation. In apomicts, sexual reproduction is initiated first. Somatic aposporous initial (AI) cells differentiate near meiotic cells, and the sexual pathway is terminated as AI cells undergo mitotic embryo sac formation. Seed initiation is fertilization-independent. Using a partially penetrant cytotoxic reporter to inhibit meioisis, we showed that developmental events leading to the completion of meiotic tetrad formation are required for AI cell formation. Sexual initiation may therefore stimulate activity of the LOA locus, which was found to be required for AI cell formation and subsequent suppression of the sexual pathway. AI cells undergo nuclear division to form embryo sacs, in which LOP functions gametophytically to stimulate fertilization-independent embryo and endosperm formation. Loss of function in either locus results in partial reversion to sexual reproduction, and loss of function in both loci results in total reversion to sexual reproduction. Therefore, in these apomicts, sexual reproduction is the default reproductive mode upon which apomixis is superimposed. These loci are unlikely to encode genes essential for sexual reproduction, but may function to recruit the sexual machinery at specific time points to enable apomixis.
Collapse
Affiliation(s)
- Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Glen Osmond, South Australia 5064, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Baum BR, Feldman M. Elimination of 5S DNA unit classes in newly formed allopolyploids of the genera Aegilops and Triticum. Genome 2010; 53:430-8. [PMID: 20555432 DOI: 10.1139/g10-017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two classes of 5S DNA units, namely the short (containing units of 410 bp) and the long (containing units of 500 bp), are recognized in species of the wheat (the genera Aegilops and Triticum) group. While every diploid species of this group contains 2 unit classes, the short and the long, every allopolyploid species contains a smaller number of unit classes than the sum of the unit classes of its parental species. The aim of this study was to determine whether the reduction in these unit classes is due to the process of allopolyploidization, that is, interspecific or intergeneric hybridization followed by chromosome doubling, and whether it occurs during or soon after the formation of the allopolyploids. To study this, the number and types of unit classes were determined in several newly formed allotetraploids, allohexaploids, and an allooctoploid of Aegilops and Triticum. It was found that elimination of unit classes of 5S DNA occurred soon (in the first 3 generations) after the formation of the allopolyploids. This elimination was reproducible, that is, the same unit classes were eliminated in natural and synthetic allopolyploids having the same genomic combinations. No further elimination occurred in the unit classes of the 5S DNA during the life of the allopolyploid. The genetic and evolutionary significance of this elimination as well as the difference in response to allopolyploidization of 5S DNA and rDNA are discussed.
Collapse
Affiliation(s)
- B R Baum
- Agriculture and Agri-Food Canada, Neatby Building, Ottawa, ON, Canada.
| | | |
Collapse
|
29
|
Seo JH, Seo BB. Independent chromosomal localization of two different size 5S rDNA of Allium victorialis var. platyphyllum by sequential fluorescence in situ hybridization in accordance with sequence polymorphism. Genes Genomics 2010. [DOI: 10.1007/s13258-009-0804-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Dedkova OS, Badaeva ED, Amosova AV, Martynov SP, Ruanet VV, Mitrofanova OP, Pukhal’skiy VA. Diversity and the origin of the European population of Triticum dicoccum (Schrank) Schuebl. As revealed by chromosome analysis. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409090099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Choi EY, Seo JH, Seo BB. Sequence polymorphism and chromosomal localization of 5S rDNA of three cultivated varieties of sweetpotato (Ipomoea batatas (L.) Lam.). Genes Genomics 2009. [DOI: 10.1007/bf03191205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Li L, Xu X, Jin W, Chen S. Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. PLANTA 2009; 230:367-76. [PMID: 19466451 DOI: 10.1007/s00425-009-0943-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 04/27/2009] [Indexed: 05/18/2023]
Abstract
The phenomenon of maternal haploid induction in maize was first described many years ago, but the underlying mechanism is still unclear. In this study, the Stock-6-derived, haploid-inducing line CAUHOI with high kernel oil content (KOC), was used as the pollinator to produce maternal haploids from the maize hybrid ZD958 with low KOC. CAUHOI is homozygous for the dominant marker gene R1-nj. Haploids were identified by morphological and cytological investigations. The frequency of haploid induction from this cross was 2.21%. Unexpectedly, many haploid kernels had weakly pigmented purple color on the embryo, and some haploid kernels had high KOC. Simple sequence repeat (SSR) analysis showed that 43.18% of the haploids carried segments from CAUHOI, and a small proportion (average 1.84%) of the genome of CAUHOI was introgressed into haploids. Haploid kernels with high KOC had a higher frequency of segment introgression from CAUHOI (2.92%) than that in haploid kernels with low KOC (1.79%), showing that the marker gene R1-nj and high-oil genes from CAUHOI were expressed during the development of some haploid embryos, and confirmed that the DNA introgression from the inducer parent occurred during maternal haploid induction. Together, these results suggested that the chromosome elimination was probably responsible for haploid induction in maize, and late somatic elimination might occur. Several possible mechanisms underlying haploid formation are discussed.
Collapse
Affiliation(s)
- Liang Li
- National Maize Improvement Center of China, China Agricultural University, Yuanmingyuan West Road, Haidian District, 100193, Beijing, China.
| | | | | | | |
Collapse
|
33
|
Shcherban AB, Sergeeva EM, Badaeva ED, Salina EA. Analysis of 5S rDNA changes in synthetic allopolyploids Triticum × Aegilops. Mol Biol 2008. [DOI: 10.1134/s0026893308040080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Gill N, Hans CS, Jackson S. An overview of plant chromosome structure. Cytogenet Genome Res 2008; 120:194-201. [PMID: 18504347 DOI: 10.1159/000121067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2008] [Indexed: 11/19/2022] Open
Affiliation(s)
- N Gill
- Department of Agronomy, Purdue University, West Lafayette, IN 47906, USA
| | | | | |
Collapse
|
35
|
Fominaya A, Molnar S, Fedak G, Armstrong KC, Kim NS, Chen Q. Characterization of Thinopyrum distichum chromosomes using double fluorescence in situ hybridization, RFLP analysis of 5S and 26S rRNA, and C-banding of parents and addition lines. Genome 2008; 40:689-96. [PMID: 18464858 DOI: 10.1139/g97-791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diagnostic markers for eight Thinopyrum distichum addition chromosomes in Triticum turgidum were established using C-banding, in situ hybridization, and restriction fragment length polymorphism analysis. The C-band karyotype conclusively identified individual Th. distichum chromosomes and distinguished them from chromosomes of T. turgidum. Also, TaqI and BamHI restriction fragments containing 5S and 18S-5.8S-26S rRNA sequences were identified as positive markers specific to Th. distichum chromosomes. Simultaneous fluorescence in situ hybridization showed both 5S and 18S-5.8S-26S ribosomal RNA genes to be located on chromosome IV. Thinopyrum distichum chromosome VII carried only a 18S-5.8S-26S rRNA locus and chromosome pair II carried only a 5S rRNA locus. The arrangement of these loci on Th. distichum chromosome IV was different from that on wheat chromosome pair 1B. Two other unidentified Th. distichum chromosome pairs also carried 5S rRNA loci. The homoeologous relationship between Th. distichum chromosomes IV and VII and chromosomes of other members of the Triticeae was discussed by comparing results obtained using these physical and molecular markers.
Collapse
|
36
|
Komeda N, Chaudhary HK, Suzuki G, Mukai Y. Cytological evidence for chromosome elimination in wheat x Imperata cylindrica hybrids. Genes Genet Syst 2007; 82:241-8. [PMID: 17660694 DOI: 10.1266/ggs.82.241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Haploid induction of wheat by crossing with Imperata cylindrica pollen is an efficient method for doubled haploid breeding. We investigated the process of wheat haploid formation after crossing with I. cylindrica. Our cytological observations of zygotes showed the successful fertilization of parental gametes. Wheat haploids were formed by complete elimination of I. cylindrica chromosomes. Missegregation of I. cylindrica chromosomes was observed in the first cell division of zygote. At metaphase I. cylindrica chromosomes did not congress onto the equatorial plate. The sister chromosomes did not move toward the poles during anaphase, though their cohesion was released normally. I. cylindrica chromosomes were still in the cytoplasm at telophase and eliminated from daughter nuclei. After two-celled stage, we could find no I. cylindrica chromosome in the nuclei but micronuclei containing I. cylindrica chromatin in the cytoplasm. These observations indicate that I. cylindrica chromosomes are completely eliminated from nuclei in the first cell division probably due to lack of functional kinetochores.
Collapse
Affiliation(s)
- Norio Komeda
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka, Japan
| | | | | | | |
Collapse
|
37
|
Ocalewicz K, Penman DJ, Babiak I. Variation in size and location of the Ag-NOR in the Atlantic halibut (Hippoglossus hippoglossus). Genetica 2007; 133:261-7. [PMID: 17899398 DOI: 10.1007/s10709-007-9209-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
The distribution of differentially stained chromatin was studied in the Atlantic halibut (Hippoglossus hippoglossus) chromosomes (2n=48). Four pairs of homologous chromosomes were identified using a combination of traditional cytogenetic staining techniques (Giemsa/DAPI/CMA3/Ag-NO3). Chromosome 1 showed a length polymorphism (1(S)-short, 1(L)-long isoforms of the chromosome 1) which was related to the variation of the size of the Ag-NORs. In one specimen the Ag-NOR was translocated from chromosome 1 into the telomeric region on the q-arm of the chromosome 2 forming a derivative chromosome der(2)t(1(S);2)(q?;q?). Four Ag-NOR genotypes have been shown: 1(S)1(S), 1(S)1(L), 1(L)1(L) and 1(S) der(2)t(1(S);2)(q?;q?). The chromosome rearrangements did not leave any interstitially located telomeric sequences and the telomeres were confined to the ends of the chromosomes. A single chromosomal location of 5S rDNA clusters was found using the PRINS technique. In the extended metaphase spreads two adjacent clusters of 5S rDNA could be seen on one chromosome while condensed chromatin gave a single hybridization signal. Double 5S rDNA signals on the same chromosome arm suggested paracentric inversion of the minor rDNA site. 5S rDNA clusters were not co-localized with Ag-NORs. Although female and male karyotypes were compared no sex related cytogenetic markers were found.
Collapse
Affiliation(s)
- K Ocalewicz
- Department of Ichthyology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-718 Olsztyn, Poland.
| | | | | |
Collapse
|
38
|
Zhang P, Friebe B, Gill B, Park RF. Cytogenetics in the age of molecular genetics. ACTA ACUST UNITED AC 2007. [DOI: 10.1071/ar07054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From the beginning of the 20th Century, we have seen tremendous advances in knowledge and understanding in almost all biological disciplines, including genetics, molecular biology, structural and functional genomics, and biochemistry. Among these advances, cytogenetics has played an important role. This paper details some of the important milestones of modern cytogenetics. Included are the historical role of cytogenetics in genetic studies in general and the genetics stocks produced using cytogenetic techniques. The basic biological questions cytogenetics can address and the important role and practical applications of cytogenetics in applied sciences, such as in agriculture and in breeding for disease resistance in cereals, are also discussed. The goal of this paper is to show that cytogenetics remains important in the age of molecular genetics, because it is inseparable from overall genome analysis. Cytogenetics complements studies in other disciplines within the field of biology and provides the basis for linking genetics, molecular biology and genomics research.
Collapse
|
39
|
Hagras AAA, Kishii M, Tanaka H, Sato K, Tsujimoto H. Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences. Genes Genet Syst 2006; 80:147-59. [PMID: 16172528 DOI: 10.1266/ggs.80.147] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hordeum vulgare, cultivated barley, and its wild relative, H. chilense, have several important traits that might be useful for wheat improvement. Here, in situ hybridization and barley expressed sequence tag (EST) markers were used to characterize and compare the chromosomes of H. chilense with those of H. vulgare. FISH with four repetitive DNA sequences, AG, AAG, 5S rDNA and 45S rDNA, was applied to the mitotic chromosomes of H. vulgare, H. chilense and available wheat-H. chilense addition and substitution lines. FISH with the AAG repeat differentiated the individual chromosomes of H. chilense and H. vulgare. The patterns of FISH signals in the two species differed greatly. The 45S rDNA signals were observed on two pairs of chromosomes in both species, while the 5S rDNA signals were observed on four pairs of chromosomes in H. vulgare and on one pair in H. chilense. The AG repeat showed FISH signals at the centromeric regions of all chromosomes of H. vulgare but none of the chromosomes of H. chilense. These results indicate that the chromosomes of the two species are highly differentiated. To study the homoeology between the two species, 209 EST markers of H. vulgare were allocated to individual chromosomes of H. chilense. One hundred and forty of the EST markers were allocated to respective chromosomes of H. chilense using the wheat-H. chilense addition and substitution lines. Twenty-six EST markers on average were allocated to each chromosome except to the chromosome 2H(ch)S, to which only 10 markers were allocated. Ninety percent of the allocated EST markers in H. chilense were placed on H. vulgare chromosomes of the same homo-eologous group, indicating that the expressed sequences of the two species were highly conserved. These EST markers would be useful for detecting chromatin introgressed from these species into the wheat genome.
Collapse
Affiliation(s)
- Adel Abdel-Aziz Hagras
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University, Japan
| | | | | | | | | |
Collapse
|
40
|
Dhar MK, Friebe B, Kaul S, Gill BS. Characterization and physical mapping of ribosomal RNA gene families in Plantago. ANNALS OF BOTANY 2006; 97:541-8. [PMID: 16481363 PMCID: PMC2803661 DOI: 10.1093/aob/mcl017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 10/28/2004] [Accepted: 12/22/2005] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS The organization of rRNA genes in cultivated Plantago ovata Forsk. and several of its wild allies was analysed to gain insight into the phylogenetic relationships of these species in the genus which includes some 200 species. METHODS Specific primers were designed to amplify the internal transcribed spacer (ITS1 and ITS2) regions from seven Plantago species and the resulting fragments were cloned and sequenced. Similarly, using specific primers, the 5S rRNA genes from these species were amplified and subsequently cloned. Fluorescence in-situ hybridization (FISH) was used for physical mapping of 5S and 45S ribosomal RNA genes. RESULTS The ITS1 region is 19-29 bp longer than the ITS2 in different Plantago species. The 5S rRNA gene-repeating unit varies in length from 289 to 581 bp. Coding regions are highly conserved across species, but the non-transcribed spacers (NTS) do not match any database sequences. The clone from the cultivated species P. ovata was used for physical mapping of these genes by FISH. Four species have one FISH site while three have two FISH sites. In P. lanceolata and P. rhodosperma, the 5S and 45S (18S-5.8S-25S) sites are coupled. CONCLUSIONS Characterization of 5S and 45S rRNA genes has indicated a possible origin of P. ovata, the only cultivated species of the genus and also the only species with x = 4, from a species belonging to subgenus Psyllium. Based on the studies reported here, P. ovata is closest to P. arenaria, although on the basis of other data the two species have been placed in different subgenera. FISH mapping can be used as an efficient tool to help determine phylogenetic relationships in the genus Plantago and show the interrelationship between P. lanceolata and P. lagopus.
Collapse
Affiliation(s)
- Manoj K Dhar
- Department of Biotechnology, University of Jammu, Jammu 180006, J and K, India.
| | | | | | | |
Collapse
|
41
|
Costa-Nunes P, Ribeiro T, Delgado M, Morais-Cecílio L, Jones N, Viegas W. Molecular and cytological characterization of genomic variability in hexaploid wheat 'Lindström'. Genome 2006; 48:895-904. [PMID: 16391695 DOI: 10.1139/g05-050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
'Lindström' wheat (AABBDD+rye B chromosomes) was used to study the effects of alien chromatin introgressed into a wheat genetic background, subjecting the wheat genome to a new and transient allopolyploidisation episode. Using this experimental material, we have previously demonstrated that no large-scale chromosomal translocations occurred as a result of the genomic constitution of the addition line. However, we have shown that the presence of a number of rye B chromosomes is associated with changes in the interphase organization and expression patterns of wheat rDNA loci. We have now extended our studies to focus on a further characterization of 'Lindström' 5S rDNA loci and also on high molecular weight glutenin subunit (HMW-GS) patterns. In the process, we have uncovered an unusually large variant of the 5S rDNA locus on wheat chromosome 1B (not to be confused with rye B chromosomes) and 2 novel HMW glutenin y-type alleles. These changes are not directly related to variation in rye B chromosome number in the present material, but the fact that a new, and still segregating, 1Dy HMW-GS gene was identified indicates a recent timescale for its origin. Strikingly, the 'Lindström' 5S rDNA 1B locus integrates a unit sharing 94% homology with a rye 5S rDNA sequence, suggesting the possibility that the wheat locus was colonized by highly homologous rye sequences during the breeding of 'Lindström', when the rye and wheat genomes were together, albeit briefly, in the same nucleus.
Collapse
Affiliation(s)
- Pedro Costa-Nunes
- Secção de Genética, Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Tapada da Ajuda, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
42
|
Regina A, Kosar-Hashemi B, Li Z, Pedler A, Mukai Y, Yamamoto M, Gale K, Sharp PJ, Morell MK, Rahman S. Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. PLANTA 2005; 222:899-909. [PMID: 16172866 DOI: 10.1007/s00425-005-0032-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Accepted: 06/02/2005] [Indexed: 05/04/2023]
Abstract
Studies of maize starch branching enzyme mutants suggest that the amylose extender high amylose starch phenotype is a consequence of the lack of expression of the predominant starch branching enzyme II isoform expressed in the endosperm, SBEIIb. However, in wheat, the ratio of SBEIIb and SBEIIa expression are inversely related to the expression levels observed in maize and rice. Analysis of RNA at 15 days post anthesis suggests that there are about 4-fold more RNA for SBE IIa than for SBE IIb. The genes for SBE IIa and SBE IIb from wheat are distinguished in the size of the first three exons, allowing isoform-specific antibodies to be produced. These antibodies were used to demonstrate that in the soluble fraction, the amount of SBE IIa protein is two to three fold higher than SBIIb, whereas in the starch granule, there is two to three fold more SBE IIb protein amount than SBE IIa. In a further difference to maize and rice, the genes for SBE IIa and SBE IIb are both located on the long arm of chromosome 2 in wheat, in a position not expected from rice-maize-wheat synteny.
Collapse
MESH Headings
- 1,4-alpha-Glucan Branching Enzyme/genetics
- 1,4-alpha-Glucan Branching Enzyme/metabolism
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- Edible Grain/enzymology
- Edible Grain/genetics
- Gene Expression
- Genes, Plant
- In Situ Hybridization, Fluorescence
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Species Specificity
- Triticum/enzymology
- Triticum/genetics
Collapse
Affiliation(s)
- Ahmed Regina
- Commonwealth Scientific and Industrial Research Organisation, Plant Industry, P.O. Box 1600, Australian Capital Territory, 2601, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gupta PK, Kulwal PL, Rustgi S. Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 2005; 109:315-27. [PMID: 15753592 DOI: 10.1159/000082415] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 05/11/2004] [Indexed: 01/26/2023] Open
Abstract
Hexaploid wheat is a species that has been subjected to most extensive cytogenetic studies. This has contributed to understanding the mechanism of the evolution of polyploids involving diploidization through genetic restriction of chromosome pairing to only homologous chromosomes. The availability of a variety of aneuploids and the ph mutants (Ph1 and Ph2) in bread wheat also allowed chromosome manipulations leading to the development of alien addition/substitution lines and the introgression of alien chromosome segments into the wheat genome. More recently in the genomics era, molecular tools have been used extensively not only for the construction of molecular maps, but also for identification/isolation of genes/QTLs (including epistatic QTLs, eQTLs and PQLs) for several agronomic traits. It has also been possible to identify gene-rich regions and recombination hot spots in the wheat genome, which are now being subjected to sequencing at the genome level, through development of BAC libraries. In the EST database also, among all plants wheat ESTs are the highest in number, and are only next to those for human, mouse, Ciona intestinalis (a chordate), rat and zebrafish genomes. These ESTs and sequences of several genomic regions have been subjected to a variety of applications including development of perfect markers and establishment of microcollinearity. The technique of in situ hybridization (including FISH, GISH and McFISH) and the development of deletion stocks also facilitated the preparation of physical maps. Molecular markers are also used for marker-assisted selection in wheat breeding programs in several countries. Construction of a wheat DNA chip, which will also become available soon, may further facilitate wheat genomics research. These enormous resources, knowledge base and the fast development of additional molecular tools and high throughput approaches for genotyping will prove extremely useful in future wheat research and will lead to development of improved wheat cultivars.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics & Plant Breeding, Ch. Charan Singh University, Meerut, India.
| | | | | |
Collapse
|
44
|
Brasileiro-Vidal AC, Cuadrado A, Brammer SP, Benko-Iseppon AM, Guerra M. Molecular cytogenetic characterization of parental genomes in the partial amphidiploid Triticum aestivum x Thinopyrum ponticum. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Lavania UC, Basu S, Srivastava S, Mukai Y, Lavania S. In situ chromosomal localization of rDNA sites in "Safed Musli" Chlorophytum ker-gawl and their physical measurement by fiber FISH. ACTA ACUST UNITED AC 2004; 96:155-60. [PMID: 15618304 DOI: 10.1093/jhered/esi018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fluorescence In Situ Hybridization (FISH) technique has been applied on somatic chromosomes and extended DNA fibers in the medicinally important species of Chlorophytum to elucidate physical localization and measurement of the rDNA sites using two rRNA multigene families homologous to 45S and 5S rDNA. The two species of Chlorophytum, namely C. borivillianum and C. comosum, both with 2n = 28, reveal diversity for copy number and localization of rDNA sites. C. borivillianum is comprised of five 45S-rDNA sites:one each in the secondary constriction region of chromosomes 7, 8, 9; one in the subtelomeric region of the short arm of chromosome 2 and the telomeric region of the short arm of chromosome 12; and one 5S-rDNA site in the subtelomeric region of the long arm of chromosome 1. In C. comosum, there are three 45S-rDNA sites (one each in the short arm of chromosomes 12, 13, and 14) and two 5S-rDNA sites (in the secondary constriction regions of chromosomes 2 and 13). Fiber FISH analysis conducted on extended DNA fibers revealed variation in the size of continuous tandem strings for the two r-DNA families. Taking the standard value of native B DNA equivalent to 3.27 kb for 1 mum, it was estimated that the physical size of continuous DNA strings is of the order of approximately 90 kb, 180 kb, and 300 kb for 45S-rDNA and of the order of 60 kb, 150 kb for 5S-rDNA in C. comosum, grossly in correspondence to their respective physical sizes at metaphase.
Collapse
Affiliation(s)
- U C Lavania
- Cytogenetics Division, Central Institute of Medicinal and Aromatic Plants, Lucknow-226 015, India.
| | | | | | | | | |
Collapse
|
46
|
Lavania UC. Physical Mapping of 18S-26S and 5S rRNA Gene Families in Two Alkaloidal Plants, Papaver Somniferum and Hyoscyamus Niger. Hereditas 2004. [DOI: 10.1111/j.1601-5223.1998.00273.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
47
|
Brasileiro-Vidal AC, Cuadrado A, Brammer SP, Zanatta ACA, Prestes AM, Moraes-Fernandes MIB, Guerra M. Chromosome characterization in Thinopyrum ponticum (Triticeae, Poaceae) using in situ hybridization with different DNA sequences. Genet Mol Biol 2003. [DOI: 10.1590/s1415-47572003000400014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Turnbull KM, Turner M, Mukai Y, Yamamoto M, Morell MK, Appels R, Rahman S. The organization of genes tightly linked to the Ha locus in Aegilops tauschii, the D-genome donor to wheat. Genome 2003; 46:330-8. [PMID: 12723049 DOI: 10.1139/g02-124] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The grain hardness locus, Ha, is located at the distal end of the short arm of chromosome 5D in wheat. Three polypeptides, puroindoline-a, puroindoline-b, and grain softness protein (GSP-1), have been identified as components of friabilin, a biochemical marker for grain softness, and the genes for these polypeptides are known to be tightly linked to the Ha locus. However, this region of the chromosome 5D has not been well characterized and the physical distance between the markers is not known. Separate lambda clones containing the puroindoline-a gene and the puroindoline-b gene have been isolated from an Aegilops tauschii (the donor of the D genome to wheat) genomic lambda library and investigated. Considerable variation appears to exist in the organization of the region upstream of the gene for puroindoline-b among species closely related to wheat. Using in situ hybridization the genes for puroindoline-a, -b, and GSP-1 were demonstrated to be physically located at the tip of the short arm of chromosome 5 of A. tauschii. Four overlapping clones were isolated from a large-insert BAC library constructed from A. tauschii and of these one contained genes for all of puroindoline-a, puroindoline-b, and GSP-1. The gene for puroindoline-a is located between the other two genes at a distance no greater than approximately 30 kb from either gene. The BAC clone containing all three known genes was used to screen a cDNA library constructed from hexaploid wheat and cDNAs that could encode novel polypeptides were isolated.
Collapse
Affiliation(s)
- K M Turnbull
- CSIRO Plant Industry, P.O. Box 1600, ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Do GS, Seo BB, Yamamoto M, Suzuki G, Mukai Y. Identification and chromosomal location of tandemly repeated DNA sequences in Allium cepa. Genes Genet Syst 2001; 76:53-60. [PMID: 11376552 DOI: 10.1266/ggs.76.53] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A 314-bp tandemly repeated DNA sequence, named pAc074, was characterized in Allium cepa by fluorescence in situ hybridization (FISH) analyses using random amplified fragment as probe. The nucleotide sequences of the clone pAc074 is partially homologous to the satellite DNA sequences, ACSAT1, ACSAT2, and ACSAT3, of A. cepa with 81%, 81% and 78% similarity, respectively. Our sequential C-banding and FISH with pAc074 probe also clearly showed a close relation between Cheterochromatin at telomeric region and pAc074 sequences on all the chromosomes except on chromosome 6. On the long arm of chromosome 7, pAc074 sequences appeared as interstitial band which did not correspond to C-heterochromatin bands. Instead, the C-heterochromatin bands corresponded with the 5S rDNA signals. This is the first evidence of simultaneous banding of the 5S rDNA and C-band in A. cepa.
Collapse
Affiliation(s)
- G S Do
- Department of Biology, Kyungpook National University, Taegu, Korea
| | | | | | | | | |
Collapse
|
50
|
Suzuki G, Ura A, Saito N, Do GS, Seo BB, Yamamoto M, Mukai Y. BAC FISH analysis in Allium cepa. Genes Genet Syst 2001; 76:251-5. [PMID: 11732634 DOI: 10.1266/ggs.76.251] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Onion (Allium cepa L.; 1C=15,000 Mb) is an agriculturally important plant. The genome of onion has been extensively studied at the conventional cytogenetic level, but molecular analyses have lagged behind due to its large genome size. To overcome this bottleneck, a partial bacterial artificial chromosome (BAC) library of onion was constructed. The average insert size of the BAC library was about 100 kb. A total of 48,000 clones, corresponding to 0.32 genome equivalent, were obtained. Fluorescent in situ hybridization (FISH) screening resulted in identification of BAC clones localized on centromeric, telomeric, or several limited interstitial chromosomal regions, although most of the clones hybridized with entire chromosomes. The partial BAC library proved to be a useful resource for molecular cytogenetic studies of onion, and should be useful for further mapping and sequencing studies of important genes of this plant. BAC FISH screening is a powerful method for identification of molecular cytogenetic markers in large-genome plants.
Collapse
Affiliation(s)
- G Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, Japan.
| | | | | | | | | | | | | |
Collapse
|