1
|
Hartig N, Seibt KM, Heitkam T. How to start a LINE: 5' switching rejuvenates LINE retrotransposons in tobacco and related Nicotiana species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36965091 DOI: 10.1111/tpj.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
By contrast to their conserved mammalian counterparts, plant long interspersed nuclear elements (LINEs) are highly variable, splitting into many low-copy families. Curiously, LINE families from the retrotransposable element (RTE) clade retain a stronger sequence conservation and hence reach higher copy numbers. The cause of this RTE-typical property is not yet understood, but would help clarify why some transposable elements are removed quickly, whereas others persist in plant genomes. Here, we bring forward a detailed study of RTE LINE structure, diversity and evolution in plants. For this, we argue that the nightshade family is the ideal taxon to follow the evolutionary trajectories of RTE LINEs, given their high abundance, recent activity and partnership to non-autonomous elements. Using bioinformatic, cytogenetic and molecular approaches, we detect 4029 full-length RTE LINEs across the Solanaceae. We finely characterize and manually curate a core group of 458 full-length LINEs in allotetraploid tobacco, show an integration event after polyploidization and trace hybridization by RTE LINE composition of parental genomes. Finally, we reveal the role of the untranslated regions (UTRs) as causes for the unique RTE LINE amplification and evolution pattern in plants. On the one hand, we detected a highly conserved motif at the 3' UTR, suggesting strong selective constraints acting on the RTE terminus. On the other hand, we observed successive rounds of 5' UTR cycling, constantly rejuvenating the promoter sequences. This interplay between exchangeable promoters and conserved LINE bodies and 3' UTR likely allows RTE LINEs to persist and thrive in plant genomes.
Collapse
Affiliation(s)
- Nora Hartig
- Faculty of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Tony Heitkam
- Faculty of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
2
|
Ni L, Liu Y, Ma X, Liu T, Yang X, Wang Z, Liang Q, Liu S, Zhang M, Wang Z, Shen Y, Tian Z. Pan-3D genome analysis reveals structural and functional differentiation of soybean genomes. Genome Biol 2023; 24:12. [PMID: 36658660 PMCID: PMC9850592 DOI: 10.1186/s13059-023-02854-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND High-order chromatin structure plays important roles in gene regulation. However, the diversity of the three-dimensional (3D) genome across plant accessions are seldom reported. RESULTS Here, we perform the pan-3D genome analysis using Hi-C sequencing data from 27 soybean accessions and comprehensively investigate the relationships between 3D genomic variations and structural variations (SVs) as well as gene expression. We find that intersection regions between A/B compartments largely contribute to compartment divergence. Topologically associating domain (TAD) boundaries in A compartments exhibit significantly higher density compared to those in B compartments. Pan-3D genome analysis shows that core TAD boundaries have the highest transcription start site (TSS) density and lowest GC content and repeat percentage. Further investigation shows that non-long terminal repeat (non-LTR) retrotransposons play important roles in maintaining TAD boundaries, while Gypsy elements and satellite repeats are associated with private TAD boundaries. Moreover, presence and absence variation (PAV) is found to be the major contributor to 3D genome variations. Nevertheless, approximately 55% of 3D genome variations are not associated with obvious genetic variations, and half of them affect the flanking gene expression. In addition, we find that the 3D genome may also undergo selection during soybean domestication. CONCLUSION Our study sheds light on the role of 3D genomes in plant genetic diversity and provides a valuable resource for studying gene regulation and genome evolution.
Collapse
Affiliation(s)
- Lingbin Ni
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tengfei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyue Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Wang
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Kambayashi C, Kakehashi R, Sato Y, Mizuno H, Tanabe H, Rakotoarison A, Künzel S, Furuno N, Ohshima K, Kumazawa Y, Nagy ZT, Mori A, Allison A, Donnellan SC, Ota H, Hoso M, Yanagida T, Sato H, Vences M, Kurabayashi A. Geography-Dependent Horizontal Gene Transfer from Vertebrate Predators to Their Prey. Mol Biol Evol 2022; 39:6563207. [PMID: 35417559 PMCID: PMC9007160 DOI: 10.1093/molbev/msac052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Horizontal transfer (HT) of genes between multicellular animals, once thought to be extremely rare, is being more commonly detected, but its global geographic trend and transfer mechanism have not been investigated. We discovered a unique HT pattern of Bovine-B (BovB) LINE retrotransposons in vertebrates, with a bizarre transfer direction from predators (snakes) to their prey (frogs). At least 54 instances of BovB HT were detected, which we estimate to have occurred across time between 85 and 1.3 Ma. Using comprehensive transcontinental sampling, our study demonstrates that BovB HT is highly prevalent in one geographical region, Madagascar, suggesting important regional differences in the occurrence of HTs. We discovered parasite vectors that may plausibly transmit BovB and found that the proportion of BovB-positive parasites is also high in Madagascar where BovB thus might be physically transported by parasites to diverse vertebrates, potentially including humans. Remarkably, in two frog lineages, BovB HT occurred after migration from a non-HT area (Africa) to the HT hotspot (Madagascar). These results provide a novel perspective on how the prevalence of parasites influences the occurrence of HT in a region, similar to pathogens and their vectors in some endemic diseases.
Collapse
Affiliation(s)
- Chiaki Kambayashi
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Ryosuke Kakehashi
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Yusuke Sato
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | | | - Hideyuki Tanabe
- School of Advanced Sciences, The Graduate University for Advanced Studies, SOKENDAI, Kanagawa, Japan
| | | | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Nobuaki Furuno
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Kazuhiko Ohshima
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | | | | | - Akira Mori
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | - Hidetoshi Ota
- Institute of Natural and Environmental Sciences, University of Hyogo, and Museum of Nature and Human Activities, Hyogo, Japan
| | - Masaki Hoso
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tetsuya Yanagida
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroshi Sato
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Atsushi Kurabayashi
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, Japan.,Amphibian Research Center, Hiroshima University, Hiroshima, Japan.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Petersen M, Winter S, Coimbra R, J de Jong M, Kapitonov VV, Nilsson MA. Population analysis of retrotransposons in giraffe genomes supports RTE decline and widespread LINE1 activity in Giraffidae. Mob DNA 2021; 12:27. [PMID: 34836553 PMCID: PMC8620236 DOI: 10.1186/s13100-021-00254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The majority of structural variation in genomes is caused by insertions of transposable elements (TEs). In mammalian genomes, the main TE fraction is made up of autonomous and non-autonomous non-LTR retrotransposons commonly known as LINEs and SINEs (Long and Short Interspersed Nuclear Elements). Here we present one of the first population-level analysis of TE insertions in a non-model organism, the giraffe. Giraffes are ruminant artiodactyls, one of the few mammalian groups with genomes that are colonized by putatively active LINEs of two different clades of non-LTR retrotransposons, namely the LINE1 and RTE/BovB LINEs as well as their associated SINEs. We analyzed TE insertions of both types, and their associated SINEs in three giraffe genome assemblies, as well as across a population level sampling of 48 individuals covering all extant giraffe species. RESULTS The comparative genome screen identified 139,525 recent LINE1 and RTE insertions in the sampled giraffe population. The analysis revealed a drastically reduced RTE activity in giraffes, whereas LINE1 is still actively propagating in the genomes of extant (sub)-species. In concert with the extremely low activity of the giraffe RTE, we also found that RTE-dependent SINEs, namely Bov-tA and Bov-A2, have been virtually immobile in the last 2 million years. Despite the high current activity of the giraffe LINE1, we did not find evidence for the presence of currently active LINE1-dependent SINEs. TE insertion heterozygosity rates differ among the different (sub)-species, likely due to divergent population histories. CONCLUSIONS The horizontally transferred RTE/BovB and its derived SINEs appear to be close to inactivation and subsequent extinction in the genomes of extant giraffe species. This is the first time that the decline of a TE family has been meticulously analyzed from a population genetics perspective. Our study shows how detailed information about past and present TE activity can be obtained by analyzing large-scale population-level genomic data sets.
Collapse
Affiliation(s)
- Malte Petersen
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Sven Winter
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Raphael Coimbra
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Menno J de Jong
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Vladimir V Kapitonov
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Han G, Zhang N, Jiang H, Meng X, Qian K, Zheng Y, Xu J, Wang J. Diversity of short interspersed nuclear elements (SINEs) in lepidopteran insects and evidence of horizontal SINE transfer between baculovirus and lepidopteran hosts. BMC Genomics 2021; 22:226. [PMID: 33789582 PMCID: PMC8010984 DOI: 10.1186/s12864-021-07543-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background Short interspersed nuclear elements (SINEs) belong to non-long terminal repeat (non-LTR) retrotransposons, which can mobilize dependent on the help of counterpart long interspersed nuclear elements (LINEs). Although 234 SINEs have been identified so far, only 23 are from insect species (SINEbase: http://sines.eimb.ru/). Results Here, five SINEs were identified from the genome of Plutella xylostella, among which PxSE1, PxSE2 and PxSE3 were tRNA-derived SINEs, PxSE4 and PxSE5 were 5S RNA-derived SINEs. A total of 18 related SINEs were further identified in 13 lepidopteran insects and a baculovirus. The 3′-tail of PxSE5 shares highly identity with that of LINE retrotransposon, PxLINE1. The analysis of relative age distribution profiles revealed that PxSE1 is a relatively young retrotransposon in the genome of P. xylostella and was generated by recent explosive amplification. Integration pattern analysis showed that SINEs in P. xylostella prefer to insert into or accumulate in introns and regions 5 kb downstream of genes. In particular, the PxSE1-like element, SlNPVSE1, in Spodoptera litura nucleopolyhedrovirus II genome is highly identical to SfSE1 in Spodoptera frugiperda, SlittSE1 in Spodoptera littoralis, and SlituSE1 in Spodoptera litura, suggesting the occurrence of horizontal transfer. Conclusions Lepidopteran insect genomes harbor a diversity of SINEs. The retrotransposition activity and copy number of these SINEs varies considerably between host lineages and SINE lineages. Host-parasite interactions facilitate the horizontal transfer of SINE between baculovirus and its lepidopteran hosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07543-z.
Collapse
Affiliation(s)
- Guangjie Han
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225008, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jian Xu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225008, China.
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture andAgri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Existence of Bov-B LINE Retrotransposons in Snake Lineages Reveals Recent Multiple Horizontal Gene Transfers with Copy Number Variation. Genes (Basel) 2020; 11:genes11111241. [PMID: 33105659 PMCID: PMC7716205 DOI: 10.3390/genes11111241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are dynamic elements present in all eukaryotic genomes. They can “jump” and amplify within the genome and promote segmental genome rearrangements on both autosomes and sex chromosomes by disruption of gene structures. The Bovine-B long interspersed nuclear element (Bov-B LINE) is among the most abundant TE-retrotransposon families in vertebrates due to horizontal transfer (HT) among vertebrate lineages. Recent studies have shown multiple HTs or the presence of diverse Bov-B LINE groups in the snake lineage. It is hypothesized that Bov-B LINEs are highly dynamic and that the diversity reflects multiple HTs in snake lineages. Partial sequences of Bov-B LINE from 23 snake species were characterized. Phylogenetic analysis resolved at least two Bov-B LINE groups that might correspond to henophidian and caenophidian snakes; however, the tree topology differed from that based on functional nuclear and mitochondrial gene sequences. Several Bov-B LINEs of snakes showed greater than 80% similarity to sequences obtained from insects, whereas the two Bov-B LINE groups as well as sequences from the same snake species classified in different Bov-B LINE groups showed sequence similarities of less than 80%. Calculation of estimated divergence time and pairwise divergence between all individual Bov-B LINE copies suggest invasion times ranging from 79.19 to 98.8 million years ago in snakes. Accumulation of elements in a lineage-specific fashion ranged from 9 × 10−6% to 5.63 × 10−2% per genome. The genomic proportion of Bov-B LINEs varied among snake species but was not directly associated with genome size or invasion time. No differentiation in Bov-B LINE copy number between males and females was observed in any of the snake species examined. Incongruence in tree topology between Bov-B LINEs and other snake phylogenies may reflect past HT events. Sequence divergence of Bov-B LINEs between copies suggests that recent multiple HTs occurred within the same evolutionary timeframe in the snake lineage. The proportion of Bov-B LINEs varies among species, reflecting species specificity in TE invasion. The rapid speciation of snakes, coinciding with Bov-B LINE invasion in snake genomes, leads us to better understand the effect of Bov-B LINEs on snake genome evolution.
Collapse
|
7
|
Gao D, Chu Y, Xia H, Xu C, Heyduk K, Abernathy B, Ozias-Akins P, Leebens-Mack JH, Jackson SA. Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants. Mol Biol Evol 2019; 35:354-364. [PMID: 29069493 PMCID: PMC5850137 DOI: 10.1093/molbev/msx275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Even though lateral movements of transposons across families and even phyla within multicellular eukaryotic kingdoms have been found, little is known about transposon transfer between the kingdoms Animalia and Plantae. We discovered a novel non-LTR retrotransposon, AdLINE3, in a wild peanut species. Sequence comparisons and phylogenetic analyses indicated that AdLINE3 is a member of the RTE clade, originally identified in a nematode and rarely reported in plants. We identified RTE elements in 82 plants, spanning angiosperms to algae, including recently active elements in some flowering plants. RTE elements in flowering plants were likely derived from a single family we refer to as An-RTE. Interestingly, An-RTEs show significant DNA sequence identity with non-LTR retroelements from 42 animals belonging to four phyla. Moreover, the sequence identity of RTEs between two arthropods and two plants was higher than that of homologous genes. Phylogenetic and evolutionary analyses of RTEs from both animals and plants suggest that the An-RTE family was likely transferred horizontally into angiosperms from an ancient aphid(s) or ancestral arthropod(s). Notably, some An-RTEs were recruited as coding sequences of functional genes participating in metabolic or other biochemical processes in plants. This is the first potential example of horizontal transfer of transposons between animals and flowering plants. Our findings help to understand exchanges of genetic material between the kingdom Animalia and Plantae and suggest arthropods likely impacted on plant genome evolution.
Collapse
Affiliation(s)
- Dongying Gao
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| | - Ye Chu
- Department of Horticulture, University of Georgia, Tifton, GA
| | - Han Xia
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA.,Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chunming Xu
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| | - Karolina Heyduk
- Department of Plant Biology, University of Georgia, Athens, GA
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| | | | | | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| |
Collapse
|
8
|
Rosolen LAM, Vicari MR, Almeida MC. Accumulation of Transposable Elements in Autosomes and Giant Sex Chromosomes of Omophoita (Chrysomelidae: Alticinae). Cytogenet Genome Res 2018; 156:215-222. [PMID: 30504708 DOI: 10.1159/000495199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 12/28/2022] Open
Abstract
Coleoptera is the most diverse order among insects, and comparative molecular cytogenetic studies in this group are lacking. The species of Omophoita (Oedionychina) possess a karyotype of 2n = 22 = 10II+X+Y. They are interesting models for evolutionary cytogenetic studies due to giant sex chromosomes which are asynaptic during meiosis. Transposable elements (TEs) confer plasticity and mobility to genomes and are considered hotspots for DNA double-strand breaks and chromosomal rearrangements. The objective of the present study was to verify the role of TEs in the karyotype and in the size expansion of the giant sex chromosomes in Omophoita. Thus, different TEs were characterized in the Omophoita genome and localized in the chromosomes by fluorescence in situ hybridization (FISH). The DNA sequencing data revealed identity with TE families Tc1/Mariner and RTE/L1-56_XT. FISH showed signals of all TEs in the karyotypes and a high accumulation in the sex chromosomes of the 3 Omophoita species analyzed. These data suggest that the genome size expansion and the origin of the giant sex chromosomes of Omophoita are due to an intensive genomic invasion of TEs, as those characterized here as Tc1/Mariner-Ooc and RTE-Ooc. Differences in the chromosomal location of the TEs among the 3 species indicate that they have participated in the karyotype differentiation in Omophoita.
Collapse
|
9
|
Nishiyama E, Ohshima K. Cross-Kingdom Commonality of a Novel Insertion Signature of RTE-Related Short Retroposons. Genome Biol Evol 2018; 10:1471-1483. [PMID: 29850801 PMCID: PMC6007223 DOI: 10.1093/gbe/evy098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In multicellular organisms, such as vertebrates and flowering plants, horizontal transfer (HT) of genetic information is thought to be a rare event. However, recent findings unveiled unexpectedly frequent HT of RTE-clade LINEs. To elucidate the molecular footprints of the genomic integration machinery of RTE-related retroposons, the sequence patterns surrounding the insertion sites of plant Au-like SINE families were analyzed in the genomes of a wide variety of flowering plants. A novel and remarkable finding regarding target site duplications (TSDs) for SINEs was they start with thymine approximately one helical pitch (ten nucleotides) downstream of a thymine stretch. This TSD pattern was found in RTE-clade LINEs, which share the 3'-end sequence of these SINEs, in the genome of leguminous plants. These results demonstrably show that Au-like SINEs were mobilized by the enzymatic machinery of RTE-clade LINEs. Further, we discovered the same TSD pattern in animal SINEs from lizard and mammals, in which the RTE-clade LINEs sharing the 3'-end sequence with these animal SINEs showed a distinct TSD pattern. Moreover, a significant correlation was observed between the first nucleotide of TSDs and microsatellite-like sequences found at the 3'-ends of SINEs and LINEs. We propose that RTE-encoded protein could preferentially bind to a DNA region that contains a thymine stretch to cleave a phosphodiester bond downstream of the stretch. Further, determination of cleavage sites and/or efficiency of primer sites for reverse transcription may depend on microsatellite-like repeats in the RNA template. Such a unique mechanism may have enabled retroposons to successfully expand in frontier genomes after HT.
Collapse
Affiliation(s)
- Eri Nishiyama
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Kazuhiko Ohshima
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
10
|
Stringer JM, Forster SC, Qu Z, Prokopuk L, O'Bryan MK, Gardner DK, White SJ, Adelson D, Western PS. Reduced PRC2 function alters male germline epigenetic programming and paternal inheritance. BMC Biol 2018; 16:104. [PMID: 30236109 PMCID: PMC6149058 DOI: 10.1186/s12915-018-0569-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Defining the mechanisms that establish and regulate the transmission of epigenetic information from parent to offspring is critical for understanding disease heredity. Currently, the molecular pathways that regulate epigenetic information in the germline and its transmission to offspring are poorly understood. RESULTS Here we provide evidence that Polycomb Repressive Complex 2 (PRC2) regulates paternal inheritance. Reduced PRC2 function in mice resulted in male sub-fertility and altered epigenetic and transcriptional control of retrotransposed elements in foetal male germ cells. Males with reduced PRC2 function produced offspring that over-expressed retrotransposed pseudogenes and had altered preimplantation embryo cleavage rates and cell cycle control. CONCLUSION This study reveals a novel role for the histone-modifying complex, PRC2, in paternal intergenerational transmission of epigenetic effects on offspring, with important implications for understanding disease inheritance.
Collapse
Affiliation(s)
- Jessica M Stringer
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Anatomy and Developmental Biology, Ovarian Biology Laboratory, Biomedicine Discovery Institute, Monash University, Melbourne, 3168, Australia
| | - Samuel C Forster
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Zhipeng Qu
- Bioinformatics and Computational Genetics, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lexie Prokopuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Stefan J White
- Department of Human Genetics, Leiden Genome Technology Centre, Leiden University Medical Center, Leiden, the Netherlands
| | - David Adelson
- Bioinformatics and Computational Genetics, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
11
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
12
|
Godakova SA, Sevast'yanova GA, Semyenova SK. [STRUCTURE AND DISTRIBUTION OF THE RETROTRANSPOSON BOV-B LINE]. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2016; 34:9-12. [PMID: 27183715 DOI: 10.3103/s0891416816010043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The classification of mobile elements was discussed. Special attention was devoted to the retroelement of the LINE group: retrotransposon Bov-B LINE. The history of its origin and distribution in the nature was considered. The results of the phenomenon of horizontal transition of the retrotransposon Bov-B LINE between evolutionally distant classes were discussed.
Collapse
|
13
|
Mezzasalma M, Visone V, Petraccioli A, Odierna G, Capriglione T, Guarino FM. Non-random accumulation of LINE1-like sequences on differentiated snake W chromosomes. J Zool (1987) 2016. [DOI: 10.1111/jzo.12355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. Mezzasalma
- Department of Biology; University of Naples Federico II; Naples Italy
| | - V. Visone
- Department of Biology; University of Naples Federico II; Naples Italy
| | - A. Petraccioli
- Department of Biology; University of Naples Federico II; Naples Italy
| | - G. Odierna
- Department of Biology; University of Naples Federico II; Naples Italy
| | - T. Capriglione
- Department of Biology; University of Naples Federico II; Naples Italy
| | - F. M. Guarino
- Department of Biology; University of Naples Federico II; Naples Italy
| |
Collapse
|
14
|
Daniel SN, Penitente M, Silva DMZA, Hashimoto DT, Ferreira DC, Foresti F, Porto-Foresti F. Organization and Chromosomal Distribution of Histone Genes and Transposable Rex Elements in the Genome of Astyanax bockmanni (Teleostei, Characiformes). Cytogenet Genome Res 2015; 146:311-8. [PMID: 26618348 DOI: 10.1159/000441613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
An important feature of eukaryotic organisms is the number of different repetitive DNA sequences in their genome, a feature not observed in prokaryotes. These sequences are considered to be important components for understanding evolutionary mechanisms and the karyotypic differentiation processes. Thus, we aimed to physically map the histone genes and transposable elements of the Rex family in 6 fish populations of Astyanax bockmanni. FISH results using a histone H1 gene probe showed fluorescent clusters in 2 chromosome pairs in all 6 samples analyzed. In contrast, FISH with a histone H3 probe showed conspicuous blocks in 4 chromosomes in 5 of the 6 populations analyzed. The sixth population revealed 7 chromosomes marked with this probe. Probes for the transposable elements Rex1 and Rex6 showed small sites dispersed on most chromosomes of the 6 populations, and the Rex3 element is located in a big block concentrated in only 1 acrocentric chromosome of 2 populations. As for the other populations, a Rex3 probe showed large blocks in more than 1 chromosome. Fish from Alambari and Campo Novo Stream have Rex3 elements dispersed along most of the chromosomes. Additionally, the conspicuous signals of Rex1, Rex3, and Rex6 were identified in the acrocentric B microchromosome of A. bockmanni found only in individuals of the Alambari River. Thus, we believe that different mechanisms drive the spread of repetitive sequences among the populations analyzed, which appear to be organized differently in the genome of A. bockmanni. The presence of transposable elements in the B chromosome also suggests that these sequences could play a role in the origin and maintenance of the supernumerary element in the genome of this species.
Collapse
Affiliation(s)
- Sandro N Daniel
- Departamento de Cix00EA;ncias Biolx00F3;gicas, Faculdade de Cix00EA;ncias, Universidade Estadual Paulista (UNESP), Bauru, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 2015; 5:2957. [PMID: 24423660 PMCID: PMC3896762 DOI: 10.1038/ncomms3957] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/19/2013] [Indexed: 01/18/2023] Open
Abstract
Locusts are one of the world’s most destructive agricultural pests and represent a useful model system in entomology. Here we present a draft 6.5 Gb genome sequence of Locusta migratoria, which is the largest animal genome sequenced so far. Our findings indicate that the large genome size of L. migratoria is likely to be because of transposable element proliferation combined with slow rates of loss for these elements. Methylome and transcriptome analyses reveal complex regulatory mechanisms involved in microtubule dynamic-mediated synapse plasticity during phase change. We find significant expansion of gene families associated with energy consumption and detoxification, consistent with long-distance flight capacity and phytophagy. We report hundreds of potential insecticide target genes, including cys-loop ligand-gated ion channels, G-protein-coupled receptors and lethal genes. The L. migratoria genome sequence offers new insights into the biology and sustainable management of this pest species, and will promote its wide use as a model system. Locusts are destructive agricultural pests and serve as a model organism for studies of insects. Here, the authors report a draft genome sequence of the migratory locust, Locusta migratoria, and provide insight into genes associated with key survival traits such as phase-change, long-distance migration and feeding.
Collapse
|
16
|
Gallus S, Kumar V, Bertelsen MF, Janke A, Nilsson MA. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla). Gene 2015; 571:271-8. [PMID: 26123917 DOI: 10.1016/j.gene.2015.06.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage.
Collapse
Affiliation(s)
- S Gallus
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - V Kumar
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - M F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark
| | - A Janke
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany; Goethe University Frankfurt Institute for Ecology, Evolution & Diversity Biologicum Max-von-Laue-Str.13, D-60439 Frankfurt am Main, Germany
| | - M A Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.
| |
Collapse
|
17
|
|
18
|
Godakova SA, Korchagin VI, Semeynova SK, Chernyavskaya MM, Sevast’yanova GA, Ryskov AP. Characterization of retrotransposon Bov-B LINE reverse transcriptase gene sequences in parthenogenetic lizards Darevskia unisexualis and bisexual species D. nairensis and D. valentini. Mol Biol 2015. [DOI: 10.1134/s002689331503005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Biedler JK, Chen X, Tu Z. Horizontal transmission of an R4 clade non-long terminal repeat retrotransposon between the divergent Aedes and Anopheles mosquito genera. INSECT MOLECULAR BIOLOGY 2015; 24:331-337. [PMID: 25615532 PMCID: PMC4400214 DOI: 10.1111/imb.12160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
AaegR4_1 and AgamR4_1 are the sole R4 clade non-long terminal repeat (non-LTR) retrotransposons in Aedes aegypti and Anopheles gambiae, two species that diverged approximately 145-200 million years ago. Twelve full-length copies were found in Ae. aegypti and have less than 1% nucleotide (nt) divergence, suggesting recent activity on an evolutionary time scale. Five of these copies have intact open reading frames and the 3.6 kb open reading frame of AaegR4_1.1 has 78% nt identity to AgamR4_1.1. No intact copies were found in An. gambiae. Searches of 25 genomic databases for 22 mosquito species from three genera revealed R4 clade representatives in Aedes and Anopheles genera but not in Culex. Interestingly, these elements are present in all six species of the An. gambiae species complex that were searched but not in 13 other anopheline species. These results combined with divergence vs. age analysis suggest that horizontal transfer is the most likely explanation for the low divergence between R4 clade retrotransposon sequences of the divergent mosquito species from the Aedes and Anopheles genera. This is the first report of the horizontal transfer of an R4 clade non-LTR retrotransposon and the first report of the horizontal transfer of a non-LTR retrotransposon in mosquitoes.
Collapse
Affiliation(s)
- James K. Biedler
- Department of Biochemistry, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061
| | - Xiaoguang Chen
- Department of Pathogen Biology, School of Public Health and
Tropical Medicine, Southern Medical University, Guang Zhou, Guang Dong 510515 P.R.
China
| | - Zhijian Tu
- Department of Biochemistry, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061
| |
Collapse
|
20
|
Ye N, Zhang X, Miao M, Fan X, Zheng Y, Xu D, Wang J, Zhou L, Wang D, Gao Y, Wang Y, Shi W, Ji P, Li D, Guan Z, Shao C, Zhuang Z, Gao Z, Qi J, Zhao F. Saccharina genomes provide novel insight into kelp biology. Nat Commun 2015; 6:6986. [PMID: 25908475 PMCID: PMC4421812 DOI: 10.1038/ncomms7986] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/20/2015] [Indexed: 01/28/2023] Open
Abstract
Seaweeds are essential for marine ecosystems and have immense economic value. Here we present a comprehensive analysis of the draft genome of Saccharina japonica, one of the most economically important seaweeds. The 537-Mb assembled genomic sequence covered 98.5% of the estimated genome, and 18,733 protein-coding genes are predicted and annotated. Gene families related to cell wall synthesis, halogen concentration, development and defence systems were expanded. Functional diversification of the mannuronan C-5-epimerase and haloperoxidase gene families provides insight into the evolutionary adaptation of polysaccharide biosynthesis and iodine antioxidation. Additional sequencing of seven cultivars and nine wild individuals reveal that the genetic diversity within wild populations is greater than among cultivars. All of the cultivars are descendants of a wild S. japonica accession showing limited admixture with S. longissima. This study represents an important advance toward improving yields and economic traits in Saccharina and provides an invaluable resource for plant genome studies.
Collapse
Affiliation(s)
- Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Miao Miao
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yi Zheng
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Zhou
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongsheng Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuan Gao
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Wenyu Shi
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peifeng Ji
- 1] Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zheng Guan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Samoluk SS, Robledo G, Podio M, Chalup L, Ortiz JPA, Pessino SC, Seijo JG. First insight into divergence, representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species. Genetica 2015; 143:113-25. [PMID: 25633099 DOI: 10.1007/s10709-015-9820-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 01/23/2015] [Indexed: 12/26/2022]
Abstract
Peanut is an allotetraploid (2n = 2x = 40, AABB) of recent origin. Arachis duranensis and A. ipaënsis, the most probable diploid ancestors of the cultigen, and several other wild diploid species with different genomes (A, B, D, F and K) are used in peanut breeding programs. However, the genomic relationships and the evolutionary pathways of genome differentiation of these species are poorly understood. We performed a sequence-based phylogenetic analysis of the L1 reverse transcriptase and estimated its representation and chromosome distribution in species of five genomes and three karyotype groups with the aim of contributing to the knowledge of the genomic structure and evolution of peanut and wild diploid relatives. All the isolated rt fragments were found to belong to plant L1 lineage and were named ALI. The best supported phylogenetic groups were not concordant with the genomes or karyotype groups. The copy number of ALI sequences was higher than the expected one for plants and directly related to genome size. FISH experiments revealed that ALI is mainly located on the euchromatin of interstitial and distal regions of most chromosome arms. Divergence of ALI sequences would have occurred before the differentiation of the genomes and karyotype groups of Arachis. The representation and chromosome distribution of ALI in peanut was almost additive of those of the parental species suggesting that the spontaneous hybridization of the two parental species of peanut followed by chromosome doubling would not have induced a significant burst of ALI transposition.
Collapse
Affiliation(s)
- Sergio Sebastián Samoluk
- Instituto de Botánica del Nordeste (Facultad de Ciencias Agrarias, UNNE-CONICET), Casilla de Correo 209, 3400, Corrientes, Argentina,
| | | | | | | | | | | | | |
Collapse
|
22
|
Heitkam T, Holtgräwe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T. Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:385-97. [PMID: 24862340 DOI: 10.1111/tpj.12565] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 05/03/2023]
Abstract
A large fraction of eukaryotic genomes is made up of long interspersed nuclear elements (LINEs). Due to their capability to create novel copies via error-prone reverse transcription, they generate multiple families and reach high copy numbers. Although mammalian LINEs have been well described, plant LINEs have been only poorly investigated. Here, we present a systematic cross-species survey of LINEs in higher plant genomes shedding light on plant LINE evolution as well as diversity, and facilitating their annotation in genome projects. Applying a Hidden Markov Model (HMM)-based analysis, 59 390 intact LINE reverse transcriptases (RTs) were extracted from 23 plant genomes. These fall in only two out of 28 LINE clades (L1 and RTE) known in eukaryotes. While plant RTE LINEs are highly homogenous and mostly constitute only a single family per genome, plant L1 LINEs are extremely diverse and form numerous families. Despite their heterogeneity, all members across the 23 species fall into only seven L1 subclades, some of them defined here. Exemplarily focusing on the L1 LINEs of a basal reference plant genome (Beta vulgaris), we show that the subclade classification level does not only reflect RT sequence similarity, but also mirrors structural aspects of complete LINE retrotransposons, like element size, position and type of encoded enzymatic domains. Our comprehensive catalogue of plant LINE RTs serves the classification of highly diverse plant LINEs, while the provided subclade-specific HMMs facilitate their annotation.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Acquisition of an Archaea-like ribonuclease H domain by plant L1 retrotransposons supports modular evolution. Proc Natl Acad Sci U S A 2013; 110:20140-5. [PMID: 24277848 DOI: 10.1073/pnas.1310958110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a variety of non-LTR retrotransposons of the L1 superfamily have been found in plant genomes over recent decades, their diversity, distribution, and evolution have yet to be analyzed in depth. Here, we perform comprehensive comparative and evolutionary analyses of L1 retrotransposons from 29 genomes of land plants covering a wide range of taxa. We identify numerous L1 elements in these genomes and detect a striking diversity of their domain composition. We show that all known land plant L1 retrotransposons can be grouped into five major families based on their phylogenetic relationships and domain composition. Moreover, we trace the putative evolution timeline that created the current variants and reveal that evolutionary events included losses and acquisitions of diverse putative RNA-binding domains and the acquisition of an Archaea-like ribonuclease H (RNH) domain. We also show that the latter RNH domain is autonomously active in vitro and speculate that retrotransposons may play a role in the horizontal transfer of RNH between plants, Archaea, and bacteria. The acquisition of an Archaea-like RNH domain by plant L1 retrotransposons negates the hypothesis that RNH domains in non-LTR retrotransposons have a single origin and provides evidence that acquisition happened at least twice. Together, our data indicate that the evolution of the investigated retrotransposons can be mainly characterized by repeated events of domain rearrangements and identify modular evolution as a major trend in the evolution of plant L1 retrotransposons.
Collapse
|
24
|
Garcia-Etxebarria K, Jugo BM. Evolutionary history of bovine endogenous retroviruses in the Bovidae family. BMC Evol Biol 2013; 13:256. [PMID: 24256121 PMCID: PMC3879100 DOI: 10.1186/1471-2148-13-256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/11/2013] [Indexed: 01/28/2023] Open
Abstract
Background Endogenous retroviruses (ERVs) are genomic elements of retroviral origin that are present in the genomes of almost all vertebrates. In cattle, more than 13,000 elements related to ERVs have been detected, and based on the pol gene, 24 families or groups of bovine ERVs have been described. However, information about ERVs in other bovids and the presence of families of related bovine ERVs in different species of the Bovidae family is scarce. Results The 24 families of bovine ERVs previously detected in cattle (Bos taurus) were also detected in zebus (Bos indicus) and yaks (Bos grunniens). In addition, six new families, named BoERV25 to BoERV30, were detected in the three Bos species. Five more ruminant species were screened for related ERVs: 26 families were detected in these species, but four families (BoERV24, BoERV26, BoERV28 and BoERV29) were specific to cattle, zebus, yaks and buffalo. An analysis of the homology of the ERVs of cattle, zebus and yaks revealed that the level of LTR divergence was similar between ERVs from cattle and zebus but was less similar between with ERVs from cattle and yaks. In addition, purifying selection was detected in the genes and retroviral regions of clusters of ERVs of cattle, zebus and yaks. Conclusions In this work, the 24 ERV families previously identified in cattle were also found in two other species in the Bos genus. In addition, six new bovine ERV families were detected. Based on LTR divergence, the most recently inserted families are from Class II. The divergence of the LTR, used as an indirect estimate of the ERV insertion time, seemed to be influenced by the differences in genome evolution since the divergence of the species. In addition, purifying selection could be acting on clusters of ERVs from different species.
Collapse
Affiliation(s)
| | - Begoña M Jugo
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 644 Postakutxa, E-48080 Bilbao, Spain.
| |
Collapse
|
25
|
Schneider AM, Schmidt S, Jonas S, Vollmer B, Khazina E, Weichenrieder O. Structure and properties of the esterase from non-LTR retrotransposons suggest a role for lipids in retrotransposition. Nucleic Acids Res 2013; 41:10563-72. [PMID: 24003030 PMCID: PMC3905857 DOI: 10.1093/nar/gkt786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-LTR retrotransposons are mobile genetic elements and play a major role in eukaryotic genome evolution and disease. Similar to retroviruses they encode a reverse transcriptase, but their genomic integration mechanism is fundamentally different, and they lack homologs of the retroviral nucleocapsid-forming protein Gag. Instead, their first open reading frames encode distinct multi-domain proteins (ORF1ps) presumed to package the retrotransposon-encoded RNA into ribonucleoprotein particles (RNPs). The mechanistic roles of ORF1ps are poorly understood, particularly of ORF1ps that appear to harbor an enzymatic function in the form of an SGNH-type lipolytic acetylesterase. We determined the crystal structures of the coiled coil and esterase domains of the ORF1p from the Danio rerio ZfL2-1 element. We demonstrate a dimerization of the coiled coil and a hydrolytic activity of the esterase. Furthermore, the esterase binds negatively charged phospholipids and liposomes, but not oligo-(A) RNA. Unexpectedly, the esterase can split into two dynamic half-domains, suited to engulf long fatty acid substrates extending from the active site. These properties indicate a role for lipids and membranes in non-LTR retrotransposition. We speculate that Gag-like membrane targeting properties of ORF1ps could play a role in RNP assembly and in membrane-dependent transport or localization processes.
Collapse
Affiliation(s)
- Anna M Schneider
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany and Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Ivancevic AM, Walsh AM, Kortschak RD, Adelson DL. Jumping the fine LINE between species: horizontal transfer of transposable elements in animals catalyses genome evolution. Bioessays 2013; 35:1071-82. [PMID: 24003001 DOI: 10.1002/bies.201300072] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Horizontal transfer (HT) is the transmission of genetic material between non-mating species, a phenomenon thought to occur rarely in multicellular eukaryotes. However, many transposable elements (TEs) are not only capable of HT, but have frequently jumped between widely divergent species. Here we review and integrate reported cases of HT in retrotransposons of the BovB family, and DNA transposons, over a broad range of animals spanning all continents. Our conclusions challenge the paradigm that HT in vertebrates is restricted to infective long terminal repeat (LTR) retrotransposons or retroviruses. This raises the possibility that other non-LTR retrotransposons, such as L1 or CR1 elements, believed to be only vertically transmitted, can horizontally transfer between species. Growing evidence indicates that the process of HT is much more general across different TEs and species than previously believed, and that it likely shapes eukaryotic genomes and catalyses genome evolution.
Collapse
Affiliation(s)
- Atma M Ivancevic
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
27
|
Sormacheva I, Smyshlyaev G, Mayorov V, Blinov A, Novikov A, Novikova O. Vertical Evolution and Horizontal Transfer of CR1 Non-LTR Retrotransposons and Tc1/mariner DNA Transposons in Lepidoptera Species. Mol Biol Evol 2012; 29:3685-702. [DOI: 10.1093/molbev/mss181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
28
|
Nilsson M, Klassert D, Bertelsen M, Hallström B, Janke A. Activity of Ancient RTE Retroposons during the Evolution of Cows, Spiral-Horned Antelopes, and Nilgais (Bovinae). Mol Biol Evol 2012; 29:2885-8. [DOI: 10.1093/molbev/mss158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
29
|
Piskurek O, Jackson DJ. Transposable elements: from DNA parasites to architects of metazoan evolution. Genes (Basel) 2012; 3:409-22. [PMID: 24704977 PMCID: PMC3899998 DOI: 10.3390/genes3030409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 01/22/2023] Open
Abstract
One of the most unexpected insights that followed from the completion of the human genome a decade ago was that more than half of our DNA is derived from transposable elements (TEs). Due to advances in high throughput sequencing technologies it is now clear that TEs comprise the largest molecular class within most metazoan genomes. TEs, once categorised as "junk DNA", are now known to influence genomic structure and function by increasing the coding and non-coding genetic repertoire of the host. In this way TEs are key elements that stimulate the evolution of metazoan genomes. This review highlights several lines of TE research including the horizontal transfer of TEs through host-parasite interactions, the vertical maintenance of TEs over long periods of evolutionary time, and the direct role that TEs have played in generating morphological novelty.
Collapse
Affiliation(s)
- Oliver Piskurek
- Courant Research Centre Geobiology, Georg-August-University of Göttingen, Goldschmidtstr. 3, Göttingen 37077, Germany.
| | - Daniel J Jackson
- Courant Research Centre Geobiology, Georg-August-University of Göttingen, Goldschmidtstr. 3, Göttingen 37077, Germany.
| |
Collapse
|
30
|
Blass E, Bell M, Boissinot S. Accumulation and rapid decay of non-LTR retrotransposons in the genome of the three-spine stickleback. Genome Biol Evol 2012; 4:687-702. [PMID: 22534163 PMCID: PMC3381678 DOI: 10.1093/gbe/evs044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The diversity and abundance of non–long terminal repeat (LTR) retrotransposons (nLTR-RT) differ drastically among vertebrate genomes. At one extreme, the genome of placental mammals is littered with hundreds of thousands of copies resulting from the activity of a single clade of nLTR-RT, the L1 clade. In contrast, fish genomes contain a much more diverse repertoire of nLTR-RT, represented by numerous active clades and families. Yet, the number of nLTR-RT copies in teleostean fish is two orders of magnitude smaller than in mammals. The vast majority of insertions appear to be very recent, suggesting that nLTR-RT do not accumulate in fish genomes. This pattern had previously been explained by a high rate of turnover, in which the insertion of new elements is offset by the selective loss of deleterious inserts. The turnover model was proposed because of the similarity between fish and Drosophila genomes with regard to their nLTR-RT profile. However, it is unclear if this model applies to fish. In fact, a previous study performed on the puffer fish suggested that transposable element insertions behave as neutral alleles. Here we examined the dynamics of amplification of nLTR-RT in the three-spine stickleback (Gasterosteus aculeatus). In this species, the vast majority of nLTR-RT insertions are relatively young, as suggested by their low level of divergence. Contrary to expectations, a majority of these insertions are fixed in lake and oceanic populations; thus, nLTR-RT do indeed accumulate in the genome of their fish host. This is not to say that nLTR-RTs are fully neutral, as the lack of fixed long elements in this genome suggests a deleterious effect related to their length. This analysis does not support the turnover model and strongly suggests that a much higher rate of DNA loss in fish than in mammals is responsible for the relatively small number of nLTR-RT copies and for the scarcity of ancient elements in fish genomes. We further demonstrate that nLTR-RT decay in fish occurs mostly through large deletions and not by the accumulation of small deletions.
Collapse
Affiliation(s)
- Eryn Blass
- Department of Biology, Queens College, City University of New York, Flushing, NY, USA
| | | | | |
Collapse
|
31
|
Sanz L, Harrison RA, Calvete JJ. First draft of the genomic organization of a PIII-SVMP gene. Toxicon 2012; 60:455-69. [PMID: 22543188 DOI: 10.1016/j.toxicon.2012.04.331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 11/20/2022]
Abstract
The evolutionary pathway of highly toxic proteins expressed in snake venom glands from proteins without toxic function and expressed in non-parotid tissues remains poorly understood. Here we examine gene structure of a representative of a venom protein with an ADAMs metalloproteinase evolutionary origin. The structure of the 15,652 bp Echis ocellatus pre-pro EOC00089-like PIII-SVMP gene was assembled from PCR-amplified sequences of overlapping genomic fragments. The gene comprises 12 exons interrupted by 11 introns. In a homology model of the EOC00089-like protein, the insertion of introns interrupting coding regions lie just after or between secondary structure elements. Long interspersed nuclear retroelements (LINE) L2/CR1 and RTE/Bov-B, short interspersed nuclear retroelements SINE/Sauria, and a hobo-activator DNA (Charlie, hAT) transposon were identified within introns 1, 3, 7 and 8. Pairwise amino acid sequence comparisons between EOC00089-like PIII-SVMP and its closest orthologs, ADAM28, from a mammal, Homo sapiens, and the lizard, Anolis carolinensis, showed that the ORFs of these three proteins share 42%/59%, 49%/69%, and 48%/65% (identity/similarity), respectively. The protein-coding positions interrupted by each of the 11 introns of the Echis PIII-SVMP gene are entirely conserved in the A. carolinensis and human ADAM28 genes. However, the lizard and the human ADAM28 genes contain 5 introns not present in the E. ocellatus gene. Furthermore, Echis and Anolis introns exhibit quantitatively and qualitatively distinctions in their inserted retroelements. These findings identify introns as possible key elements in the recruitment and amplification process of SVMPs into the venom gland of extant snakes. Ongoing reptile genome sequencing projects may shed light on this intriguing aspect of the emergence and evolution of venom toxin genes. Furthermore, the organization of the PIII-SVMP reported here provides a genomic explanation for the emergence of dimeric disintegrin subunits encoded by short messengers.
Collapse
Affiliation(s)
- Libia Sanz
- Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | |
Collapse
|
32
|
Ramulu HG, Raoult D, Pontarotti P. The rhizome of life: what about metazoa? Front Cell Infect Microbiol 2012; 2:50. [PMID: 22919641 PMCID: PMC3417402 DOI: 10.3389/fcimb.2012.00050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/23/2012] [Indexed: 02/03/2023] Open
Abstract
The increase in huge number of genomic sequences in recent years has contributed to various genetic events such as horizontal gene transfer (HGT), gene duplication and hybridization of species. Among them HGT has played an important role in the genome evolution and was believed to occur only in Bacterial and Archaeal genomes. As a result, genomes were found to be chimeric and the evolution of life was represented in different forms such as forests, networks and species evolution was described more like a rhizome, rather than a tree. However, in the last few years, HGT has also been evidenced in other group such as metazoa (for example in root-knot nematodes, bdelloid rotifers and mammals). In addition to HGT, other genetic events such as transfer by retrotransposons and hybridization between more closely related lineages are also well established. Therefore, in the light of such genetic events, whether the evolution of metazoa exists in the form of a tree, network or rhizome is highly questionable and needs to be determined. In the current review, we will focus on the role of HGT, retrotransposons and hybridization in the metazoan evolution.
Collapse
Affiliation(s)
- Hemalatha G. Ramulu
- LATP UMR-CNRS 7353, Evolution Biologique et Modélisation, Aix-Marseille UniversitéeMarseille, France
- URMITE CNRS-IRD UMR6236-198Marseille, France
| | | | - Pierre Pontarotti
- LATP UMR-CNRS 7353, Evolution Biologique et Modélisation, Aix-Marseille UniversitéeMarseille, France
| |
Collapse
|
33
|
Janicki M, Rooke R, Yang G. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Res 2012; 19:787-808. [PMID: 21850457 DOI: 10.1007/s10577-011-9230-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.
Collapse
Affiliation(s)
- Mateusz Janicki
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L1C6, Canada
| | | | | |
Collapse
|
34
|
Vasil’eva LA, Antonenko OV, Zakharov IK. Role of transposable elements in the genome of Drosophila melanogaster. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s2079059711060128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Jurka J, Bao W, Kojima KK. Families of transposable elements, population structure and the origin of species. Biol Direct 2011; 6:44. [PMID: 21929767 PMCID: PMC3183009 DOI: 10.1186/1745-6150-6-44] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/19/2011] [Indexed: 11/23/2022] Open
Abstract
Background Eukaryotic genomes harbor diverse families of repetitive DNA derived from transposable elements (TEs) that are able to replicate and insert into genomic DNA. The biological role of TEs remains unclear, although they have profound mutagenic impact on eukaryotic genomes and the origin of repetitive families often correlates with speciation events. We present a new hypothesis to explain the observed correlations based on classical concepts of population genetics. Presentation of the hypothesis The main thesis presented in this paper is that the TE-derived repetitive families originate primarily by genetic drift in small populations derived mostly by subdivisions of large populations into subpopulations. We outline the potential impact of the emerging repetitive families on genetic diversification of different subpopulations, and discuss implications of such diversification for the origin of new species. Testing the hypothesis Several testable predictions of the hypothesis are examined. First, we focus on the prediction that the number of diverse families of TEs fixed in a representative genome of a particular species positively correlates with the cumulative number of subpopulations (demes) in the historical metapopulation from which the species has emerged. Furthermore, we present evidence indicating that human AluYa5 and AluYb8 families might have originated in separate proto-human subpopulations. We also revisit prior evidence linking the origin of repetitive families to mammalian phylogeny and present additional evidence linking repetitive families to speciation based on mammalian taxonomy. Finally, we discuss evidence that mammalian orders represented by the largest numbers of species may be subject to relatively recent population subdivisions and speciation events. Implications of the hypothesis The hypothesis implies that subdivision of a population into small subpopulations is the major step in the origin of new families of TEs as well as of new species. The origin of new subpopulations is likely to be driven by the availability of new biological niches, consistent with the hypothesis of punctuated equilibria. The hypothesis also has implications for the ongoing debate on the role of genetic drift in genome evolution. Reviewers This article was reviewed by Eugene Koonin, Juergen Brosius and I. King Jordan.
Collapse
Affiliation(s)
- Jerzy Jurka
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043, USA.
| | | | | |
Collapse
|
36
|
Wenke T, Döbel T, Sörensen TR, Junghans H, Weisshaar B, Schmidt T. Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes. THE PLANT CELL 2011; 23:3117-28. [PMID: 21908723 PMCID: PMC3203444 DOI: 10.1105/tpc.111.088682] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 05/18/2023]
Abstract
Short interspersed nuclear elements (SINEs) are non-long terminal repeat retrotransposons that are highly abundant, heterogeneous, and mostly not annotated in eukaryotic genomes. We developed a tool designated SINE-Finder for the targeted discovery of tRNA-derived SINEs. We analyzed sequence data of 16 plant genomes, including 13 angiosperms and three gymnosperms and identified 17,829 full-length and truncated SINEs falling into 31 families showing the widespread occurrence of SINEs in higher plants. The investigation focused on potato (Solanum tuberosum), resulting in the detection of seven different SolS SINE families consisting of 1489 full-length and 870 5' truncated copies. Consensus sequences of full-length members range in size from 106 to 244 bp depending on the SINE family. SolS SINEs populated related species and evolved separately, which led to some distinct subfamilies. Solanaceae SINEs are dispersed along chromosomes and distributed without clustering but with preferred integration into short A-rich motifs. They emerged more than 23 million years ago and were species specifically amplified during the radiation of potato, tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum). We show that tobacco TS retrotransposons are composite SINEs consisting of the 3' end of a long interspersed nuclear element integrated downstream of a nonhomologous SINE family followed by successfully colonization of the genome. We propose an evolutionary scenario for the formation of TS as a spontaneous event, which could be typical for the emergence of SINE families.
Collapse
Affiliation(s)
- Torsten Wenke
- Department of Biology, Dresden University of Technology, D-01062 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Rödelsperger C, Sommer RJ. Computational archaeology of the Pristionchus pacificus genome reveals evidence of horizontal gene transfers from insects. BMC Evol Biol 2011; 11:239. [PMID: 21843315 PMCID: PMC3175473 DOI: 10.1186/1471-2148-11-239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/15/2011] [Indexed: 11/10/2022] Open
Abstract
Background The recent sequencing of nematode genomes has laid the basis for comparative genomics approaches to study the impact of horizontal gene transfer (HGT) on the adaptation to new environments and the evolution of parasitism. In the beetle associated nematode Pristionchus pacificus HGT events were found to involve cellulase genes of microbial origin and Diapausin genes that are known from beetles, but not from other nematodes. The insect-to-nematode horizontal transfer is of special interest given that P. pacificus shows a tight association with insects. Results In this study we utilized the observation that horizontally transferred genes often exhibit codon usage patterns more similar to that of the donor than that of the acceptor genome. We introduced GC-normalized relative codon frequencies as a measure to detect characteristic features of P. pacificus orphan genes that show no homology to other nematode genes. We found that atypical codon usage is particularly prevalent in P. pacificus orphans. By comparing codon usage profiles of 71 species, we detected the most significant enrichment in insect-like codon usage profiles. In cross-species comparisons, we identified 509 HGT candidates that show a significantly higher similarity to insect-like profiles than genes with nematode homologs. The most abundant gene family among these genes are non-LTR retrotransposons. Speculating that retrotransposons might have served as carriers of foreign genetic material, we found a significant local clustering tendency of orphan genes in the vicinity of retrotransposons. Conclusions Our study combined codon usage bias, phylogenetic analysis, and genomic colocalization into a general picture of the computational archaeology of the P. pacificus genome and suggests that a substantial fraction of the gene repertoire is of insect origin. We propose that the Pristionchus-beetle association has facilitated HGT and discuss potential vectors of these events.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | | |
Collapse
|
38
|
Križaj I. Ammodytoxin: a window into understanding presynaptic toxicity of secreted phospholipases A(2) and more. Toxicon 2011; 58:219-29. [PMID: 21726572 DOI: 10.1016/j.toxicon.2011.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/10/2011] [Accepted: 06/18/2011] [Indexed: 11/15/2022]
Affiliation(s)
- Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
39
|
Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV. Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genomics Hum Genet 2010; 11:239-64. [PMID: 20590429 DOI: 10.1146/annurev-genom-082509-141646] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.
Collapse
Affiliation(s)
- Daniel E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
40
|
Kojima KK, Kapitonov VV, Jurka J. Recent expansion of a new Ingi-related clade of Vingi non-LTR retrotransposons in hedgehogs. Mol Biol Evol 2010; 28:17-20. [PMID: 20716533 DOI: 10.1093/molbev/msq220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Autonomous non-long terminal repeat (non-LTR) retrotransposons and their repetitive remnants are ubiquitous components of mammalian genomes. Recently, we identified non-LTR retrotransposon families, Ingi-1_AAl and Ingi-1_EE, in two hedgehog genomes. Here we rename them to Vingi-1_AAl and Vingi-1_EE and report a new clade "Vingi," which is a sister clade of Ingi that lacks the ribonuclease H domain. In the European hedgehog genome, there are 11 non-autonomous families of elements derived from Vingi-1_EE by internal deletions. No retrotransposons related to Vingi elements were found in any of the remaining 33 mammalian genomes nearly completely sequenced to date, but we identified several new families of Vingi and Ingi retrotransposons outside mammals. Our data suggest the horizontal transfer of Vingi elements to hedgehog, although the vertical transfer cannot be ruled out. The compact structure and trans-mobilization of nonautonomous derivatives of Vingi can make them useful for in vivo retrotransposition assay system.
Collapse
|
41
|
Schaack S, Gilbert C, Feschotte C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 2010; 25:537-46. [PMID: 20591532 DOI: 10.1016/j.tree.2010.06.001] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 11/25/2022]
Abstract
Horizontal transfer is the passage of genetic material between genomes by means other than parent-to-offspring inheritance. Although the transfer of genes is thought to be crucial in prokaryotic evolution, few instances of horizontal gene transfer have been reported in multicellular eukaryotes; instead, most cases involve transposable elements. With over 200 cases now documented, it is possible to assess the importance of horizontal transfer for the evolution of transposable elements and their host genomes. We review criteria for detecting horizontal transfers and examine recent examples of the phenomenon, shedding light on its mechanistic underpinnings, including the role of host-parasite interactions. We argue that the introduction of transposable elements by horizontal transfer in eukaryotic genomes has been a major force propelling genomic variation and biological innovation.
Collapse
Affiliation(s)
- Sarah Schaack
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | |
Collapse
|
42
|
Tay WT, Behere GT, Batterham P, Heckel DG. Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes. BMC Evol Biol 2010; 10:144. [PMID: 20470440 PMCID: PMC2887409 DOI: 10.1186/1471-2148-10-144] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 05/17/2010] [Indexed: 11/10/2022] Open
Abstract
Background Developing lepidopteran microsatellite DNA markers can be problematical, as markers often exhibit multiple banding patterns and high frequencies of non-amplifying "null" alleles. Previous studies identified sequences flanking simple sequence repeat (SSR) units that are shared among many lepidopteran species and can be grouped into microsatellite-associated DNA families. These families are thought to be associated with unequal crossing-over during DNA recombination or with transposable elements (TEs). Results We identified full-length lepidopteran non-LTR retrotransposable elements of the RTE clade in Heliconius melpomene and Bombyx mori. These retroelements possess a single open reading frame encoding the Exonuclease/Endonuclease/Phosphatase and the Reverse Transcriptase/nLTR domains, a 5' UTR (untranslated region), and an extremely short 3' UTR that regularly consists of SSR units. Phylogenetic analysis supported previous suggestions of horizontal transfer among unrelated groups of organisms, but the diversity of lepidopteran RTE elements appears due to ancient divergence of ancestral elements rather than introgression by horizontal transfer. Similarity searches of lepidopteran genomic sequences in GenBank identified partial RTE elements, usually consisting of the 3' terminal region, in 29 species. Furthermore, we identified the C-terminal end of the Reverse Transcriptase/nLTR domain and the associated 3' UTR in over 190 microsatellite markers from 22 lepidopteran species, accounting for 10% of the lepidopteran microsatellites in GenBank. Occasional retrotransposition of autonomous elements, frequent retrotransposition of 3' partial elements, and DNA replication slippage during retrotransposition offers a mechanistic explanation for the association of SSRs with RTE elements in lepidopteran genomes. Conclusions Non-LTR retrotransposable elements of the RTE clade therefore join a diverse group of TEs as progenitors of SSR units in various organisms. When microsatellites are isolated using standard SSR enrichment protocols and primers designed at complementary repeated regions, amplification from multiple genomic sites can cause scoring difficulties that compromise their utility as markers. Screening against RTE elements in the isolation procedure provides one strategy for minimizing this problem.
Collapse
Affiliation(s)
- Wee Tek Tay
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3010, Australia
| | | | | | | |
Collapse
|
43
|
Ray DA, Platt RN, Batzer MA. Reading between the LINEs to see into the past. Trends Genet 2009; 25:475-9. [PMID: 19837475 DOI: 10.1016/j.tig.2009.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) are an important source of genome diversity and play a crucial role in genome evolution. A recent study by Zhao et al. describes novel patterns of TE diversification in the genome of the extinct mammoth Mammuthus primigenius. Analysis of Mammuthus has provided a unique genome landscape, a pivotal species for understanding TEs and genome evolution and hints at the diversity we verge on discovering by expanding our taxonomic sampling among genomes. Strategies based on this work might also revolutionize investigations of the interface between TE dynamics and genome diversity.
Collapse
Affiliation(s)
- David A Ray
- Department of Biochemistry and Molecular Biology, Box 9650, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
44
|
In silico evidence for the species-specific conservation of mosquito retroposons: implications as a molecular biomarker. Theor Biol Med Model 2009; 6:14. [PMID: 19640272 PMCID: PMC2723080 DOI: 10.1186/1742-4682-6-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes are the transmissive vectors for several infectious pathogens that affect man. However, the control of mosquitoes through insecticide and pesticide spraying has proved difficult in the past. We hypothesized that, by virtue of their reported vertical inheritance among mosquitoes, group II introns - a class of small coding ribonucleic acids (scRNAs) - may form a potential species-specific biomarker. Structurally, introns are a six-moiety complex. Depending on the function of the protein encoded within the IV moiety, the highly mobile class of group II introns or retroposons is sub-divided into two: Restriction Endonuclease (REase)-like and Apurinic aPyramydinic Endonuclease (APE)-like. REase-like retroposons are thought to be the ancestors of APE retroposons. Our aim in this study was to find evidence for the highly species-specific conservation of the APE subclass of mosquito retroposons. METHODS AND RESULTS In silico targeted sequence alignments were conducted across a 1,779-organism genome database (1,518 bacterial, 59 archeal, 201 eukaryotic, and the human), using three mosquito retroposon sequence tags (RST) as BLASTN queries [AJ970181 and AJ90201 of Culex pipien origin and AJ970301 of Anoplese sinensis origin]. At a calibration of E = 10, A & D = 100, default filtration and a homology cut-off of >95% identity, no hits were found on any of the 1,518 bacterial genomes. Eleven (100%) and 15 (100%) hits obtained on the 201-eukaryote genome database were homologs (>95% score) of C.pipien quinquefasciatus JHB retroposons, but none of An. sinensis. Twenty and 221 low score (30-43% identity) spurious hits were found at flanking ends of genes and contigs in the human genome with the C.pipien and An. sinensis RSTs respectively. Functional and positional inference revealed these to be possible relatives of human genomic spliceosomes. We advance two models for the application of mosquito RST: as precursors for developing molecular biomarkers for mosquitoes, and as RST-specific monoclonal antibody (MAb)-DDT immunoconjugates to enhance targeted toxicity. CONCLUSION We offer evidence to support the species-specific conservation of mosquito retroposons among lower taxa. Our findings suggest that retroposons may therefore constitute a unique biomarker for mosquito species that may be exploited in molecular entomology. Mosquito RST-specific MAbs may possibly permit synthesis of DDT immunoconjugates that could be used to achieve species-tailored toxicity.
Collapse
|
45
|
Zhao F, Qi J, Schuster SC. Tracking the past: interspersed repeats in an extinct Afrotherian mammal, Mammuthus primigenius. Genome Res 2009; 19:1384-92. [PMID: 19508981 DOI: 10.1101/gr.091363.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The woolly mammoth (Mammuthus primigenius) died out about several thousand years ago, yet recent paleogenomic studies have successfully recovered genetic information from both the mitochondrial and nuclear genomes of this extinct species. Mammoths belong to Afrotheria, a group of mammals exhibiting extreme morphological diversity and large genome sizes. In this study, we found that the mammoth genome contains a larger proportion of interspersed repeats than any other mammalian genome reported so far, in which the proliferation of the RTE family of retrotransposons (covering 12% of the genome) may be the main reason for an increased genome size. Phylogenetic analysis showed that RTEs in mammoth are closely related to the family BovB/RTE. The incongruence of the reconstructed RTE phylogeny indicates that RTEs in mammoth may be acquired through an ancient lateral gene transfer event. A recent proliferation of SINEs was also found in the probocidean lineage, whereas the Afrotherian-wide SINEs in mammoth have undergone a rather flat and stepwise expansion. Comparisons of the transposable elements (TEs) between mammoth and other mammals may shed light on the evolutionary history of TEs in various mammalian lineages.
Collapse
Affiliation(s)
- Fangqing Zhao
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
46
|
Novick PA, Basta H, Floumanhaft M, McClure MA, Boissinot S. The Evolutionary Dynamics of Autonomous Non-LTR Retrotransposons in the Lizard Anolis Carolinensis Shows More Similarity to Fish Than Mammals. Mol Biol Evol 2009; 26:1811-22. [DOI: 10.1093/molbev/msp090] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
47
|
Iwashita S, Nakashima K, Sasaki M, Osada N, Song SY. Multiple duplication of the bucentaur gene family, which recruits the APE-like domain of retrotransposon: Identification of a novel homolog and distinct cellular expression. Gene 2009; 435:88-95. [PMID: 19393175 DOI: 10.1016/j.gene.2009.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/16/2009] [Accepted: 01/17/2009] [Indexed: 10/21/2022]
Abstract
The p97bcnt/cfdp2 is a ruminant-specific gene created by a combination of gene duplication of ancestral bcnt (bucentaur) or cfdp1 (craniofacial developmental protein 1), bcnt/cfdp1, and the insertion of a retrotransposable element-1 (RTE). As a result, p97Bcnt recruits the whole apurinic/apyrimidinic endonuclease (APE)-like domain of RTE in the middle of the molecule (RTE domain) as a region encoded by an exon. In addition, p97Bcnt contains two intramolecular repeats (IRs) of 40 amino acids each in the C-terminal region, whereas Bcnt/Cfdp1 contains one IR. We have identified an additional bovine homolog with a structure highly similar to p97Bcnt, designated p97Bcnt2, which contains three IRs. p97bcnt2 is located in tandem with bcnt/cfdp1 and p97bcnt within a 177-kb range on bovine chromosome 18, a syntenic region of human chromosome 16. The gene product is expressed as a protein with an apparent molecular mass of 102 kDa. The phylogenetic tree strongly suggests that p97bcnt-2 forms a third clade of the bcnt family and that the first duplication of the IR unit occurred prior to the divergence of p97bcnt and p97bcnt-2. To address the question of whether these bcnt members have distinct functions, we first examined the expression and localization of the p97Bcnt family members. p97Bcnt is substantially expressed in many tissues involved in responses to external and internal stress. In the testis, p97Bcnt localizes preferentially in the nuclei of spermatozoa, while Bcnt/Cfdp1 localizes predominantly in the cytosol of Leydig cells and some spermatogenic cells, implying that at least these two molecules of the Bcnt family play different functional roles. These results provide evidence for the direct contribution of RTE to gene diversity to form gene families that may support cellular function.
Collapse
|
48
|
Novikova OS, Blinov AG. Origin, evolution, and distribution of different groups of non-LTR retrotransposons among eukaryotes. RUSS J GENET+ 2009. [DOI: 10.1134/s102279540902001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Piskurek O, Nishihara H, Okada N. The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis. Gene 2008; 441:111-8. [PMID: 19118606 DOI: 10.1016/j.gene.2008.11.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/18/2008] [Accepted: 11/25/2008] [Indexed: 02/01/2023]
Abstract
Transposable elements have been characterized in a number of vertebrates, including whole genomes of mammals, birds, and fishes. The Anolis carolinensis draft assembly provides the first opportunity to study retroposons in a reptilian genome. Here, we identified and reconstructed a number of retroposons based on database searches: Five Sauria short interspersed element (SINE) subfamilies, 5S-Sauria SINE chimeras, Anolis Bov-B long interspersed element (LINE), Anolis SINE 2, Anolis LINE 2, Anolis LINE 1, Anolis CR 1, and a chromodomain-containing Ty3/Gypsy LTR element. We focused on two SINE families (Anolis Sauria SINE and Anolis SINE 2) and their partner LINE families (Anolis Bov-B LINE and Anolis LINE 2). We demonstrate that each SINE/LINE pair is distributed similarly and predict that the retrotransposition of evolutionarily younger Sauria SINE members is via younger Bov-B LINE members while a correlation also exists between their respective evolutionarily older SINE/LINE members. The evolutionarily youngest Sauria SINE sequences evolved as part of novel rolling-circle transposons. The evolutionary time frame when Bov-B LINEs and Sauria SINEs were less active in their retrotransposition is characterized by a high retrotransposition burst of Anolis SINE 2 and Anolis LINE 2 elements. We also characterized the first full-length chromoviral LTR element in amniotes (Amn-ichi). This newly identified chromovirus is widespread in the Anolis genome and has been very well preserved, indicating that it is still active. Transposable elements in the Anolis genome account for approximately 20% of the total DNA sequence, whereas the proportion is more than double that in many mammalian genomes in which such elements have important biological functions. Nevertheless, 20% transposable element coverage is sufficient to predict that Anolis retroposons and other mobile elements also may have biologically and evolutionarily relevant functions. The new SINEs and LINEs and other ubiquitous genomic elements characterized in the Anolis genome will prove very useful for studies in comparative genomics, phylogenetics, and functional genetics.
Collapse
Affiliation(s)
- Oliver Piskurek
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B21 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
50
|
Gilbert C, Pace JK, Waters PD. Target site analysis of RTE1_LA and its AfroSINE partner in the elephant genome. Gene 2008; 425:1-8. [PMID: 18796327 DOI: 10.1016/j.gene.2008.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
SINEs retrotranspose using their partner LINE's enzymatic machinery. It has recently been proposed that AfroSINEs ending with GGTTT 3' tandem repeats were mobilized by RTE elements ending with CAA 3' tandem repeats in the Afrotherian genome. Using sequences from the elephant genome, we show that AfroSINEs derive from RTE ending with GGTTT-like 3' tandem repeats, a subgroup of RTE1_LA that only reached low copy number, and confirm that they were most likely mobilized by RTE ending with CAA(n) tandem repeats (RTE1_LA-CAA(n)). This partnership is supported by sequence similarity between two regions of the elements, overlap in the timing of their activity, common features of their target site consensus that are not shared by other members of the RTE family, and their high copy number. Detailed analyses of pre-insertion loci reveal that like many other apurinic/apyrimidinic endonuclease encoding elements, RTE1_LA-CAA(n) shows loose target site specificity. In addition, the RTE1_LA-CAA(n) target site consensus shares several structural and primary sequence features with that of LINE1, suggesting that these two elements share close functional similarity in the target primed reverse transcription (TPRT) reaction. Interestingly, although globally similar, the target site consensus of AfroSINE(Anc) and RTE1_LA-CAA(n) differ in several aspects. These differences, not observed among all SINE/LINE pairs so far examined, are most likely due to the fact that AfroSINEs and RTE1_LA-CAA(n) are terminated by a different tandem repeat motif. We propose that these differences reflect constraints imposed by base pairing interactions between the mRNA 3' terminal tandem repeats and the target DNA at the onset of TPRT. So in addition to the endonuclease nicking preference, the mRNA of these elements appears to play an important role in integration site choice through a passive, post-nicking, selective process.
Collapse
Affiliation(s)
- Clément Gilbert
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa.
| | | | | |
Collapse
|