1
|
Chouljenko AV, Stanfield BA, Melnyk TO, Dutta O, Chouljenko VN. A Repetitive Acipenser gueldenstaedtii Genomic Region Aligning with the Acipenser baerii IGLV Gene Cluster Suggests a Role as a Transcription Termination Element Across Several Sturgeon Species. Int J Mol Sci 2024; 25:12685. [PMID: 39684396 DOI: 10.3390/ijms252312685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
This study focuses on the common presence of repetitive sequences within the sturgeon genome that may contribute to enhanced immune responses against infectious diseases. A repetitive 675 bp VAC-2M sequence in Russian sturgeon DNA that aligns with the Siberian sturgeon IGLV gene cluster was identified. A specific 218 bp long portion of the sequence was found to be identical between Acipenser gueldenstaedtii, A. baerii and A. stellatus species, and NCBI blast analysis confirmed the presence of this DNA segment in the A. ruthenus genome. Multiple mutated copies of the same genomic region were detected by PCR analysis, indicating that different versions of this highly repetitive sequence exist simultaneously within the same organism. The selection toward specific genetic differences appears to be highly conserved based on the sequence variations within DNA originating from fish grown at distant geographical regions and individual caviar grains from the same fish. The corresponding A. baerii genomic region encompassing the 357 bp DNA sequence was cloned either ahead or after the human cytomegalovirus immediate early promoter (HCMV-IE) into a pBV-Luc reporter vector expressing the luciferase gene. The DNA segment significantly reduced luciferase expression in transient transfection/expression experiments. The results indicate that this genomic region functions as a transcription termination element that may affect antibody production in sturgeons.
Collapse
Affiliation(s)
- Alexander V Chouljenko
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Center for Marine Sciences and Technology, Morehead City, NC 28557, USA
| | - Brent A Stanfield
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Tetiana O Melnyk
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Ojasvi Dutta
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Vladimir N Chouljenko
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Aroh O, Halanych KM. Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi. BMC Genomics 2021; 22:466. [PMID: 34157969 PMCID: PMC8220671 DOI: 10.1186/s12864-021-07749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Long Terminal Repeat retrotransposons (LTR retrotransposons) are mobile genetic elements composed of a few genes between terminal repeats and, in some cases, can comprise over half of a genome’s content. Available data on LTR retrotransposons have facilitated comparative studies and provided insight on genome evolution. However, data are biased to model systems and marine organisms, including annelids, have been underrepresented in transposable elements studies. Here, we focus on genome of Lamellibrachia luymesi, a vestimentiferan tubeworm from deep-sea hydrocarbon seeps, to gain knowledge of LTR retrotransposons in a deep-sea annelid. Results We characterized LTR retrotransposons present in the genome of L. luymesi using bioinformatic approaches and found that intact LTR retrotransposons makes up about 0.1% of L. luymesi genome. Previous characterization of the genome has shown that this tubeworm hosts several known LTR-retrotransposons. Here we describe and classify LTR retrotransposons in L. luymesi as within the Gypsy, Copia and Bel-pao superfamilies. Although, many elements fell within already recognized families (e.g., Mag, CSRN1), others formed clades distinct from previously recognized families within these superfamilies. However, approximately 19% (41) of recovered elements could not be classified. Gypsy elements were the most abundant while only 2 Copia and 2 Bel-pao elements were present. In addition, analysis of insertion times indicated that several LTR-retrotransposons were recently transposed into the genome of L. luymesi, these elements had identical LTR’s raising possibility of recent or ongoing retrotransposon activity. Conclusions Our analysis contributes to knowledge on diversity of LTR-retrotransposons in marine settings and also serves as an important step to assist our understanding of the potential role of retroelements in marine organisms. We find that many LTR retrotransposons, which have been inserted in the last few million years, are similar to those found in terrestrial model species. However, several new groups of LTR retrotransposons were discovered suggesting that the representation of LTR retrotransposons may be different in marine settings. Further study would improve understanding of the diversity of retrotransposons across animal groups and environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07749-1.
Collapse
Affiliation(s)
- Oluchi Aroh
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, College of Science and Mathematics, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA.
| | - Kenneth M Halanych
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, College of Science and Mathematics, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA
| |
Collapse
|
3
|
Grau JH, Poustka AJ, Meixner M, Plötner J. LTR retroelements are intrinsic components of transcriptional networks in frogs. BMC Genomics 2014; 15:626. [PMID: 25056159 PMCID: PMC4131045 DOI: 10.1186/1471-2164-15-626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/15/2014] [Indexed: 12/16/2022] Open
Abstract
Background LTR retroelements (LTR REs) constitute a major group of transposable elements widely distributed in eukaryotic genomes. Through their own mechanism of retrotranscription LTR REs enrich the genomic landscape by providing genetic variability, thus contributing to genome structure and organization. Nonetheless, transcriptomic activity of LTR REs still remains an obscure domain within cell, developmental, and organism biology. Results Here we present a first comparative analysis of LTR REs for anuran amphibians based on a full depth coverage transcriptome of the European pool frog, Pelophylax lessonae, the genome of the African clawed frog, Silurana tropicalis (release v7.1), and additional transcriptomes of S. tropicalis and Cyclorana alboguttata. We identified over 1000 copies of LTR REs from all four families (Bel/Pao, Ty1/Copia, Ty3/Gypsy, Retroviridae) in the genome of S. tropicalis and discovered transcripts of several of these elements in all RNA-seq datasets analyzed. Elements of the Ty3/Gypsy family were most active, especially Amn-san elements, which accounted for approximately 0.27% of the genome in Silurana. Some elements exhibited tissue specific expression patterns, for example Hydra1.1 and MuERV-like elements in Pelophylax. In S. tropicalis considerable transcription of LTR REs was observed during embryogenesis as soon as the embryonic genome became activated, i.e. at midblastula transition. In the course of embryonic development the spectrum of transcribed LTR REs changed; during gastrulation and neurulation MuERV-like and SnRV like retroviruses were abundantly transcribed while during organogenesis transcripts of the XEN1 retroviruses became much more active. Conclusions The differential expression of LTR REs during embryogenesis in concert with their tissue-specificity and the protein domains they encode are evidence for the functional roles these elements play as integrative parts of complex regulatory networks. Our results support the meanwhile widely accepted concept that retroelements are not simple “junk DNA” or “harmful genomic parasites” but essential components of the transcriptomic machinery in vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-626) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Horacio Grau
- Dahlem Center for Genome Research and Medical Systems Biology, Fabeckstraße 60-62, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
4
|
Bae YA, Ahn JS, Kim SH, Rhyu MG, Kong Y, Cho SY. PwRn1, a novel Ty3/gypsy-like retrotransposon of Paragonimus westermani: molecular characters and its differentially preserved mobile potential according to host chromosomal polyploidy. BMC Genomics 2008; 9:482. [PMID: 18851759 PMCID: PMC2582038 DOI: 10.1186/1471-2164-9-482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/14/2008] [Indexed: 11/25/2022] Open
Abstract
Background Retrotransposons have been known to involve in the remodeling and evolution of host genome. These reverse transcribing elements, which show a complex evolutionary pathway with diverse intermediate forms, have been comprehensively analyzed from a wide range of host genomes, while the information remains limited to only a few species in the phylum Platyhelminthes. Results A LTR retrotransposon and its homologs with a strong phylogenetic affinity toward CsRn1 of Clonorchis sinensis were isolated from a trematode parasite Paragonimus westermani via a degenerate PCR method and from an insect species Anopheles gambiae by in silico analysis of the whole mosquito genome, respectively. These elements, designated PwRn1 and AgCR-1 – AgCR-14 conserved unique features including a t-RNATrp primer binding site and the unusual CHCC signature of Gag proteins. Their flanking LTRs displayed >97% nucleotide identities and thus, these elements were likely to have expanded recently in the trematode and insect genomes. They evolved heterogeneous expression strategies: a single fused ORF, two separate ORFs with an identical reading frame and two ORFs overlapped by -1 frameshifting. Phylogenetic analyses suggested that the elements with the separate ORFs had evolved from an ancestral form(s) with the overlapped ORFs. The mobile potential of PwRn1 was likely to be maintained differentially in association with the karyotype of host genomes, as was examined by the presence/absence of intergenomic polymorphism and mRNA transcripts. Conclusion Our results on the structural diversity of CsRn1-like elements can provide a molecular tool to dissect a more detailed evolutionary episode of LTR retrotransposons. The PwRn1-associated genomic polymorphism, which is substantial in diploids, will also be informative in addressing genomic diversification following inter-/intra-specific hybridization in P. westermani populations.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Molecular Parasitology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Korea.
| | | | | | | | | | | |
Collapse
|
5
|
Llorens C, Fares MA, Moya A. Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesis. BMC Evol Biol 2008; 8:276. [PMID: 18842133 PMCID: PMC2577118 DOI: 10.1186/1471-2148-8-276] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Accepted: 10/08/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The origin of vertebrate retroviruses (Retroviridae) is yet to be thoroughly investigated, but due to their similarity and identical gag-pol (and env) genome structure, it is accepted that they evolve from Ty3/Gypsy LTR retroelements the retrotransposons and retroviruses of plants, fungi and animals. These 2 groups of LTR retroelements code for 3 proteins rarely studied due to the high variability - gag polyprotein, protease and GPY/F module. In relation to 3 previously proposed Retroviridae classes I, II and II, investigation of the above proteins conclusively uncovers important insights regarding the ancient history of Ty3/Gypsy and Retroviridae LTR retroelements. RESULTS We performed a comprehensive study of 120 non-redundant Ty3/Gypsy and Retroviridae LTR retroelements. Phylogenetic reconstruction inferred based on the concatenated analysis of the gag and pol polyproteins shows a robust phylogenetic signal regarding the clustering of OTUs. Evaluation of gag and pol polyproteins separately yields discordant information. While pol signal supports the traditional perspective (2 monophyletic groups), gag polyprotein describes an alternative scenario where each Retroviridae class can be distantly related with one or more Ty3/Gypsy lineages. We investigated more in depth this evidence through comparative analyses performed based on the gag polyprotein, the protease and the GPY/F module. Our results indicate that contrary to the traditional monophyletic view of the origin of vertebrate retroviruses, the Retroviridae class I is a molecular fossil, preserving features that were probably predominant among Ty3/Gypsy ancestors predating the split of plants, fungi and animals. In contrast, classes II and III maintain other phenotypes that emerged more recently during Ty3/Gypsy evolution. CONCLUSION The 3 Retroviridae classes I, II and III exhibit phenotypic differences that delineate a network never before reported between Ty3/Gypsy and Retroviridae LTR retroelements. This new scenario reveals how the diversity of vertebrate retroviruses is polyphyletically recurrent into the Ty3/Gypsy evolution, i.e. older than previously thought. The simplest hypothesis to explain this finding is that classes I, II and III trace back to at least 3 Ty3/Gypsy ancestors that emerged at different evolutionary times prior to protostomes-deuterostomes divergence. We have called this "the three kings hypothesis" concerning the origin of vertebrate retroviruses.
Collapse
Affiliation(s)
- Carlos Llorens
- Institut Cavanilles de Biodiversitat i Biología Evolutiva, Universitat de València, Polígono de la coma S/N, Paterna, Valencia, Spain
- Biotechvana, Parc Cientific, Universitat de Valencia, Paterna, Lab 16D Polígono de la coma S/N, Paterna, Valencia, Spain
| | - Mario A Fares
- Department of Genetics, University of Dublín, Trinity Collage Dublín, Dublín 2, Ireland
| | - Andres Moya
- Institut Cavanilles de Biodiversitat i Biología Evolutiva, Universitat de València, Polígono de la coma S/N, Paterna, Valencia, Spain
- CIBER de Epidemiología y Sal ud Pública (CIBERESP), Spain
| |
Collapse
|
6
|
Fischer C, Bouneau L, Coutanceau JP, Weissenbach J, Ozouf-Costaz C, Volff JN. Diversity and clustered distribution of retrotransposable elements in the compact genome of the pufferfish Tetraodon nigroviridis. Cytogenet Genome Res 2005; 110:522-36. [PMID: 16093705 DOI: 10.1159/000084985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 03/25/2004] [Indexed: 12/15/2022] Open
Abstract
We report the characterization and chromosomal distribution of retroelements in the compact genome of the pufferfish Tetraodon nigroviridis. We have reconstructed partial/complete retroelement sequences, established their phylogenetic relationship to other known eukaryotic retrotransposons, and performed double-color FISH analyses to gain new insights into their patterns of chromosomal distribution. We could identify 43 different reverse transcriptase retrotransposons belonging to the three major known subclasses (14 non-LTR retrotransposons from seven clades, 25 LTR retrotransposons representing the five major known groups, and four Penelope-like elements), and well as two SINEs (non-autonomous retroelements). Such a diversity of retrotransposable elements, which seems to be relatively common in fish but not in mammals, is astonishing in such a compact genome. The total number of retroelements was approximately 3000, roughly representing only 2.6% of the genome of T. nigroviridis. This is much less than in other vertebrate genomes, reflecting the compact nature of the genome of this pufferfish. Major differences in copy number were observed between different clades, indicating differential success in invading and persisting in the genome. Some retroelements displayed evidence of recent activity. Finally, FISH analysis showed that retrotransposable elements preferentially accumulate in specific heterochromatic regions of the genome of T. nigroviridis, revealing a degree of genomic compartmentalization not observed in the human genome.
Collapse
Affiliation(s)
- C Fischer
- Genoscope/Centre National de Séquençage, CNRS-UMR 8030, Evry, France.
| | | | | | | | | | | |
Collapse
|
7
|
Capy P. Classification and nomenclature of retrotransposable elements. Cytogenet Genome Res 2005; 110:457-61. [PMID: 16093698 DOI: 10.1159/000084978] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 03/24/2004] [Indexed: 11/19/2022] Open
Abstract
The classification and nomenclature of retrotransposable elements is reviewed. A comparison is made between the initial classification summarized in Capy et al. (1997b), and the more recent proposal based on the classification of the viruses (Hull, 2001). Several problems, mainly relating to the position of elements belonging to the DIRS-like or Bel-like groups, are discussed. The first classification is now out of date, and must be revisited to take account of the discovery of new elements, however the second cannot be extended to the DNA elements. There is therefore, clear evidence of the need to adopt a general and a common classification.
Collapse
Affiliation(s)
- P Capy
- Laboratoire Populations, Génétique et Evolution, CNRS, Gif/Yvette, France.
| |
Collapse
|