1
|
Quina AS, Durão AF, Mathias MDL. Evidence of micro-evolution in Crocidura russula from two abandoned heavy metal mines: potential use of Cytb, CYP1A1, and p53 as gene biomarkers. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1969-1982. [PMID: 34505200 DOI: 10.1007/s10646-021-02472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals accumulated in the environment due to the mining industry may impact on the health of exposed wild animals with consequences at the population level via survival and selection of the most resistant individuals. The detection and quantification of shifts in gene frequencies or in the genetic structure in populations inhabiting polluted sites may be used as early indicators of environmental stress and reveal potential 'candidate gene biomarkers' for environmental health assessment. We had previously observed that specimens of the Greater white-toothed shrew (Crocidura russula) from two heavy metal mines in Southern Portugal (the Aljustrel and the Preguiça mines) carried physiological alterations compared to shrews from an unpolluted site. Here, we further investigated whether these populations showed genetic differences in genes relevant for physiological homeostasis and/or that are associated with pathways altered in animals living under chronic exposure to pollution, and which could be used as biomarkers. We analysed the mitochondrial cytochrome b (Cytb) gene and intronic and/or exonic regions of four nuclear genes: CYP1A1, LCAT, PRPF31, and p53. We observed (1) population differences in allele frequencies, types of variation, and diversity parameters in the Cytb, CYP1A1, and p53 genes; (2) purifying selection of Cytb in the mine populations; (3) genetic differentiation of the two mine populations from the reference by the p53 gene. Adding to our previous observations with Mus spretus, we provide unequivocal evidence of a population effect exerted by the contaminated environment of the mines on the local species of small mammals.
Collapse
Affiliation(s)
- Ana Sofia Quina
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Universidade de Aveiro Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CESAM - Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Ana Filipa Durão
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Maria da Luz Mathias
- CESAM - Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
2
|
Guo Y, Bao Y, Meng Q, Hu X, Meng Q, Ren L, Li N, Zhao Y. Immunoglobulin genomics in the guinea pig (Cavia porcellus). PLoS One 2012; 7:e39298. [PMID: 22761756 PMCID: PMC3382241 DOI: 10.1371/journal.pone.0039298] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 05/17/2012] [Indexed: 01/06/2023] Open
Abstract
In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 V(H) segments (94 potentially functional genes and 413 pseudogenes), 41 D(H) segments, six J(H) segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many V(H) pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 V(κ) (111 potentially functional genes and 238 pseudogenes), three J(κ) and one C(κ) genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 V(λ) (58 potentially functional genes and 84 pseudogenes) and 11 J(λ) -C(λ) clusters. Phylogenetic analysis suggested the guinea pig's large germline V(H) gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves.
Collapse
Affiliation(s)
- Yongchen Guo
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yonghua Bao
- Department of Basic Immunology, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Qingwen Meng
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaoxiang Hu
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Liming Ren
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Ning Li
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Tardif S, Cormier N. Role of zonadhesin during sperm-egg interaction: a species-specific acrosomal molecule with multiple functions. Mol Hum Reprod 2011; 17:661-8. [PMID: 21602212 DOI: 10.1093/molehr/gar039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sperm-zona adhesion is an essential event in mammalian fertilization, failure of which causes sterility. However, the molecular mechanisms involved in this process are still poorly understood. It has been suggested by few laboratories studying gamete interaction that acrosomal molecules are implicated in sperm-zona pellucida adhesion prior to the acrosome reaction (AR). Zonadhesin, a sperm-specific protein located in the acrosome is critically involved in zona binding. Here we describe the cellular and molecular interaction of zonadhesin during fertilization and also discuss its role in species-specific gamete interaction--an intriguing question in biology. We propose a model in which sperm could transiently expose acrosomal molecules that adhere to the zona independently of the AR in a 'kiss and run' mechanism. This could be a valuable framework for further investigations and a detailed understanding of the molecular events during gamete adhesion is likely to provide new approaches for the design of more effective male contraceptives and better diagnostic methods for sperm dysfunction.
Collapse
Affiliation(s)
- Steve Tardif
- Reproductive and Developmental Biology Group, Maternal and Child Health Sciences Laboratories, Centre for Oncology and Molecular Medicine, Division of Medical Sciences, Ninewells Hospital, University of Dundee, DD1 9SY, Dundee, UK.
| | | |
Collapse
|
4
|
Scott E. A phylogeny of ranid frogs (Anura: Ranoidea: Ranidae), based on a simultaneous analysis of morphological and molecular data. Cladistics 2005; 21:507-574. [DOI: 10.1111/j.1096-0031.2005.00079.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Farmer MA, German RZ. Sexual dimorphism in the craniofacial growth of the guinea pig (Cavia porcellus). J Morphol 2004; 259:172-81. [PMID: 14755749 DOI: 10.1002/jmor.10180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Variation between the sexes during ontogeny is frequently overlooked in discussions of the phylogenetic patterns of adult sexual dimorphism. Different growth trajectories can produce identical degrees and direction of adult dimorphism and the possibility exists that similarities in adults may be the result of differing growth patterns, suggesting independent evolutionary pathways among species to the seemingly identical adult morphology. We quantified the sexual dimorphism in craniofacial skeletal growth of Cavia porcellus, the guinea pig, using longitudinally collected radiographs. Guinea pigs have male-biased sexual dimorphism in size and in growth parameters, despite literature reports to the contrary. These results, analyzed with equivalent data for five species of rodents, and two outgroups representing similarly sized mammals, a rabbit and a marsupial, indicate that some aspects of sexual differences in growth follow phylogenetic lines, while others are a function of whether the species has male- or female-biased dimorphism.
Collapse
Affiliation(s)
- Meredith A Farmer
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | | |
Collapse
|
6
|
David-Gray ZK, Bellingham J, Munoz M, Avivi A, Nevo E, Foster RG. Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi). Eur J Neurosci 2002; 16:1186-94. [PMID: 12405979 DOI: 10.1046/j.1460-9568.2002.02161.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In previous studies, fully functional rod and long-wavelength-sensitive (LWS) cone photopigments have been isolated from the eye of the subterranean blind mole rat (Spalax ehrenbergi superspecies). Spalax possesses subcutaneous atrophied eyes and lacks any ability to respond to visual images. By contrast this animal retains the ability to entrain circadian rhythms of locomotor behaviour to environmental light cues. As this is the only known function of the eye, the rod and LWS photopigments are thought to mediate this response. Most mammals are dichromats possessing, in addition to a single rod photopigment, two classes of cone photopigment, LWS and ultraviolet-sensitive/violet-sensitive (UVS/VS) with differing spectral sensitivities which mediate colour vision. In this paper we explore whether Spalax is a dichromat and has the potential to use colour discrimination for photoentrainment. Using immunocytochemistry and molecular approaches we demonstrate that Spalax is a LWS monochromat. Spalax lacks a functional UVS/VS cone photopigment due to the accumulation of several deleterious mutational changes that have rendered the gene nonfunctional. Using phylogenetic analysis we show that the loss of this class of photoreceptor is likely to have arisen from the visual ecology of this species, and is not an artefact of having an ancestor which lacked a functional UVS/VS cone photopigment. We conclude that colour discrimination is not a prerequisite for photoentrainment in this species.
Collapse
Affiliation(s)
- Z K David-Gray
- Department of Integrative and Molecular Neuroscience, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Charing Cross Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Huchon D, Madsen O, Sibbald MJJB, Ament K, Stanhope MJ, Catzeflis F, de Jong WW, Douzery EJP. Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol 2002; 19:1053-65. [PMID: 12082125 DOI: 10.1093/oxfordjournals.molbev.a004164] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rodentia is the largest order of placental mammals, with approximately 2,050 species divided into 28 families. It is also one of the most controversial with respect to its monophyly, relationships between families, and divergence dates. Here, we have analyzed and compared the performance of three nuclear genes (von Willebrand Factor, interphotoreceptor retinoid-binding protein, and Alpha 2B adrenergic receptor) for a large taxonomic sampling, covering the whole rodent and placental diversity. The phylogenetic results significantly support rodent monophyly, the association of Rodentia with Lagomorpha (the Glires clade), and a Glires + Euarchonta (Primates, Dermoptera, and Scandentia) clade. The resolution of relationships among rodents is also greatly improved. The currently recognized families are divided here into seven well-defined clades (Anomaluromorpha, Castoridae, Ctenohystrica, Geomyoidea, Gliridae, Myodonta, and Sciuroidea) that can be grouped into three major clades: Ctenohystrica, Gliridae + Sciuroidea, and a mouse-related clade (Anomaluromorpha, Castoridae + Geomyoidea, and Myodonta). Molecular datings based on these three genes suggest that the rodent radiation took place at the transition between Paleocene and Eocene. The divergence between rodents and lagomorphs is placed just at the K-T boundary and the first splits among placentals in the Late Cretaceous. Our results thus tend to reconcile molecular and morphological-paleontological insights.
Collapse
Affiliation(s)
- Dorothée Huchon
- Laboratoire de Paléontologie, Paléobiologie et Phylogénie-CC064, Institut des Sciences de l'Evolution UMR 5554/CNRS, Université Montpellier II, Place E. Bataillon, Montpellier Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
ROBINSON-RECHAVI MARC, GRAUR DAN. USAGE OPTIMIZATION OF UNEVENLY SAMPLED DATA THROUGH THE COMBINATION OF QUARTET TREES: A EUTHERIAN DRAFT PHYLOGENY BASED ON 640 NUCLEAR AND MITOCHONDRIAL PROTEINS. ACTA ACUST UNITED AC 2001. [DOI: 10.1560/w1g1-bdtw-hj3x-fjpw] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|