1
|
Uzair M, Urquidi Camacho RA, Liu Z, Overholt AM, DeGennaro D, Zhang L, Herron BS, Hong T, Shpak ED. An updated model of shoot apical meristem regulation by ERECTA family and CLAVATA3 signaling pathways in Arabidopsis. Development 2024; 151:dev202870. [PMID: 38814747 PMCID: PMC11234387 DOI: 10.1242/dev.202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
The shoot apical meristem (SAM) gives rise to the aboveground organs of plants. The size of the SAM is relatively constant due to the balance between stem cell replenishment and cell recruitment into new organs. In angiosperms, the transcription factor WUSCHEL (WUS) promotes stem cell proliferation in the central zone of the SAM. WUS forms a negative feedback loop with a signaling pathway activated by CLAVATA3 (CLV3). In the periphery of the SAM, the ERECTA family receptors (ERfs) constrain WUS and CLV3 expression. Here, we show that four ligands of ERfs redundantly inhibit the expression of these two genes. Transcriptome analysis confirmed that WUS and CLV3 are the main targets of ERf signaling and uncovered new ones. Analysis of promoter reporters indicated that the WUS expression domain mostly overlaps with the CLV3 domain and does not shift along the apical-basal axis in clv3 mutants. Our three-dimensional mathematical model captured gene expression distributions at the single-cell level under various perturbed conditions. Based on our findings, CLV3 regulates cellular levels of WUS mostly through autocrine signaling, and ERfs regulate the spatial expression of WUS, preventing its encroachment into the peripheral zone.
Collapse
Affiliation(s)
- Muhammad Uzair
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Ziyi Liu
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Alex M. Overholt
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel DeGennaro
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Liang Zhang
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brittani S. Herron
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tian Hong
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Elena D. Shpak
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Omori M, Yamane H, Tao R. Comparative transcriptome and functional analyses provide insights into the key factors regulating shoot regeneration in highbush blueberry. HORTICULTURE RESEARCH 2024; 11:uhae114. [PMID: 38919558 PMCID: PMC11197304 DOI: 10.1093/hr/uhae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 06/27/2024]
Abstract
Establishing an efficient plant regeneration system is a crucial prerequisite for genetic engineering technology in plants. However, the regeneration rate exhibits considerable variability among genotypes, and the key factors underlying shoot regeneration capacity remain largely elusive. Blueberry leaf explants cultured on a medium rich in cytokinins exhibit direct shoot organogenesis without prominent callus formation, which holds promise for expediting genetic transformation while minimizing somatic mutations during culture. The objective of this study is to unravel the molecular and genetic determinants that govern cultivar-specific shoot regeneration potential in highbush blueberry (Vaccinium corymbosum L.). We conducted comparative transcriptome analysis using two highbush blueberry genotypes: 'Blue Muffin' ('BM') displaying a high regeneration rate (>80%) and 'O'Neal' ('ON') exhibiting a low regeneration rate (<10%). The findings revealed differential expression of numerous auxin-related genes; notably, 'BM' exhibited higher expression of auxin signaling genes compared to 'ON'. Among blueberry orthologs of transcription factors involved in meristem formation in Arabidopsis, expression of VcENHANCER OF SHOOT REGENERATION (VcESR), VcWUSCHEL (VcWUS), and VcCUP-SHAPED COTYLEDON 2.1 were significantly higher in 'BM' relative to 'ON'. Exogenous application of auxin promoted regeneration, as well as VcESR and VcWUS expression, whereas inhibition of auxin biosynthesis yielded the opposite effects. Overexpression of VcESR in 'BM' promoted shoot regeneration under phytohormone-free conditions by activating the expression of cytokinin- and auxin-related genes. These findings provide new insights into the molecular mechanisms underlying blueberry regeneration and have practical implications for enhancing plant regeneration and transformation techniques.
Collapse
Affiliation(s)
| | | | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Wang J, Long W, Pan J, Zhang X, Luo L, Qian M, Chen W, Luo L, Xu W, Li Y, Cai Y, Xie H. DNAL7, a new allele of NAL11, has major pleiotropic effects on rice architecture. PLANTA 2024; 259:93. [PMID: 38509429 DOI: 10.1007/s00425-024-04376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
MAIN CONCLUSION dnal7, a novel allelic variant of the OsHSP40, affects rice plant architecture and grain yield by coordinating auxins, cytokinins, and gibberellic acids. Plant height and leaf morphology are the most important traits of the ideal plant architecture (IPA), and discovering related genes is critical for breeding high-yield rice. Here, a dwarf and narrow leaf 7 (dnal7) mutant was identified from a γ-ray treated mutant population, which exhibits pleiotropic effects, including dwarfing, narrow leaves, small seeds, and low grain yield per plant compared to the wild type (WT). Histological analysis showed that the number of veins and the distance between adjacent small veins (SVs) were significantly reduced compared to the WT, indicating that DNAL7 controls leaf size by regulating the formation of veins. Map-based cloning and transgenic complementation revealed that DNAL7 is allelic to NAL11, which encodes OsHSP40, and the deletion of 2 codons in dnal7 destroyed the His-Pro-Asp (HPD) motif of OsHSP40. In addition, expression of DNAL7 in both WT and dnal7 gradually increased with the increase of temperature in the range of 27-31 °C. Heat stress significantly affected the seedling height and leaf width of the dnal7 mutant. A comparative transcriptome analysis of WT and dnal7 revealed that DNAL7 influenced multiple metabolic pathways, including plant hormone signal transduction, carbon metabolism, and biosynthesis of amino acids. Furthermore, the contents of the cytokinins in leaf blades were much higher in dnal7 than in the WT, whereas the contents of auxins were lower in dnal7. The contents of bioactive gibberellic acids (GAs) including GA1, GA3, and GA4 in shoots were decreased in dnal7. Thus, DNAL7 regulates rice plant architecture by coordinating the balance of auxins, cytokinins, and GAs. These results indicate that OsHSP40 is a pleiotropic gene, which plays an important role in improving rice yield and plant architecture.
Collapse
Affiliation(s)
- Jie Wang
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
- Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, 430415, Hubei, China
| | - Weixiong Long
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Jintao Pan
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Xiaolin Zhang
- Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan, 430415, Hubei, China
| | - Lihua Luo
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Mingjuan Qian
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Laiyang Luo
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Weibiao Xu
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Yonghui Li
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, 330200, Jiangxi, China.
| |
Collapse
|
4
|
Yu L, Yao M, Mao L, Ma T, Nie Y, Ma H, Shao K, An H, Zhao J. Rice DSP controls stigma, panicle and tiller primordium initiation. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2358-2373. [PMID: 37523341 PMCID: PMC10579714 DOI: 10.1111/pbi.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Tiller and seed number are key determinants of rice (Oryza sativa) yield. These traits are mainly affected by tiller, panicle, spikelet and stigma formation, but to date, no single gene involved in the development of all these organs has been identified. Here, we found a rice mutant defective stigma and panicle (dsp) with greatly reduced numbers of tillers and panicle branches, and ovaries lacking stigmas, due to defects in primordium initiation. We cloned DSP using sequencing-based mapping and verified its function with the CRISPR/Cas9 system. DSP encodes a transcription factor containing an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain that recognizes the GCC motif and a transcription-activating domain at the site of 244-314 that contains an angiosperm-related (AR) motif. Mutating the AR motif resulted in the dsp mutant phenotypes, whereas mutating the AP2/ERF domain led to seedling death. DSP directly regulated PINOID (PID) expression to determine the emergence of rice stigmas, and PID overexpression partially rescued the stigma defect in the dsp cr2-8 and dsp mutants. Moreover, DSP indirectly affected LAX PANICLE1 (LAX1) expression to determine tiller primordium formation and synergistically regulated panicle primordium development. Our results indicated that DSP was a key regulator that modulated different genetic pathways to control the initiation of stigma primordia, the axillary meristem formation of tillers and panicle branches, which revealed their molecular mechanisms and cross-networks, laying the vital foundation for rice yield and trait improvement.
Collapse
Affiliation(s)
- Li Yu
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Min Yao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Lianlian Mao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Tengfei Ma
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Yanshen Nie
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Haoli Ma
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Kun Shao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Hongqiang An
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
5
|
Liu T, Liu X, He J, Dong K, Pan W, Zhang L, Ren R, Zhang Z, Yang T. Identification and fine-mapping of a major QTL ( PH1.1) conferring plant height in broomcorn millet ( Panicum miliaceum). FRONTIERS IN PLANT SCIENCE 2022; 13:1010057. [PMID: 36304390 PMCID: PMC9593001 DOI: 10.3389/fpls.2022.1010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The plant height of broomcorn millet (Panicum miliaceum) is a significant agronomic trait that is closely related to its plant architecture, lodging resistance, and final yield. However, the genes underlying the regulation of plant height in broomcorn millet are rarely reported. Here, an F2 population derived from a cross between a normal variety, "Longmi12," and a dwarf mutant, "Zhang778," was constructed. Genetic analysis for the F2 and F2:3 populations revealed that the plant height was controlled by more than one locus. A major quantitative trait locus (QTL), PH1.1, was preliminarily identified in chromosome 1 using bulked segregant analysis sequencing (BSA-seq). PH1.1 was fine-mapped to a 109-kb genomic region with 15 genes using a high-density map. Among them, longmi011482 and longmi011489, containing nonsynonymous variations in their coding regions, and longmi011496, covering multiple insertion/deletion sequences in the promoter regions, may be possible candidate genes for PH1.1. Three diagnostic markers closely linked to PH1.1 were developed to validate the PH1.1 region in broomcorn millet germplasm. These findings laid the foundation for further understanding of the molecular mechanism of plant height regulation in broomcorn millet and are also beneficial to the breeding program for developing new varieties with optimal height.
Collapse
Affiliation(s)
- Tianpeng Liu
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jihong He
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wanxiang Pan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lei Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ruiyu Ren
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Embryogenic Stem Cell Identity after Protoplast Isolation from Daucus carota and Recovery of Regeneration Ability through Protoplast Culture. Int J Mol Sci 2022; 23:ijms231911556. [PMID: 36232857 PMCID: PMC9570137 DOI: 10.3390/ijms231911556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Protoplasts are single cells isolated from tissues or organs and are considered a suitable system for cell studies in plants. Embryogenic cells are totipotent stem cells, but their regeneration ability decreases or becomes lost altogether with extension of the culture period. In this study, we isolated and cultured EC-derived protoplasts (EC-pts) from carrots and compared them with non-EC-derived protoplasts (NEC-pts) with respect to their totipotency. The protoplast isolation conditions were optimized, and the EC-pts and NEC-pts were characterized by their cell size and types. Both types of protoplasts were then embedded using the alginate layer (TAL) method, and the resulting EC-pt-TALs and NEC-pt-TALs were cultured for further regeneration. The expression of the EC-specific genes SERK1, WUS, BBM, LEC1, and DRN was analyzed to confirm whether EC identity was maintained after protoplast isolation. The protoplast isolation efficiency for EC-pts was 2.4-fold higher than for NEC-pts (3.5 × 106 protoplasts·g−1 FW). In the EC-pt group, protoplasts < 20 µm accounted for 58% of the total protoplasts, whereas in the NEC-pt group, small protoplasts accounted for only 26%. In protoplast culture, the number of protoplasts that divided was 2.6-fold higher for EC-pts than for NEC-pts (7.7 × 104 protoplasts·g−1 FW), with a high number of plants regenerated for EC-pt-TALs, whereas no plants were induced by NEC-pt-TAL. Five times more plants were regenerated from EC-pts than from ECs. Regarding the expression of EC-specific genes, WUS and SERK1 expression increased 12-fold, and LEC1 and BBM expression increased 3.6−6.4-fold in isolated protoplasts compared with ECs prior to protoplast isolation (control). These results reveal that the protoplast isolation process did not affect the embryogenic cell identity; rather, it increased the plant regeneration rate, confirming that EC-derived protoplast culture may be an efficient system for increasing the regeneration ability of old EC cultures through the elimination of old and inactivate cells. EC-derived protoplasts may also represent an efficient single-cell system for application in new breeding technologies such as genome editing.
Collapse
|