1
|
Duong HA, Baba K, DeBruyne JP, Davidson AJ, Ehlen C, Powell M, Tosini G. Environmental circadian disruption re-writes liver circadian proteomes. Nat Commun 2024; 15:5537. [PMID: 38956413 PMCID: PMC11220080 DOI: 10.1038/s41467-024-49852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag are ill-defined. Here, we provided a comprehensive and comparative description of male liver circadian gene expression, encompassing transcriptomes, whole-cell proteomes and nuclear proteomes, under normal and after ECD conditions. Under both conditions, post-translation, rather than transcription, is the dominant contributor to circadian functional outputs. After ECD, post-transcriptional and post-translational processes are the major contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, ECD re-writes the rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome. The re-writing, which is associated with changes of circadian regulatory cis-elements, RNA-processing and protein localization, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.
Collapse
Affiliation(s)
- Hao A Duong
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| | - Kenkichi Baba
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Jason P DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Alec J Davidson
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Christopher Ehlen
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Michael Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| |
Collapse
|
2
|
Lewinski M, Steffen A, Kachariya N, Elgner M, Schmal C, Messini N, Köster T, Reichel M, Sattler M, Zarnack K, Staiger D. Arabidopsis thaliana GLYCINE RICH RNA-BINDING PROTEIN 7 interaction with its iCLIP target LHCB1.1 correlates with changes in RNA stability and circadian oscillation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:203-224. [PMID: 38124335 DOI: 10.1111/tpj.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The importance of RNA-binding proteins (RBPs) for plant responses to environmental stimuli and development is well documented. Insights into the portfolio of RNAs they recognize, however, clearly lack behind the understanding gathered in non-plant model organisms. Here, we characterize binding of the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) to its target transcripts. We identified novel RNA targets from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) data using an improved bioinformatics pipeline that will be broadly applicable to plant RBP iCLIP data. 2705 transcripts with binding sites were identified in plants expressing AtGRP7-GFP that were not recovered in plants expressing an RNA-binding dead variant or GFP alone. A conserved RNA motif enriched in uridine residues was identified at the AtGRP7 binding sites. NMR titrations confirmed the preference of AtGRP7 for RNAs with a central U-rich motif. Among the bound RNAs, circadian clock-regulated transcripts were overrepresented. Peak abundance of the LHCB1.1 transcript encoding a chlorophyll-binding protein was reduced in plants overexpressing AtGRP7 whereas it was elevated in atgrp7 mutants, indicating that LHCB1.1 was regulated by AtGRP7 in a dose-dependent manner. In plants overexpressing AtGRP7, the LHCB1.1 half-life was shorter compared to wild-type plants whereas in atgrp7 mutant plants, the half-life was significantly longer. Thus, AtGRP7 modulates circadian oscillations of its in vivo binding target LHCB1.1 by affecting RNA stability.
Collapse
Affiliation(s)
- Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Alexander Steffen
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Nitin Kachariya
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, Germany
- Department of Bioscience, Bavarian NMR Center, Technical University of Munich, TUM School of Natural Sciences, Garching, 85747, Germany
| | - Mareike Elgner
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Niki Messini
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, Germany
- Department of Bioscience, Bavarian NMR Center, Technical University of Munich, TUM School of Natural Sciences, Garching, 85747, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, Germany
- Department of Bioscience, Bavarian NMR Center, Technical University of Munich, TUM School of Natural Sciences, Garching, 85747, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
3
|
Zhang Y, Xu P, Xue W, Zhu W, Yu X. Diurnal gene oscillations modulated by RNA metabolism in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:728-743. [PMID: 37492018 DOI: 10.1111/tpj.16400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Diurnal rhythms are known to regulate the expression of a large number of genes, coordinating plant growth and development with diel changes in light and temperature. However, the impact of RNA metabolism on rhythmic gene oscillations in plant is not yet fully understood. To address this question, we performed transcriptome and degradome profiling on tomato leaves at 6 time points during one 24 h cycle, using RNA-seq and genome-wide mapping of uncapped and cleavage transcripts (GMUCT). Time-series profiling of RNA-seq revealed 9342 diurnal-oscillated genes, which were enriched in various metabolic processes. To quantify the general level of RNA degradation for each gene, we utilized the Proportion Uncapped (PU) metric, which represents the GMUCT/RNA-seq ratio. Oscillated PU analysis revealed that 3885 genes were regulated by rhythmic RNA degradation. The RNA decay of these diurnal genes was highly coordinated with mRNA downregulation during oscillation, highlighting the critical role of internal transcription-degradation balance in rhythmic gene oscillation. Furthermore, we identified 2190 genes undergoing co-translational RNA decay (CTRD) with 5' phosphate read ends enriched at the boundary of ribosomes stalling at translational termination sites. Interestingly, diurnal-changed mRNAs with large amplitudes tended to be co-translationally decay, suggesting that CTRD contributed to the rapid turnover of diurnal mRNAs. Finally, we also identified several genes, whose miRNA cleavage efficiency oscillated in a diurnal manner. Taken together, these findings uncovered the vital functions of RNA metabolism, including rhythmic RNA degradation, CTRD, and miRNA cleavage, in modulating the diurnal mRNA oscillations during diel change at post-transcriptional level in tomato.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Pengfei Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanxin Xue
- Shanghai Yuanyi Seedling Co. Ltd, Shanghai, 201318, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Prasetyaningrum P, Litthauer S, Vegliani F, Battle MW, Wood MW, Liu X, Dickson C, Jones MA. Inhibition of RNA degradation integrates the metabolic signals induced by osmotic stress into the Arabidopsis circadian system. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5805-5819. [PMID: 37453132 PMCID: PMC10540740 DOI: 10.1093/jxb/erad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The circadian clock system acts as an endogenous timing reference that coordinates many metabolic and physiological processes in plants. Previous studies have shown that the application of osmotic stress delays circadian rhythms via 3'-phospho-adenosine 5'-phosphate (PAP), a retrograde signalling metabolite that is produced in response to redox stress within organelles. PAP accumulation leads to the inhibition of exoribonucleases (XRNs), which are responsible for RNA degradation. Interestingly, we are now able to demonstrate that post-transcriptional processing is crucial for the circadian response to osmotic stress. Our data show that osmotic stress increases the stability of specific circadian RNAs, suggesting that RNA metabolism plays a vital role in circadian clock coordination during drought. Inactivation of XRN4 is sufficient to extend circadian rhythms as part of this response, with PRR7 and LWD1 identified as transcripts that are post-transcriptionally regulated to delay circadian progression.
Collapse
Affiliation(s)
| | | | - Franco Vegliani
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | - Xinmeng Liu
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cathryn Dickson
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew Alan Jones
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Duong HA, Baba K, DeBruyne JP, Davidson AJ, Ehlen C, Powell M, Tosini G. Environmental circadian disruption re-programs liver circadian gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555175. [PMID: 37693605 PMCID: PMC10491124 DOI: 10.1101/2023.08.28.555175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag, which impact millions of people worldwide, are ill-defined. Here, we provided the first comprehensive description of liver circadian gene expression under normal and after ECD conditions. We found that post-transcription and post-translation processes are dominant contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome is re-written by ECD. The re-writing, which is associated with changes of circadian cis-regulatory elements, RNA-processing and protein trafficking, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.
Collapse
Affiliation(s)
- Hao A. Duong
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Kenkichi Baba
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Jason P. DeBruyne
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Alec J. Davidson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Christopher Ehlen
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| | - Michael Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta GA 30310
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta GA 30310
- Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310
| |
Collapse
|
6
|
McCombe CL, Catanzariti AM, Greenwood JR, Desai AM, Outram MA, Yu DS, Ericsson DJ, Brenner SE, Dodds PN, Kobe B, Jones DA, Williams SJ. A rust-fungus Nudix hydrolase effector decaps mRNA in vitro and interferes with plant immune pathways. THE NEW PHYTOLOGIST 2023; 239:222-239. [PMID: 36631975 DOI: 10.1111/nph.18727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2023] [Indexed: 06/02/2023]
Abstract
To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.
Collapse
Affiliation(s)
- Carl L McCombe
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ann-Maree Catanzariti
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Julian R Greenwood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Anna M Desai
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Megan A Outram
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel S Yu
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel J Ericsson
- Australian Synchrotron, Macromolecular Crystallography, Clayton, Vic., 3168, Australia
| | - Steven E Brenner
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | - David A Jones
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon J Williams
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
7
|
Buckley CR, Li X, Martí MC, Haydon MJ. A bittersweet symphony: Metabolic signals in the circadian system. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102333. [PMID: 36640635 DOI: 10.1016/j.pbi.2022.102333] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 06/10/2023]
Abstract
Plants must match their metabolism to daily and seasonal fluctuations in their environment to maximise performance in natural conditions. Circadian clocks enable organisms to anticipate and adapt to these predictable and unpredictable environmental challenges. Metabolism is increasingly recognised as an integrated feature of the plant circadian system. Metabolism is an important circadian-regulated output but also provides input to this dynamic timekeeping mechanism. The spatial organisation of metabolism within cells and between tissues, and the temporal features of metabolism across days, seasons and development, raise interesting questions about how metabolism influences circadian timekeeping. The various mechanisms by which metabolic signals influence the transcription-translation feedback loops of the circadian oscillator are emerging. These include roles for major metabolic signalling pathways, various retrograde signals, and direct metabolic modifications of clock genes or proteins. Such metabolic feedback loops enable intra- and intercellular coordination of rhythmic metabolism, and recent discoveries indicate these contribute to diverse aspects of daily, developmental and seasonal timekeeping.
Collapse
Affiliation(s)
| | - Xiang Li
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - María Carmen Martí
- Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), 30110 Murcia, Spain
| | - Michael J Haydon
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
Reis RS. Thermomorphogenesis: Opportunities and challenges in posttranscriptional regulation. JOURNAL OF EXPERIMENTAL BOTANY 2023:7134107. [PMID: 37082809 DOI: 10.1093/jxb/erad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
Plants exposed to mildly elevated temperatures display morphological and developmental changes collectively termed thermomorphogenesis. This adaptative process has several undesirable consequences to food production, including yield reduction and increased vulnerability to pathogens. Understanding thermomorphogenesis is, thus, critical for understanding how plants will respond to increasingly warmer temperature conditions, such as those caused by climate change. Recently, we have made major advances in that direction, and it has become apparent that plants resource to a broad range of molecules and molecular mechanisms to perceive and respond to increases in environmental temperature. However, most of our efforts have been focused on regulation of transcription and protein abundance and activity, with an important gap encompassing nearly all processes involving RNA (i.e., posttranscriptional regulation). Here, I summarized our current knowledge of thermomorphogenesis involving transcriptional, posttranscriptional, and posttranslational regulation, focused on opportunities and challenges in understanding posttranscriptional regulation-a fertile field for exciting new discoveries.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|