1
|
Evidence for the Mn4-Yz Magnetic Interaction in Ca2+- depleted Photosystem II. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Boussac A. Temperature dependence of the high-spin S2 to S3 transition in Photosystem II: Mechanistic consequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:508-518. [DOI: 10.1016/j.bbabio.2019.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 02/08/2023]
|
3
|
Isobe H, Shoji M, Suzuki T, Shen JR, Yamaguchi K. Spin, Valence, and Structural Isomerism in the S 3 State of the Oxygen-Evolving Complex of Photosystem II as a Manifestation of Multimetallic Cooperativity. J Chem Theory Comput 2019; 15:2375-2391. [PMID: 30855953 DOI: 10.1021/acs.jctc.8b01055] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photosynthetic water oxidation is catalyzed by a Mn4CaO5-cluster in photosystem II through an S-state cycle. Understanding the roles of heterogeneity in each S-state, as identified recently by the EPR spectroscopy, is very important to gain a complete description of the catalytic mechanism. We performed herein hybrid DFT calculations within the broken-symmetry formalism and associated analyses of Heisenberg spin models to study the electronic and spin structures of various isomeric structural motifs (hydroxo-oxo, oxyl-oxo, peroxo, and superoxo species) in the S3 state. Our extensive study reveals several factors that affect the spin ground state: (1) (formal) Mn oxidation state; (2) metal-ligand covalency; (3) coordination geometry; and (4) structural change of the Mn cluster induced by alternations in Mn···Mn distances. Some combination of these effects could selectively stabilize/destabilize some spin states. We found that the high spin state ( Stotal = 6) of the oxyl-oxo species can be causative for catalytic function, which manifests through mixing of the metal-ligand character in magnetic orbitals at relatively short O5···O6 distances (<2.0 Å) and long MnA···O5 distances (>2.0 Å). These results will serve as a basis to conceptually identify and rationalize the physicochemical synergisms that can be evoked by the unique "distorted chair" topology of the cluster through cooperative Jahn-Teller effects on multimetallic centers.
Collapse
Affiliation(s)
- Hiroshi Isobe
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Mitsuo Shoji
- Center for Computational Science , University of Tsukuba , Tsukuba , Ibaraki 305-8577 , Japan
| | - Takayoshi Suzuki
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Kizashi Yamaguchi
- Institute for NanoScience Design , Osaka University , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
4
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Morton J, Chrysina M, Craig VSJ, Akita F, Nakajima Y, Lubitz W, Cox N, Shen JR, Krausz E. Structured near-infrared Magnetic Circular Dichroism spectra of the Mn 4CaO 5 cluster of PSII in T. vulcanus are dominated by Mn(IV) d-d 'spin-flip' transitions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:88-98. [PMID: 29066392 DOI: 10.1016/j.bbabio.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/13/2023]
Abstract
Photosystem II passes through four metastable S-states in catalysing light-driven water oxidation. Variable temperature variable field (VTVH) Magnetic Circular Dichroism (MCD) spectra in PSII of Thermosynochococcus (T.) vulcanus for each S-state are reported. These spectra, along with assignments, provide a new window into the electronic and magnetic structure of Mn4CaO5. VTVH MCD spectra taken in the S2 state provide a clear g=2, S=1/2 paramagnetic characteristic, which is entirely consistent with that known by EPR. The three features, seen as positive (+) at 749nm, negative (-) at 773nm and (+) at 808nm are assigned as 4A→2E spin-flips within the d3 configuration of the Mn(IV) centres present. This assignment is supported by comparison(s) to spin-flips seen in a range of Mn(IV) materials. S3 exhibits a more intense (-) MCD peak at 764nm and has a stronger MCD saturation characteristic. This S3 MCD saturation behaviour can be accurately modelled using parameters taken directly from analyses of EPR spectra. We see no evidence for Mn(III) d-d absorption in the near-IR of any S-state. We suggest that Mn(IV)-based absorption may be responsible for the well-known near-IR induced changes induced in S2 EPR spectra of T. vulcanus and not Mn(III)-based, as has been commonly assumed. Through an analysis of the nephelauxetic effect, the excitation energy of S-state dependent spin-flips seen may help identify coordination characteristics and changes at each Mn(IV). A prospectus as to what more detailed S-state dependent MCD studies promise to achieve is outlined.
Collapse
Affiliation(s)
- Jennifer Morton
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Maria Chrysina
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vincent S J Craig
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Department of Biology, Faculty of Science, Okayama University, Okayama, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Department of Biology, Faculty of Science, Okayama University, Okayama, Japan
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, Australia; Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Department of Biology, Faculty of Science, Okayama University, Okayama, Japan
| | - Elmars Krausz
- Research School of Chemistry, Australian National University, Canberra, Australia.
| |
Collapse
|
6
|
Petrie S, Stranger R, Pace RJ. Rationalizing the 2.25 Å Resolution Crystal Structure of the Water Oxidising Complex of Photosystem II in the S3State. Chemphyschem 2017; 18:2924-2931. [DOI: 10.1002/cphc.201700640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Simon Petrie
- Research School of Chemistry, College of Physical and Mathematical Sciences; The Australian National University; Acton ACT 2601 Australia
| | - Rob Stranger
- Research School of Chemistry, College of Physical and Mathematical Sciences; The Australian National University; Acton ACT 2601 Australia
| | - Ron J. Pace
- Research School of Chemistry, College of Physical and Mathematical Sciences; The Australian National University; Acton ACT 2601 Australia
| |
Collapse
|
7
|
Vinyard DJ, Khan S, Askerka M, Batista VS, Brudvig GW. Energetics of the S 2 State Spin Isomers of the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2017; 121:1020-1025. [PMID: 28079373 DOI: 10.1021/acs.jpcb.7b00110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The S2 redox intermediate of the oxygen-evolving complex in photosystem II is present as two spin isomers. The S = 1/2 isomer gives rise to a multiline electron paramagnetic resonance (EPR) signal at g = 2.0, whereas the S = 5/2 isomer exhibits a broad EPR signal at g = 4.1. The electronic structures of these isomers are known, but their role in the catalytic cycle of water oxidation remains unclear. We show that formation of the S = 1/2 state from the S = 5/2 state is exergonic at temperatures above 160 K. However, the S = 1/2 isomer decays to S1 more slowly than the S = 5/2 isomer. These differences support the hypotheses that the S3 state is formed via the S2 state S = 5/2 isomer and that the stabilized S2 state S = 1/2 isomer plays a role in minimizing S2QA- decay under light-limiting conditions.
Collapse
Affiliation(s)
- David J Vinyard
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Sahr Khan
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Mikhail Askerka
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Victor S Batista
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
8
|
Terrett R, Petrie S, Stranger R, Pace RJ. What computational chemistry and magnetic resonance reveal concerning the oxygen evolving centre in Photosystem II. J Inorg Biochem 2016; 162:178-189. [PMID: 27157978 DOI: 10.1016/j.jinorgbio.2016.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/01/2016] [Accepted: 04/04/2016] [Indexed: 11/18/2022]
Abstract
Density Functional Theory (DFT) computational studies of the Mn4/Ca Oxygen Evolving Complex (OEC) region of Photosystem II in the paramagnetic S2 and S3 states of the water oxdizing catalytic cycle are described. These build upon recent advances in computationally understanding the detailed S1 state OEC geometries, revealed by the recent high resolution Photosystem II crystal structures of Shen et al., at 1.90Å and 1.95Å (Petrie et al., 2015, Angew. Chem. Int. Ed., 54, 7120). The models feature a 'Low Oxidation Paradigm' assumption for the mean Mn oxidation states in the functional enzyme, with the mean oxidation levels being 3.0, 3.25 and 3.5 in S1, S2 and S3, respectively. These calculations are used to infer magnetic exchange interactions within the coupled OEC cluster, particularly in the Electron Paramagnetic Resonance (EPR)-visible S2 and S3 states. Detailed computational estimates of the intrinsic magnitudes and molecular orientations of the 55Mn hyperfine tensors in the S2 state are presented. These parameters, together with the resultant spin projected hyperfine values are compared with recent appropriate experimental EPR data (Continuous Wave (CW), Electron-Nuclear Double Resonance (ENDOR) and ELDOR (Electron-Electron Double Resonance)-Detected Nuclear Magnetic Resonance (EDNMR)) from the OEC. It is found that an effective Coupled Dimer magnetic organization of the four Mn in the OEC cluster in the S2 and S3 states is able to quantitatively rationalize the observed 55Mn hyperfine data. This is consistent with structures we propose to represent the likely state of the OEC in the catalytically active form of the enzyme.
Collapse
Affiliation(s)
- Richard Terrett
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Simon Petrie
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Rob Stranger
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Ron J Pace
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
9
|
Retegan M, Krewald V, Mamedov F, Neese F, Lubitz W, Cox N, Pantazis DA. A five-coordinate Mn(iv) intermediate in biological water oxidation: spectroscopic signature and a pivot mechanism for water binding. Chem Sci 2015; 7:72-84. [PMID: 29861966 PMCID: PMC5950799 DOI: 10.1039/c5sc03124a] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/17/2015] [Indexed: 01/16/2023] Open
Abstract
Among the four photo-driven transitions of the water-oxidizing tetramanganese-calcium cofactor of biological photosynthesis, the second-last step of the catalytic cycle, that is the S2 to S3 state transition, is the crucial step that poises the catalyst for the final O-O bond formation. This transition, whose intermediates are not yet fully understood, is a multi-step process that involves the redox-active tyrosine residue and includes oxidation and deprotonation of the catalytic cluster, as well as the binding of a water molecule. Spectroscopic data has the potential to shed light on the sequence of events that comprise this catalytic step, which still lacks a structural interpretation. In this work the S2-S3 state transition is studied and a key intermediate species is characterized: it contains a Mn3O4Ca cubane subunit linked to a five-coordinate Mn(iv) ion that adopts an approximately trigonal bipyramidal ligand field. It is shown using high-level density functional and multireference wave function calculations that this species accounts for the near-infrared absorption and electron paramagnetic resonance observations on metastable S2-S3 intermediates. The results confirm that deprotonation and Mn oxidation of the cofactor must precede the coordination of a water molecule, and lead to identification of a novel low-energy water binding mode that has important implications for the identity of the substrates in the mechanism of biological water oxidation.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Vera Krewald
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Fikret Mamedov
- Molecular Biomimetics , Department of Chemistry - Ångstrom Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| |
Collapse
|
10
|
Kjaer KH, Ottosen CO. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments. SENSORS 2015; 15:13533-47. [PMID: 26066990 PMCID: PMC4507705 DOI: 10.3390/s150613533] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/05/2015] [Indexed: 11/16/2022]
Abstract
To increase the understanding of how the plant phenotype is formed by genotype and environmental interactions, simple and robust high-throughput plant phenotyping methods should be developed and considered. This would not only broaden the application range of phenotyping in the plant research community, but also increase the ability for researchers to study plants in their natural environments. By studying plants in their natural environment in high temporal resolution, more knowledge on how multiple stresses interact in defining the plant phenotype could lead to a better understanding of the interaction between plant responses and epigenetic regulation. In the present paper, we evaluate a commercial 3D NIR-laser scanner (PlantEye, Phenospex B.V., Herleen, The Netherlands) to track daily changes in plant growth with high precision in challenging environments. Firstly, we demonstrate that the NIR laser beam of the scanner does not affect plant photosynthetic performance. Secondly, we demonstrate that it is possible to estimate phenotypic variation amongst the growth pattern of ten genotypes of Brassica napus L. (rapeseed), using a simple linear correlation between scanned parameters and destructive growth measurements. Our results demonstrate the high potential of 3D laser triangulation for simple measurements of phenotypic variation in challenging environments and in a high temporal resolution.
Collapse
Affiliation(s)
- Katrine Heinsvig Kjaer
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Aarslev, Denmark.
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Aarslev, Denmark.
| |
Collapse
|
11
|
Boussac A, Rutherford AW, Sugiura M. Electron transfer pathways from the S2-states to the S3-states either after a Ca2+/Sr2+ or a Cl-/I- exchange in Photosystem II from Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:576-86. [PMID: 25843552 DOI: 10.1016/j.bbabio.2015.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 01/12/2023]
Abstract
The site for water oxidation in Photosystem II (PSII) goes through five sequential oxidation states (S0 to S4) before O2 is evolved. It consists of a Mn4CaO5-cluster close to a redox-active tyrosine residue (YZ). Cl- is also required for enzyme activity. By using EPR spectroscopy it has been shown that both Ca2+/Sr2+ exchange and Cl-/I- exchange perturb the proportions of centers showing high (S=5/2) and low spin (S=1/2) forms of the S2-state. The S3-state was also found to be heterogeneous with: i) a S=3 form that is detectable by EPR and not sensitive to near-infrared light; and ii) a form that is not EPR visible but in which Mn photochemistry occurs resulting in the formation of a (S2YZ)' split EPR signal upon near-infrared illumination. In Sr/Cl-PSII, the high spin (S=5/2) form of S2 shows a marked heterogeneity with a g=4.3 form generated at low temperature that converts to a relaxed form at g=4.9 at higher temperatures. The high spin g=4.9 form can then progress to the EPR detectable form of S3 at temperatures as low as 180K whereas the low spin (S=1/2) S2-state can only advance to the S3 state at temperatures≥235 K. Both of the two S2 configurations and the two S3 configurations are each shown to be in equilibrium at ≥235 K but not at 198 K. Since both S2 configurations are formed at 198 K, they likely arise from two specific populations of S1. The existence of heterogeneous populations in S1, S2 and S3 states may be related to the structural flexibility associated with the positioning of the oxygen O5 within the cluster highlighted in computational approaches and which has been linked to substrate exchange. These data are discussed in the context of recent in silico studies of the electron transfer pathways between the S2-state(s) and the S3-state(s).
Collapse
Affiliation(s)
- Alain Boussac
- I(2)BC, CNRS UMR 9198, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | | | - Miwa Sugiura
- Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
12
|
Morton J, Akita F, Nakajima Y, Shen JR, Krausz E. Optical identification of the long-wavelength (700–1700 nm) electronic excitations of the native reaction centre, Mn 4 CaO 5 cluster and cytochromes of photosystem II in plants and cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:153-161. [DOI: 10.1016/j.bbabio.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/28/2014] [Accepted: 11/05/2014] [Indexed: 11/30/2022]
|
13
|
Sugiura M, Ogami S, Kusumi M, Un S, Rappaport F, Boussac A. Environment of TyrZ in photosystem II from Thermosynechococcus elongatus in which PsbA2 is the D1 protein. J Biol Chem 2012; 287:13336-47. [PMID: 22362776 DOI: 10.1074/jbc.m112.340323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The main cofactors that determine the photosystem II (PSII) oxygen evolution activity are borne by the D1 and D2 subunits. In the cyanobacterium Thermosynechococcus elongatus, there are three psbA genes coding for D1. Among the 344 residues constituting D1, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2, and 27 between PsbA2 and PsbA3. Here, we present the first study of PsbA2-PSII. Using EPR and UV-visible time-resolved absorption spectroscopy, we show that: (i) the time-resolved EPR spectrum of Tyr(Z)(•) in the (S(3)Tyr(Z)(•))' is slightly modified; (ii) the split EPR signal arising from Tyr(Z)(•) in the (S(2)Tyr(Z)(•))' state induced by near-infrared illumination at 4.2 K of the S(3)Tyr(Z) state is significantly modified; and (iii) the slow phases of P(680)(+) reduction by Tyr(Z) are slowed down from the hundreds of μs time range to the ms time range, whereas both the S(1)Tyr(Z)(•) → S(2)Tyr(Z) and the S(3)Tyr(Z)(•) → S(0)Tyr(Z) + O(2) transition kinetics remained similar to those in PsbA(1/3)-PSII. These results show that the geometry of the Tyr(Z) phenol and its environment, likely the Tyr-O···H···Nε-His bonding, are modified in PsbA2-PSII when compared with PsbA(1/3)-PSII. They also point to the dynamics of the proton-coupled electron transfer processes associated with the oxidation of Tyr(Z) being affected. From sequence comparison, we propose that the C144P and P173M substitutions in PsbA2-PSII versus PsbA(1/3)-PSII, respectively located upstream of the α-helix bearing Tyr(Z) and between the two α-helices bearing Tyr(Z) and its hydrogen-bonded partner, His-190, are responsible for these changes.
Collapse
Affiliation(s)
- Miwa Sugiura
- Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Pace RJ, Jin L, Stranger R. What spectroscopy reveals concerning the Mn oxidation levels in the oxygen evolving complex of photosystem II: X-ray to near infra-red. Dalton Trans 2012; 41:11145-60. [DOI: 10.1039/c2dt30938f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Knör G, Monkowius U. Photosensitization and photocatalysis in bioinorganic, bio-organometallic and biomimetic systems. ADVANCES IN INORGANIC CHEMISTRY 2011. [DOI: 10.1016/b978-0-12-385904-4.00005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Havelius KGV, Su JH, Han G, Mamedov F, Ho FM, Styring S. The formation of the split EPR signal from the S(3) state of Photosystem II does not involve primary charge separation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:11-21. [PMID: 20863810 DOI: 10.1016/j.bbabio.2010.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 11/16/2022]
Abstract
Metalloradical EPR signals have been found in intact Photosystem II at cryogenic temperatures. They reflect the light-driven formation of the tyrosine Z radical (Y(Z)) in magnetic interaction with the CaMn(4) cluster in a particular S state. These so-called split EPR signals, induced at cryogenic temperatures, provide means to study the otherwise transient Y(Z) and to probe the S states with EPR spectroscopy. In the S(0) and S(1) states, the respective split signals are induced by illumination of the sample in the visible light range only. In the S(3) state the split EPR signal is induced irrespective of illumination wavelength within the entire 415-900nm range (visible and near-IR region) [Su, J. H., Havelius, K. G. V., Ho, F. M., Han, G., Mamedov, F., and Styring, S. (2007) Biochemistry 46, 10703-10712]. An important question is whether a single mechanism can explain the induction of the Split S(3) signal across the entire wavelength range or whether wavelength-dependent mechanisms are required. In this paper we confirm that the Y(Z) radical formation in the S(1) state, reflected in the Split S(1) signal, is driven by P680-centered charge separation. The situation in the S(3) state is different. In Photosystem II centers with pre-reduced quinone A (Q(A)), where the P680-centered charge separation is blocked, the Split S(3) EPR signal could still be induced in the majority of the Photosystem II centers using both visible and NIR (830nm) light. This shows that P680-centered charge separation is not involved. The amount of oxidized electron donors and reduced electron acceptors (Q(A)(-)) was well correlated after visible light illumination at cryogenic temperatures in the S(1) state. This was not the case in the S(3) state, where the Split S(3) EPR signal was formed in the majority of the centers in a pathway other than P680-centered charge separation. Instead, we propose that one mechanism exists over the entire wavelength interval to drive the formation of the Split S(3) signal. The origin for this, probably involving excitation of one of the Mn ions in the CaMn(4) cluster in Photosystem II, is discussed.
Collapse
Affiliation(s)
- Kajsa G V Havelius
- Molecular Biomimetrics, Department of Photochemistry and Molecular Sciences, Uppsala University, The Angström Laboratory, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Hasegawa M, Shiina T, Terazima M, Kumazaki S. Selective Excitation of Photosystems in Chloroplasts Inside Plant Leaves Observed by Near-Infrared Laser-Based Fluorescence Spectral Microscopy. ACTA ACUST UNITED AC 2009; 51:225-38. [DOI: 10.1093/pcp/pcp182] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Thapper A, Mamedov F, Mokvist F, Hammarström L, Styring S. Defining the far-red limit of photosystem II in spinach. THE PLANT CELL 2009; 21:2391-401. [PMID: 19700631 PMCID: PMC2751953 DOI: 10.1105/tpc.108.064154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 07/08/2009] [Accepted: 08/04/2009] [Indexed: 05/24/2023]
Abstract
The far-red limit of photosystem II (PSII) photochemistry was studied in PSII-enriched membranes and PSII core preparations from spinach (Spinacia oleracea) after application of laser flashes between 730 and 820 nm. Light up to 800 nm was found to drive PSII activity in both acceptor side reduction and oxidation of the water-oxidizing CaMn(4) cluster. Far-red illumination induced enhancement of, and slowed down decay kinetics of, variable fluorescence. Both effects reflect reduction of the acceptor side of PSII. The effects on the donor side of PSII were monitored using electron paramagnetic resonance spectroscopy. Signals from the S(2)-, S(3)-, and S(0)-states could be detected after one, two, and three far-red flashes, respectively, indicating that PSII underwent conventional S-state transitions. Full PSII turnover was demonstrated by far-red flash-induced oxygen release, with oxygen appearing on the third flash. In addition, both the pheophytin anion and the Tyr Z radical were formed by far-red flashes. The efficiency of this far-red photochemistry in PSII decreases with increasing wavelength. The upper limit for detectable photochemistry in PSII on a single flash was determined to be 780 nm. In photoaccumulation experiments, photochemistry was detectable up to 800 nm. Implications for the energetics and energy levels of the charge separated states in PSII are discussed in light of the presented results.
Collapse
Affiliation(s)
- Anders Thapper
- Department of Photochemistry, Angström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
19
|
Ren Y, Zhang C, Bao H, Shen J, Zhao J. Probing tyrosine Z oxidation in Photosystem II core complex isolated from spinach by EPR at liquid helium temperatures. PHOTOSYNTHESIS RESEARCH 2009; 99:127-138. [PMID: 19214772 DOI: 10.1007/s11120-009-9410-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Tyrosine Z (Tyr(Z)) oxidation observed at liquid helium temperatures provides new insights into the structure and function of Tyr(Z) in active Photosystem II (PSII). However, it has not been reported in PSII core complex from higher plants. Here, we report Tyr(Z) oxidation in the S(1) and S(2) states in PSII core complex from spinach for the first time. Moreover, we identified a 500 G-wide symmetric EPR signal (peak position g = 2.18, trough position g = 1.85) together with the g = 2.03 signal induced by visible light at 10 K in the S(1) state in the PSII core complex. These two signals decay with a similar rate in the dark and both disappear in the presence of 6% methanol. We tentatively assign this new feature to the hyperfine structure of the S(1)Tyr(Z)(*) EPR signal. Furthermore, EPR signals of the S(2) state of the Mn-cluster, the oxidation of the non-heme iron, and the S(1)Tyr(Z)(*) in PSII core complexes and PSII-enriched membranes from spinach are compared, which clearly indicate that both the donor and acceptor sides of the reaction center are undisturbed after the removal of LHCII. These results suggest that the new spinach PSII core complex is suitable for the electron transfer study of PSII at cryogenic temperatures.
Collapse
Affiliation(s)
- Yanan Ren
- Laboratory of Photochemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
20
|
Boussac A, Sugiura M, Lai TL, Rutherford AW. Low-temperature photochemistry in photosystem II from Thermosynechococcus elongatus induced by visible and near-infrared light. Philos Trans R Soc Lond B Biol Sci 2008; 363:1203-10; discussion 1210. [PMID: 17965006 DOI: 10.1098/rstb.2007.2216] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The active site for water oxidation in photosystem II (PSII) consists of a Mn4Ca cluster close to a redox-active tyrosine residue (TyrZ). The enzyme cycles through five sequential oxidation states (S0 to S4) in the water oxidation process. Earlier electron paramagnetic resonance (EPR) work showed that metalloradical states, probably arising from the Mn4 cluster interacting with TyrZ., can be trapped by illumination of the S0, S1 and S2 states at cryogenic temperatures. The EPR signals reported were attributed to S0TyrZ., S1TyrZ. and S2TyrZ., respectively. The equivalent states were examined here by EPR in PSII isolated from Thermosynechococcus elongatus with either Sr or Ca associated with the Mn4 cluster. In order to avoid spectral contributions from the second tyrosyl radical, TyrD., PSII was used in which Tyr160 of D2 was replaced by phenylalanine. We report that the metalloradical signals attributed to TyrZ. interacting with the Mn cluster in S0, S1, S2 and also probably the S3 states are all affected by the presence of Sr. Ca/Sr exchange also affects the non-haem iron which is situated approximately 44 A units away from the Ca site. This could relate to the earlier reported modulation of the potential of QA by the occupancy of the Ca site. It is also shown that in the S3 state both visible and near-infrared light are able to induce a similar Mn photochemistry.
Collapse
Affiliation(s)
- Alain Boussac
- DSV, iBiTec-s, SB2 SM, URA CNRS 2096, CEA Saclay, 91191 Gif sur Yvette, Cedex, France.
| | | | | | | |
Collapse
|
21
|
Ho FM, Styring S. Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:140-53. [DOI: 10.1016/j.bbabio.2007.08.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/28/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
|
22
|
Enthalpy changes during photosynthetic water oxidation tracked by time-resolved calorimetry using a photothermal beam deflection technique. Biophys J 2007; 94:1890-903. [PMID: 17993488 DOI: 10.1529/biophysj.107.117085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The energetics of the individual reaction steps in the catalytic cycle of photosynthetic water oxidation at the Mn(4)Ca complex of photosystem II (PSII) are of prime interest. We studied the electron transfer reactions in oxygen-evolving PSII membrane particles from spinach by a photothermal beam deflection technique, allowing for time-resolved calorimetry in the micro- to millisecond domain. For an ideal quantum yield of 100%, the enthalpy change, DeltaH, coupled to the formation of the radical pair Y(Z)(.+)Q(A)(-) (where Y(Z) is Tyr-161 of the D1 subunit of PSII) is estimated as -820 +/- 250 meV. For a lower quantum yield of 70%, the enthalpy change is estimated to be -400 +/- 250 meV. The observed nonthermal signal possibly is due to a contraction of the PSII protein volume (apparent DeltaV of about -13 A(3)). For the first time, the enthalpy change of the O(2)-evolving transition of the S-state cycle was monitored directly. Surprisingly, the reaction is only slightly exergonic. A value of DeltaH(S(3)-->S(0)) of -210 meV is estimated, but also an enthalpy change of zero is within the error range. A prominent nonthermal photothermal beam deflection signal (apparent DeltaV of about +42 A(3)) may reflect O(2) and proton release from the manganese complex, but also reorganization of the protein matrix.
Collapse
|
23
|
Affiliation(s)
- My Hang V Huynh
- DE-1: High Explosive Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|
24
|
Yano J, Robblee J, Pushkar Y, Marcus MA, Bendix J, Workman JM, Collins TJ, Solomon EI, George SD, Yachandra VK. Polarized X-ray absorption spectroscopy of single-crystal Mn(V) complexes relevant to the oxygen-evolving complex of photosystem II. J Am Chem Soc 2007; 129:12989-3000. [PMID: 17918832 PMCID: PMC3976719 DOI: 10.1021/ja071286b] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy in order to understand the electronic structure and spectroscopic characteristics of high-valent Mn species. Single crystals of the Mn(V)-nitrido and Mn(V)-oxo compounds were aligned along selected molecular vectors with respect to the X-ray polarization vector using X-ray diffraction. The local electronic structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese is coordinated in a tetragonally distorted octahedral environment, showed a single dominant pre-edge peak along the MnN axis that can be assigned to a strong 3d(z(2))-4p(z) mixing mechanism. In the square pyramidal Mn(V)-oxo system, on the other hand, an additional peak was observed at 1 eV below the main pre-edge peak. This component was interpreted as a 1s to 3d(xz,yz) transition with 4px,y mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach. The relevance of these results to understanding the mechanism of the photosynthetic water oxidation is discussed.
Collapse
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory
| | - John Robblee
- Physical Biosciences Division, Lawrence Berkeley National Laboratory
- University of California, Berkeley
| | - Yulia Pushkar
- Physical Biosciences Division, Lawrence Berkeley National Laboratory
- University of California, Berkeley
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Meyer TJ, Huynh MHV, Thorp HH. The Possible Role of Proton-Coupled Electron Transfer (PCET) in Water Oxidation by Photosystem II. Angew Chem Int Ed Engl 2007; 46:5284-304. [PMID: 17604381 DOI: 10.1002/anie.200600917] [Citation(s) in RCA: 410] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
All higher life forms use oxygen and respiration as their primary energy source. The oxygen comes from water by solar-energy conversion in photosynthetic membranes. In green plants, light absorption in photosystem II (PSII) drives electron-transfer activation of the oxygen-evolving complex (OEC). The mechanism of water oxidation by the OEC has long been a subject of great interest to biologists and chemists. With the availability of new molecular-level protein structures from X-ray crystallography and EXAFS, as well as the accumulated results from numerous experiments and theoretical studies, it is possible to suggest how water may be oxidized at the OEC. An integrated sequence of light-driven reactions that exploit coupled electron-proton transfer (EPT) could be the key to water oxidation. When these reactions are combined with long-range proton transfer (by sequential local proton transfers), it may be possible to view the OEC as an intricate structure that is "wired for protons".
Collapse
Affiliation(s)
- Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
26
|
Yano J, Yachandra VK. Oxidation state changes of the Mn4Ca cluster in photosystem II. PHOTOSYNTHESIS RESEARCH 2007; 92:289-303. [PMID: 17429751 PMCID: PMC3963819 DOI: 10.1007/s11120-007-9153-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 02/22/2007] [Indexed: 05/07/2023]
Abstract
A detailed electronic structure of the Mn4Ca cluster is required before two key questions for understanding the mechanism of photosynthetic water oxidation can be addressed. They are whether all four oxidizing equivalents necessary to oxidize water to O2 accumulate on the four Mn ions of the oxygen-evolving complex, or do some ligand-centered oxidations take place before the formation and release of O2 during the S3 --> [S4] --> S0 transition, and what are the oxidation state assignments for the Mn during S-state advancement. X-ray absorption and emission spectroscopy of Mn, including the newly introduced resonant inelastic X-ray scattering spectroscopy have been used to address these questions. The present state of understanding of the electronic structure and oxidation state changes of the Mn4Ca cluster in all the S-states, particularly in the S2 to S3 transition, derived from these techniques is described in this review.
Collapse
Affiliation(s)
- Junko Yano
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vittal K. Yachandra
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Zhang C. Low-barrier hydrogen bond plays key role in active photosystem II--a new model for photosynthetic water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:493-9. [PMID: 17254545 DOI: 10.1016/j.bbabio.2006.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/27/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
The function and mechanism of Tyr(Z) in active photosystem II (PSII) is one of the long-standing issues in the study of photosynthetic water oxidation. Based on recent investigations on active PSII and theoretical studies, a new model is proposed, in which D1-His190 acts as a bridge, to form a low-barrier hydrogen bond (LBHB) with Tyr(Z), and a coordination bond to Mn or Ca ion of the Mn-cluster. Accordingly, this new model differs from previous proposals concerning the mechanism of Tyr(Z) function in two aspects. First, the LBHB plays a key role to decrease the activation energy for Tyr(Z) oxidation and Tyr(Z)(.) reduction during photosynthetic water oxidation. Upon the oxidation of Tyr(Z), the hydrogen bond between Tyr(Z) and His190 changes from a LBHB to a weak hydrogen bond, and vice versa upon Tyr(Z)(.) reduction. In both stages, the electron transfer and proton transfer are coupled. Second, the positive charge formed after Tyr(Z) oxidation may play an important role for water oxidation. It can be delocalized on the Mn-cluster, thus helps to accelerate the proton release from substrate water on Mn-cluster. This model is well reconciled with observations of the S-state dependence of Tyr(Z) oxidation and Tyr(Z)(.) reduction, proton release, isotopic effect and recent EPR experiments. Moreover, the difference between Tyr(Z) and Tyr(D) in active PSII can also be readily rationalized. The His190 binding to the Mn-cluster predicted in this model is contradictious to the recent structure data, however, it has been aware that the crystal structure of the Mn-cluster and its environment are significantly modified by X-ray due to radiation damage and are different from that in active PSII. It is suggested that the His190 may be protonated during the radiation damage, which leads to the loss of its binding to Mn-cluster and the strong hydrogen bond with Tyr(Z). This type of change arising from radiation damage has been confirmed in other enzyme systems.
Collapse
Affiliation(s)
- Chunxi Zhang
- Laboratory of Photochemistry, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China.
| |
Collapse
|