1
|
Chopra P, Chhillar H, Kim YJ, Jo IH, Kim ST, Gupta R. Phytochemistry of ginsenosides: Recent advancements and emerging roles. Crit Rev Food Sci Nutr 2021; 63:613-640. [PMID: 34278879 DOI: 10.1080/10408398.2021.1952159] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ginsenosides, a group of tetracyclic saponins, accounts for the nutraceutical and pharmaceutical relevance of the ginseng (Panax sp.) herb. Owing to the associated therapeutic potential of ginsenosides, their demand has been increased significantly in the last two decades. However, a slow growth cycle, low seed production, and long generation time of ginseng have created a gap between the demand and supply of ginsenosides. The biosynthesis of ginsenosides involves an intricate network of pathways with multiple oxidation and glycosylation reactions. However, the exact functions of some of the associated genes/proteins are still not completely deciphered. Moreover, ginsenoside estimation and extraction using analytical techniques are not feasible with high efficiency. The present review is a step forward in recapitulating the comprehensive aspects of ginsenosides including their distribution, structural diversity, biotransformation, and functional attributes in both plants and animals including humans. Moreover, ginsenoside biosynthesis in the potential plant sources and their metabolism in the human body along with major regulators and stimulators affecting ginsenoside biosynthesis have also been discussed. Furthermore, this review consolidates biotechnological interventions to enhance the biosynthesis of ginsenosides in their potential sources and advancements in the development of synthetic biosystems for efficient ginsenoside biosynthesis to meet their rising industrial demands.
Collapse
Affiliation(s)
- Priyanka Chopra
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Himanshu Chhillar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, College of Natural Resources and Life Sciences, Pusan National University, Miryang, South Korea
| | - Ick Hyun Jo
- Department of Herbal Crop Research, Rural Development Administration, Eumseong, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, College of Natural Resources and Life Sciences, Pusan National University, Miryang, South Korea
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.,Department of Forestry, Environment, and Systems, College of Science and Technology, Kookmin University, Seoul, South Korea
| |
Collapse
|
2
|
Ho TT, Murthy HN, Park SY. Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures. Int J Mol Sci 2020; 21:ijms21030716. [PMID: 31979071 PMCID: PMC7037436 DOI: 10.3390/ijms21030716] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 01/02/2023] Open
Abstract
Recently, plant secondary metabolites are considered as important sources of pharmaceuticals, food additives, flavours, cosmetics, and other industrial products. The accumulation of secondary metabolites in plant cell and organ cultures often occurs when cultures are subjected to varied kinds of stresses including elicitors or signal molecules. Application of exogenous jasmonic acid (JA) and methyl jasmonate (MJ) is responsible for the induction of reactive oxygen species (ROS) and subsequent defence mechanisms in cultured cells and organs. It is also responsible for the induction of signal transduction, the expression of many defence genes followed by the accumulation of secondary metabolites. In this review, the application of exogenous MJ elicitation strategies on the induction of defence mechanism and secondary metabolite accumulation in cell and organ cultures is introduced and discussed. The information presented here is useful for efficient large-scale production of plant secondary metabolites by the plant cell and organ cultures.
Collapse
Affiliation(s)
- Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Danang 550000, Vietnam;
| | | | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: ; Tel.: +82-432-612-531
| |
Collapse
|
3
|
Zhou J, Ran ZF, Yang XT, Li J. Postharvest UV-B Irradiation Stimulated Ginsenoside Rg 1 Biosynthesis through Nitric Oxide (NO) and Jasmonic Acid (JA) in Panax quinquefolius Roots. Molecules 2019; 24:E1462. [PMID: 31013885 PMCID: PMC6515039 DOI: 10.3390/molecules24081462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
The study highlights the influence and signal transduction mechanism of postharvest UV-B on the production of Rg1 in Panax quinquefolius roots during the drying process. The results showed that postharvest UV-B irradiation induced generation of nitric oxide (NO), jasmonic acid (JA), and ginsenoside Rg1 of P. quinquefolius roots. The UV-B-induced increase of Rg1 was suppressed by NO-specific scavenger (cPTIO) and NOS inhibitors (PBITU), JA synthesis inhibitor (SHAM), and JA synthesis inhibitor (PrGall), indicating that NO and JA played essential parts in UV-B-induced Rg1. External NO inhibitors treatment inhibited UV-B-induced accumulation of NO and JA, which suggested that NO was located upstream of the JA signal pathway. NO-caused Rg1 was inhibited by SHAM and PrGall, implying JA participated in transmitting signal NO to Rg1 accumulation. In other words, NO mediated the postharvest UV-B-induced Rg1 accumulation by the JA-dependent pathway in P. quinquefolius roots during the drying process, which helps us understand the underlying mechanisms involved in UV-B-induced Rg1 production and provides information helpful for P. quinquefolius production.
Collapse
Affiliation(s)
- Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Zhi-Fang Ran
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiao-Tong Yang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jia Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
4
|
Lu J, Liang W, Wei K, Li J, Li J, Wang J, Gao W. Induction of signal molecules and expression of functional genes after Pichia pastoris stimulation in Glycyrrhiza uralensis Fisch adventitious roots. J Food Biochem 2019; 43:e12798. [PMID: 31353580 DOI: 10.1111/jfbc.12798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/01/2022]
Abstract
Glycyrrhiza uralensis Fisch is threatened by over-development and consumption, and therefore, in urgent need of protection. Elicitation is considered to be an effective strategy to enhance the secondary metabolites in plant cell and organ cultures. Secondary metabolite, signal molecules, and gene expression in adventitious roots were studied by HPLC-ESI-MSn , commercially available kits and qRT-PCR method, respectively. In the present study, with the addition of linolenic acid, linoleic acid, and Pichia pastoris, the highest concentration of metabolites was achieved by P. pastoris treatment. The contents of total flavonoids (7.16 mg/g) and polysaccharide (149.76 mg/g) peaked at 100 mg/L of P. pastoris, which increased by 3.09-fold and 3.28-fold compared with the control, respectively. However, the highest concentration of glycyrrhizic acid (0.62 mg/g) and glycyrrhetinic acid (0.29 mg/g) were obtained in 200 mg/L of P. pastoris and which were 3.89-fold and 2.42-fold more than the control group, respectively. ESI-MSn analysis indicated that licoricesaponine B2, licoricesapoine G2, licoricesaponine J2, ononin, uralenin, gancaonin C were only identified in the P. pastoris treatment group. Furthermore, P. pastoris also enhanced accumulation of salicylic acid, jasmonic acid, nitric oxide and activities of antioxidant enzymes involved in the plant defense response. In addition, the transcriptional activity of genes involved in glycyrrhizic acid biosynthesis was significantly increased under the treatment of P. pastoris. The results provided a scientific evidence for the further exploitation of G. uralensis adventitious roots and clinical medication. PRACTICAL APPLICATIONS: This study provided an effective strategy to enhance metabolites by Pichia pastoris treatment in adventitious roots of G. uralensis. The data provide a scientific evidence for the further exploitation of G. uralensis adventitious roots and clinical medication.
Collapse
Affiliation(s)
- Jun Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| | - Wenxia Liang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Conservation and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, People's Republic of China
| | - Jianli Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jing Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
5
|
Lu J, Li J, Wang S, Yao L, Liang W, Wang J, Gao W. Advances in ginsenoside biosynthesis and metabolic regulation. Biotechnol Appl Biochem 2018; 65:514-522. [DOI: 10.1002/bab.1649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
- Key Laboratory of Systems Bioengineering; Ministry of Education; Tianjin University; Tianjin People's Republic of China
| | - Jinxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
- Key Laboratory of Systems Bioengineering; Ministry of Education; Tianjin University; Tianjin People's Republic of China
| | - Shihui Wang
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; Tianjin University of Science and Technology; Tianjin People's Republic of China
| | - Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
- Key Laboratory of Systems Bioengineering; Ministry of Education; Tianjin University; Tianjin People's Republic of China
| | - Wenxia Liang
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; Tianjin University of Science and Technology; Tianjin People's Republic of China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
- Key Laboratory of Systems Bioengineering; Ministry of Education; Tianjin University; Tianjin People's Republic of China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
- Key Laboratory of Systems Bioengineering; Ministry of Education; Tianjin University; Tianjin People's Republic of China
| |
Collapse
|
6
|
Li J, Liu S, Wang J, Li J, Li J, Gao W. Gene expression of glycyrrhizin acid and accumulation of endogenous signaling molecule inGlycyrrhiza uralensisFisch adventitious roots afterSaccharomyces cerevisiaeandMeyerozyma guilliermondiiapplications. Biotechnol Appl Biochem 2017; 64:700-711. [DOI: 10.1002/bab.1534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/15/2016] [Accepted: 07/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jianli Li
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; Tianjin University of Science and Technology; Tianjin People's Republic of China
| | - Shujie Liu
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; Tianjin University of Science and Technology; Tianjin People's Republic of China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| | - Jing Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| | - Jinxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| |
Collapse
|
7
|
Kochan E, Szymczyk P, Kuźma Ł, Lipert A, Szymańska G. Yeast Extract Stimulates Ginsenoside Production in Hairy Root Cultures of American Ginseng Cultivated in Shake Flasks and Nutrient Sprinkle Bioreactors. Molecules 2017; 22:molecules22060880. [PMID: 28587128 PMCID: PMC6152677 DOI: 10.3390/molecules22060880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
One of the most effective strategies to enhance metabolite biosynthesis and accumulation in biotechnological systems is the use of elicitation processes. This study assesses the influence of different concentrations of yeast extract (YE) on ginsenoside biosynthesis in Panax quinquefolium (American ginseng) hairy roots cultivated in shake flasks and in a nutrient sprinkle bioreactor after 3 and 7 days of elicitation. The saponin content was determined using HPLC. The maximum yield (20 mg g−1 d.w.) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was achieved after application of YE at 50 mg L−1 concentration and 3 day exposure time. The ginsenoside level was 1.57 times higher than that attained in control medium. The same conditions of elicitation (3 day time of exposure and 50 mg L−1 of YE) also favourably influenced the biosynthesis of studied saponins in bioreactor cultures. The total ginsenoside content was 32.25 mg g−1 d.w. and was higher than that achieved in control medium and in shake flasks cultures. Obtained results indicated that yeast extract can be used to increase ginsenoside production in hairy root cultures of P. quinquefolium.
Collapse
Affiliation(s)
- Ewa Kochan
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| | - Piotr Szymczyk
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego l, Lodz 90-151, Poland.
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Lodz, Pomorska 251, Lodz 92-213, Poland.
| | - Grażyna Szymańska
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| |
Collapse
|
8
|
Biswas T, Mathur AK, Mathur A. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl Microbiol Biotechnol 2017; 101:4009-4032. [PMID: 28411325 DOI: 10.1007/s00253-017-8279-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Ginseng, an oriental gift to the world of healthcare and preventive medicine, is among the top ten medicinal herbs globally. The constitutive triterpene saponins, ginsenosides, or panaxosides are attributed to ginseng's miraculous efficacy towards anti-aging, rejuvenating, and immune-potentiating benefits. The major ginsenosides such as Rb1, Rb2, Rc, Rd., Re, and Rg1, formed after extensive glycosylations of the aglycone "dammaranediol," dominate the chemical profile of this genus in vivo and in vitro. Elicitations have successfully led to appreciable enhancements in the production of these major ginsenosides. However, current research on ginseng biotechnology has been focusing on the enrichment or production of the minor ginsenosides (the less glycosylated precursors of the major ginsenosides) in ginseng preparations, which are either absent or are produced in very low amounts in nature or via cell cultures. The minor ginsenosides under current scientific scrutiny include diol ginsenosides such as Rg3, Rh2, compound K, and triol ginsenosides Rg2 and Rh1, which are being touted as the next "anti-neoplastic pharmacophores," with better bioavailability and potency as compared to the major ginsenosides. This review aims at describing the strategies for ginsenoside production with special attention towards production of the minor ginsenosides from the major ginsenosides via microbial biotransformation, elicitations, and from heterologous expression systems.
Collapse
Affiliation(s)
- Tanya Biswas
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - A K Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - Archana Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India.
| |
Collapse
|
9
|
Li J, Liu S, Wang J, Li J, Liu D, Li J, Gao W. Fungal elicitors enhance ginsenosides biosynthesis, expression of functional genes as well as signal molecules accumulation in adventitious roots of Panax ginseng C. A. Mey. J Biotechnol 2016; 239:106-114. [DOI: 10.1016/j.jbiotec.2016.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
10
|
Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules 2016; 21:182. [PMID: 26848649 PMCID: PMC6273650 DOI: 10.3390/molecules21020182] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/04/2022] Open
Abstract
Plant in vitro cultures represent an attractive and cost-effective alternative to classical approaches to plant secondary metabolite (PSM) production (the “Plant Cell Factory” concept). Among other advantages, they constitute the only sustainable and eco-friendly system to obtain complex chemical structures biosynthesized by rare or endangered plant species that resist domestication. For successful results, the biotechnological production of PSM requires an optimized system, for which elicitation has proved one of the most effective strategies. In plant cell cultures, an elicitor can be defined as a compound introduced in small concentrations to a living system to promote the biosynthesis of the target metabolite. Traditionally, elicitors have been classified in two types, abiotic or biotic, according to their chemical nature and exogenous or endogenous origin, and notably include yeast extract, methyl jasmonate, salicylic acid, vanadyl sulphate and chitosan. In this review, we summarize the enhancing effects of elicitors on the production of high-added value plant compounds such as taxanes, ginsenosides, aryltetralin lignans and other types of polyphenols, focusing particularly on the use of a new generation of elicitors such as coronatine and cyclodextrins.
Collapse
|
11
|
Biswas T, Kalra A, Mathur AK, Lal RK, Singh M, Mathur A. Elicitors’ influenced differential ginsenoside production and exudation into medium with concurrent Rg3/Rh2 panaxadiol induction in Panax quinquefolius cell suspensions. Appl Microbiol Biotechnol 2016; 100:4909-22. [DOI: 10.1007/s00253-015-7264-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/04/2015] [Accepted: 12/14/2015] [Indexed: 01/16/2023]
|
12
|
Li J, Wang J, Li J, Li J, Liu S, Gao W. Protein elicitor isolated from Escherichia coli induced bioactive compound biosynthesis as well as gene expression in Glycyrrhiza uralensis Fisch adventitious roots. RSC Adv 2016. [DOI: 10.1039/c6ra16903a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study explored the ability of three rhizobacterial strains (Bacillus subtilis, Penicillium fellutanum and Escherichia coli) to trigger metabolism.
Collapse
Affiliation(s)
- Jianli Li
- Key Laboratory of Industrial Fermentation Microbiology
- Tianjin Key Laboratory of Industry Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science and Technology
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jinxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Shujie Liu
- Key Laboratory of Industrial Fermentation Microbiology
- Tianjin Key Laboratory of Industry Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science and Technology
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
13
|
Li J, Wang J, Li J, Liu D, Li H, Gao W, Li J, Liu S. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch. Appl Biochem Biotechnol 2015; 178:576-93. [DOI: 10.1007/s12010-015-1895-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/09/2015] [Indexed: 11/25/2022]
|
14
|
Rahimi S, Kim YJ, Yang DC. Production of ginseng saponins: elicitation strategy and signal transductions. Appl Microbiol Biotechnol 2015; 99:6987-96. [DOI: 10.1007/s00253-015-6806-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 01/11/2023]
|
15
|
Murthy HN, Georgiev MI, Kim YS, Jeong CS, Kim SJ, Park SY, Paek KY. Ginsenosides: prospective for sustainable biotechnological production. Appl Microbiol Biotechnol 2014; 98:6243-54. [DOI: 10.1007/s00253-014-5801-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 01/06/2023]
|
16
|
Plancot B, Santaella C, Jaber R, Kiefer-Meyer MC, Follet-Gueye ML, Leprince J, Gattin I, Souc C, Driouich A, Vicré-Gibouin M. Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors. PLANT PHYSIOLOGY 2013; 163:1584-97. [PMID: 24130195 PMCID: PMC3850203 DOI: 10.1104/pp.113.222356] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/07/2013] [Indexed: 05/21/2023]
Abstract
Plant pathogens including fungi and bacteria cause many of the most serious crop diseases. The plant innate immune response is triggered upon recognition of microbe-associated molecular patterns (MAMPs) such as flagellin22 and peptidoglycan. To date, very little is known of MAMP-mediated responses in roots. Root border cells are cells that originate from root caps and are released individually into the rhizosphere. Root tips of Arabidopsis (Arabidopsis thaliana) and flax (Linum usitatissimum) release cells known as "border-like cells." Whereas root border cells of pea (Pisum sativum) are clearly involved in defense against fungal pathogens, the function of border-like cells remains to be established. In this study, we have investigated the responses of root border-like cells of Arabidopsis and flax to flagellin22 and peptidoglycan. We found that both MAMPs triggered a rapid oxidative burst in root border-like cells of both species. The production of reactive oxygen species was accompanied by modifications in the cell wall distribution of extensin epitopes. Extensins are hydroxyproline-rich glycoproteins that can be cross linked by hydrogen peroxide to enhance the mechanical strength of the cell wall. In addition, both MAMPs also caused deposition of callose, a well-known marker of MAMP-elicited defense. Furthermore, flagellin22 induced the overexpression of genes involved in the plant immune response in root border-like cells of Arabidopsis. Our findings demonstrate that root border-like cells of flax and Arabidopsis are able to perceive an elicitation and activate defense responses. We also show that cell wall extensin is involved in the innate immunity response of root border-like cells.
Collapse
|
17
|
Wang JW, Wu JY. Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 134:55-89. [PMID: 23467807 DOI: 10.1007/10_2013_183] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This chapter reviews the various biotic and abiotic elicitors applied to hairy root cultures and their stimulating effects on the accumulation of secondary metabolites. Elicitors generally refer to the agents that stimulate the defense responses of plants. As a major response of plants to biotic and abiotic stress, the accumulation of secondary metabolites in plant tissue cultures can be stimulated by the elicitors. Among the many elicitors applied to hairy root cultures as well as plant cell suspension cultures, the most common and effective elicitors are fungal cell extracts, polysaccharides from fungal and plant cells, and heavy metal salts. With the crude fungal cell extracts, it is essential to observe the preparation conditions carefully for achieving reproducible effects. In addition to the chemical agents, UV-radiation, hyperosmotic stress and temperature shift have been shown effective for some plant species/metabolites. Elicitor type, dose, and treatment schedule are major factors determining the effects on the secondary metabolite production. In addition to the accumulation of products in roots, elicitor treatments often stimulate the release of intracellular products. Although elicitation is mainly effective to increase specific product yield on per unit mass of roots, the incorporation of nutrient feeding strategies can be applied to enhance the volumetric product yield. The integration of in situ product recovery from the roots/liquid medium is another synergistic strategy with the elicitor treatment to improve the process.
Collapse
Affiliation(s)
- Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China,
| | | |
Collapse
|
18
|
Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 2012; 3:926. [PMID: 22735454 DOI: 10.1038/ncomms1926] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/28/2012] [Indexed: 12/19/2022] Open
Abstract
Chloroplasts have a critical role in plant immunity as a site for the production for salicylic acid and jasmonic acid, important mediators of plant immunity. However, the molecular link between chloroplasts and the cytoplasmic-nuclear immune system remains largely unknown. Here we show that pathogen-associated molecular pattern (PAMP) signals are quickly relayed to chloroplasts and evoke specific Ca(2+) signatures in the stroma. We further demonstrate that a chloroplast-localized protein, named calcium-sensing receptor (CAS), is involved in stromal Ca(2+) transients and responsible for both PAMP-induced basal resistance and R gene-mediated hypersensitive cell death. CAS acts upstream of salicylic acid accumulation. Transcriptome analysis demonstrates that CAS is involved in PAMP-induced expression of defence genes and suppression of chloroplast gene expression possibly through (1)O(2)-mediated retrograde signalling, allowing chloroplast-mediated transcriptional reprogramming during plant immune responses. The present study reveals a previously unknown chloroplast-mediated signalling pathway linking chloroplasts to cytoplasmic-nuclear immune responses.
Collapse
|
19
|
Eswaranandam S, Salyer J, Chen P, Lee SO. Effect of elicitor spray at different reproductive stages on saponin content of soybean. J Food Sci 2012; 77:H81-6. [PMID: 22225473 DOI: 10.1111/j.1750-3841.2011.02527.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial health effects of soybeans may be enhanced by increasing bioactive compounds including soyasaponins (ssp). The objective of this study is to elucidate the effect of elicitors sprayed on Ozark variety soybeans, on ssp content. Different concentrations of elicitors, ethyl acetate (EA) and methyl jasmonate (MJ), were sprayed at 4 different growth stages (1-bloom, 2-pod development, 3-seed development, and 4-seed maturity). Seeds were ground, defatted, ssp was extracted and identified and quantified with HPLC. Elicitor and growth stage had an effect on βg and βa contents of soybeans compared with control (P < 0.05). Elicitor had an effect on total ssp content (P < 0.001) and αg and γg content of soybeans compared with control (P < 0.05). Total ssp content of EA 0.05 M, MJ 0.001 M, and 0.005 M sprayed soybeans were higher than EA 0.001 M, which is higher than control (P < 0.05; 3.62, 3.56, 3.56, 3.29, and 2.98 μmol/g soybean, respectively). The overall effect of elicitor on total ssp content was not dependent on growth stage, however, elicitors sprayed at growth stages 1, 2, and 3 showed differences among elicitor applied soybeans. Elicitors applied at growth stage 4 did not have any effect on total ssp content compared to control. Elicitors EA 0.05 M, MJ 0.001, and 0.005 M can be applied on any growth stage to increase total saponin content of soybean variety Ozark. Higher saponin content may improve the beneficial health effects of soybean consumption.
Collapse
|
20
|
Forestan C, Farinati S, Varotto S. The Maize PIN Gene Family of Auxin Transporters. FRONTIERS IN PLANT SCIENCE 2012; 3:16. [PMID: 22639639 PMCID: PMC3355596 DOI: 10.3389/fpls.2012.00016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/17/2012] [Indexed: 05/19/2023]
Abstract
Auxin is a key regulator of plant development and its differential distribution in plant tissues, established by a polar cell to cell transport, can trigger a wide range of developmental processes. A few members of the two families of auxin efflux transport proteins, PIN-formed (PIN) and P-glycoprotein (ABCB/PGP), have so far been characterized in maize. Nine new Zea mays auxin efflux carriers PIN family members and two maize PIN-like genes have now been identified. Four members of PIN1 (named ZmPIN1a-d) cluster, one gene homologous to AtPIN2 (ZmPIN2), three orthologs of PIN5 (ZmPIN5a-c), one gene paired with AtPIN8 (ZmPIN8), and three monocot-specific PINs (ZmPIN9, ZmPIN10a, and ZmPIN10b) were cloned and the phylogenetic relationships between early-land plants, monocots, and eudicots PIN proteins investigated, including the new maize PIN proteins. Tissue-specific expression patterns of the 12 maize PIN genes, 2 PIN-like genes and ZmABCB1, an ABCB auxin efflux carrier, were analyzed together with protein localization and auxin accumulation patterns in normal conditions and in response to drug applications. ZmPIN gene transcripts have overlapping expression domains in the root apex, during male and female inflorescence differentiation and kernel development. However, some PIN family members have specific tissue localization: ZmPIN1d transcript marks the L1 layer of the shoot apical meristem and inflorescence meristem during the flowering transition and the monocot-specific ZmPIN9 is expressed in the root endodermis and pericycle. The phylogenetic and gene structure analyses together with the expression pattern of the ZmPIN gene family indicate that subfunctionalization of some maize PINs can be associated to the differentiation and development of monocot-specific organs and tissues and might have occurred after the divergence between dicots and monocots.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of PadovaLegnaro, Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of PadovaLegnaro, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of PadovaLegnaro, Italy
- *Correspondence: Serena Varotto, Department of Agronomy, Food, Natural Resources, Animal and Environment DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro, Padova, Italy. e-mail:
| |
Collapse
|
21
|
Wang Y, Dai CC, Zhao YW, Peng Y. Fungal endophyte-induced volatile oil accumulation in Atractylodes lancea plantlets is mediated by nitric oxide, salicylic acid and hydrogen peroxide. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.11.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Zhao CL, Cui XM, Chen YP, Liang Q. Key Enzymes of Triterpenoid Saponin Biosynthesis and the Induction of Their Activities and Gene Expressions in Plants. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Triterpenoid saponins are one of the key active components of many medicinal plants. The biosynthetic pathway of triterpenoid saponins in higher plants and a lot of experimental results both indicated that the key enzymes involved in triterpenoid saponin synthesis are squalene synthase (SS), squalene epoxidase (SE), lupeol synthase (LS), dammarenediol synthase (DS), β-amyrin synthase (β-AS), cytochrome P450-dependent monooxygenase (PDMO), and glycosyltransferase (GT). The activities and coding genes of the key enzymes could be induced by a range of factors in various plant species. However, the effects of the factors on the content and composition of the triterpenoid saponins in specific plants are not certainly coincident, and different factors appear to induce the gene expressions of the key enzymes by different signal pathways and at different levels. This paper could provide a reference for strengthening the triterpenoid saponin-synthesizing capability of specific medicinal plants at enzyme and/or gene expression levels in order to improve the plants’ commercial values.
Collapse
Affiliation(s)
- Chang Ling Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiu Ming Cui
- Institute of Natural Products, Wenshan Sanqi Research Institute, Wenshan 663000, China
| | - Yan Ping Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Quan Liang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
23
|
Ferrari S. Biological elicitors of plant secondary metabolites: mode of action and use in the production of nutraceutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:152-66. [PMID: 21520710 DOI: 10.1007/978-1-4419-7347-4_12] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many secondary metabolites of interest for human health and nutrition are produced by plants when they are under attack of microbial pathogens or insects. Treatment with elicitors derived from phytopathogens can be an effective strategy to increase the yield of specific metabolites obtained from plant cell cultures. Understanding how plant cells perceive microbial elicitors and how this perception leads to the accumulation of secondary metabolites, may help us improve the production of nutraceutics in terms of quantity and of quality of the compounds. The knowledge gathered in the past decades on elicitor perception and transduction is now being combined to high-throughput methodologies, such as transcriptomics and metabolomics, to engineer plant cells that produce compounds of interest at industrial scale.
Collapse
Affiliation(s)
- Simone Ferrari
- Department of Plant Biology, University of Rome La Sapienza, Italy.
| |
Collapse
|
24
|
Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC PLANT BIOLOGY 2009; 9:127. [PMID: 19852773 PMCID: PMC2770498 DOI: 10.1186/1471-2229-9-127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 10/23/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. RESULTS Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ) and petiolar cortical (Pet) cells based on laser capture microdissection (LCM) and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is likely to be reprogrammed to prevent pathogen attacks and general abiotic stresses after organ shedding. CONCLUSION The LCM-based data generated in this survey represent the most accurate description of the main biological processes and genes involved in organ abscission in citrus. This study provides novel molecular insight into ethylene-promoted leaf abscission and identifies new putative target genes for characterization and manipulation of organ abscission in citrus.
Collapse
Affiliation(s)
- Javier Agustí
- Instituto Valenciano de Investigaciones Agrarias - Centro de Genómica. Carretera Moncada-Náquera Km. 4,5. 46113 Moncada (Valencia) Spain
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Paz Merelo
- Instituto Valenciano de Investigaciones Agrarias - Centro de Genómica. Carretera Moncada-Náquera Km. 4,5. 46113 Moncada (Valencia) Spain
| | - Manuel Cercós
- Instituto Valenciano de Investigaciones Agrarias - Centro de Genómica. Carretera Moncada-Náquera Km. 4,5. 46113 Moncada (Valencia) Spain
| | - Francisco R Tadeo
- Instituto Valenciano de Investigaciones Agrarias - Centro de Genómica. Carretera Moncada-Náquera Km. 4,5. 46113 Moncada (Valencia) Spain
| | - Manuel Talón
- Instituto Valenciano de Investigaciones Agrarias - Centro de Genómica. Carretera Moncada-Náquera Km. 4,5. 46113 Moncada (Valencia) Spain
| |
Collapse
|
25
|
Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S. The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. PLANT PHYSIOLOGY 2008; 148:1695-706. [PMID: 18790995 PMCID: PMC2577270 DOI: 10.1104/pp.108.127845] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/07/2008] [Indexed: 05/18/2023]
Abstract
Oligogalacturonides (OGs) are endogenous elicitors of defense responses released after partial degradation of pectin in the plant cell wall. We have previously shown that, in Arabidopsis (Arabidopsis thaliana), OGs induce the expression of PHYTOALEXIN DEFICIENT3 (PAD3) and increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of signaling pathways mediated by jasmonate, salicylic acid, and ethylene. Here, we illustrate that the rapid induction of the expression of a variety of genes by OGs is also independent of salicylic acid, ethylene, and jasmonate. OGs elicit a robust extracellular oxidative burst that is generated by the NADPH oxidase AtrbohD. This burst is not required for the expression of OG-responsive genes or for OG-induced resistance to B. cinerea, whereas callose accumulation requires a functional AtrbohD. OG-induced resistance to B. cinerea is also unaffected in powdery mildew resistant4, despite the fact that callose accumulation was almost abolished in this mutant. These results indicate that the OG-induced oxidative burst is not required for the activation of defense responses effective against B. cinerea, leaving open the question of the role of reactive oxygen species in elicitor-mediated defense.
Collapse
Affiliation(s)
- Roberta Galletti
- Dipartimento di Biologia Vegetale, Università di Roma La Sapienza, 5-00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Sakamoto M, Munemura I, Tomita R, Kobayashi K. Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:13-27. [PMID: 18557836 DOI: 10.1111/j.1365-313x.2008.03577.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although auxin and ethylene play pivotal roles in leaf abscission, the subsequent signaling molecules are poorly understood. This is mainly because it is difficult to effectively treat the intact abscission zone (AZ) with pharmacological reagents. We developed an in vitro experimental system that reproduces stress-induced leaf abscission in planta. In this system, 1-mm-thick petiole strips, encompassing the AZ, were separated within 4 days of abscission at the AZ through cell wall degradation in an auxin depletion- and ethylene-dependent manner. The system allowed us to show that hydrogen peroxide (H(2)O(2)) is involved in abscission signaling. Microscopic analyses revealed continuous H(2)O(2) production by AZ cells. H(2)O(2) scavengers and diphenylene iodonium, an inhibitor of NADPH oxidase, suppressed in vitro abscission and cellulase expression. Conversely, the application of H(2)O(2) promoted in vitro abscission and expression of cellulase. Ethephon-induced abscission was suppressed by inhibitors of H(2)O(2) production, whereas the expression of ethylene-responsive genes was unaffected by both H(2)O(2) and an H(2)O(2) inhibitor. These results indicated that H(2)O(2) acts downstream from ethylene in in vitro abscission signaling. In planta, salinity stress induced the expression of genes that respond to ethylene and reactive oxygen species, and also induced H(2)O(2) production at the AZ, which preceded leaf abscission. These results indicate that H(2)O(2) has roles in leaf abscission associated with ethylene both in vitro and in planta.
Collapse
Affiliation(s)
- Masaru Sakamoto
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 022-0003, Japan
| | | | | | | |
Collapse
|
27
|
Bae KH, Choi YE, Shin CG, Kim YY, Kim YS. Enhanced ginsenoside productivity by combination of ethephon and methyl jasmoante in ginseng (Panax ginseng C.A. Meyer) adventitious root cultures. Biotechnol Lett 2006; 28:1163-6. [PMID: 16799761 DOI: 10.1007/s10529-006-9071-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 04/05/2006] [Indexed: 11/30/2022]
Abstract
Ethephon at 50 microM enhanced both root growth and ginsenoside accumulation in ginseng (Panax ginseng C.A. Meyer) adventitious root cultures, but at 100 microM it inhibited only ginsenoside accumulation. Ginsenoside productivity with 50 microM ethephon was the highest at 1.7 mg l(-1) d(-1) after 8 days of elicitation. However, elicitation with 50 microM ethephon and 100 microM methyl jasmonate (MJ) improved productivity (6.3 mg l(-1) d(-1)) whereas elicitation with 100 microM MJ alone gave only 2.9 mg l(-1) d(-1).
Collapse
Affiliation(s)
- Kee-Hwa Bae
- Korea Ginseng Institute, Chung-Ang University, Anseong , 456-756, Korea
| | | | | | | | | |
Collapse
|