1
|
Pei Z, Huang Y, Ni J, Liu Y, Yang Q. For a Colorful Life: Recent Advances in Anthocyanin Biosynthesis during Leaf Senescence. BIOLOGY 2024; 13:329. [PMID: 38785811 PMCID: PMC11117936 DOI: 10.3390/biology13050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Leaf senescence is the last stage of leaf development, and it is accompanied by a leaf color change. In some species, anthocyanins are accumulated during leaf senescence, which are vital indicators for both ornamental and commercial value. Therefore, it is essential to understand the molecular mechanism of anthocyanin accumulation during leaf senescence, which would provide new insight into autumn coloration and molecular breeding for more colorful plants. Anthocyanin accumulation is a surprisingly complex process, and significant advances have been made in the past decades. In this review, we focused on leaf coloration during senescence. We emphatically discussed several networks linked to genetic, hormonal, environmental, and nutritional factors in regulating anthocyanin accumulation during leaf senescence. This paper aims to provide a regulatory model for leaf coloration and to put forward some prospects for future development.
Collapse
Affiliation(s)
- Ziqi Pei
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yifei Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yong Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qinsong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Li H, Wang W, Liu R, Tong B, Dai X, Lu Y, Yu Y, Dai S, Ruan L. Long non-coding RNA-mediated competing endogenous RNA regulatory network during flower development and color formation in Melastoma candidum. FRONTIERS IN PLANT SCIENCE 2023; 14:1215044. [PMID: 37575929 PMCID: PMC10415103 DOI: 10.3389/fpls.2023.1215044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
M. candidum, an evergreen shrubby flower known for its superior adaptation ability in South China, has gained increased attention in garden applications. However, scant attention has been paid to its flower development and color formation process at the non-coding RNA level. To fill this gap, we conducted a comprehensive analysis based on long non-coding RNA sequencing (lncRNA-seq), RNA-seq, small RNA sequencing (sRNA-seq), and widely targeted metabolome detection of three different flower developmental stages of M. candidum. After differentially expressed lncRNAs (DElncRNAs), differentially expressed mRNAs (DEmRNAs), differentially expressed microRNAs (DEmiRNAs), and differentially synthesized metabolites (DSmets) analyses between the different flower developmental stages, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted to identify some key genes and metabolites in flavonoid, flavone, anthocyanin, carotenoid, and alkaloid-related GO terms and biosynthetic pathways. Three direct-acting models, including antisense-acting, cis-acting, and trans-acting between lncRNAs and mRNAs, were detected to illustrate the direct function of lncRNAs on target genes during flower development and color formation. Based on the competitive endogenous RNA (ceRNA) regulatory theory, we constructed a lncRNA-mediated regulatory network composed of DElncRNAs, DEmiRNAs, DEmRNAs, and DSmets to elucidate the indirect role of lncRNAs in the flower development and color formation of M. candidum. By utilizing correlation analyses between DERNAs and DSmets within the ceRNA regulatory network, alongside verification trials of the ceRNA regulatory mechanism, the study successfully illustrated the significance of lncRNAs in flower development and color formation process. This research provides a foundation for improving and regulating flower color at the lncRNA level in M. candidum, and sheds light on the potential applications of non-coding RNA in studies of flower development.
Collapse
Affiliation(s)
- Hui Li
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wei Wang
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Rui Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Botong Tong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Yan Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Yixun Yu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Seping Dai
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Lin Ruan
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| |
Collapse
|
3
|
Anatomical and Biochemical Traits Related to Blue Leaf Coloration of Selaginella uncinata. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1005449. [PMID: 35251556 PMCID: PMC8894045 DOI: 10.1155/2022/1005449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
Abstract
Selaginella uncinata shows particularly rare blue leaves. Previous research has shown that structural interference by the cell wall of adaxial epidermal cells imparts blue coloration in leaves of S. uncinata; the objective of this study was to see whether anthocyanins might additionally contribute to this color, as changes in pH, and conjugation with metals and other flavonoids is also known to result in blue coloration in plants. We compared anatomical and biochemical traits of shade-grown (blue) S. uncinata leaves to high light (red) leaves of the same species and also to a non-blue (green) leaves of a congeneric S. kraussiana. By examining the anatomical structure, we found that the shape of adaxial epidermis of S. uncinata leaves was convex or lens-shaped on the lateral view and irregular circles with smooth embossment on the top view. These features were different from those of the abaxial and adaxial epidermis of S. kraussiana. We suspect that these structures increase the proportion of incident light entering the cell, deepening the leaf color, and therefore may be related to blue leaf color in S. uncinata. By examining biochemical traits, we found little difference in leaf pH value among the leaf types; all leaves contained several metal ions such as Mg, Fe, Mn, and copigments such as flavones. However, because there was no anthocyanin in blue S. uncinata leaves, we concluded that blue coloration in S. uncinata leaves is not caused by the three hypotheses of blue coloration: alkalization of the vacuole pH, metal chelation, or copigmentation with anthocyanins, but it may be related to the shape of the leaf adaxial epidermis.
Collapse
|
4
|
Zhao YW, Wang CK, Huang XY, Hu DG. Anthocyanin stability and degradation in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1987767. [PMID: 34686106 PMCID: PMC9208790 DOI: 10.1080/15592324.2021.1987767] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Anthocyanins, a flavonoid group of polyphenolic compounds, have evolved in plants since the land was colonized by plants. These bioactive compounds play critical roles in diverse physiological processes. They are synthesized in the cytosol and transported into the vacuole for storage or to other destinations, where they function as bioactive molecules. The mechanisms of anthocyanin synthesis and transport have been well studied. However, the precise regulation of the mechanisms of anthocyanin degradation remains to be elucidated. In this review, we highlight recent progress in the understanding of the characteristics and functions of anthocyanins and class III peroxidases, as well as of the existing evidence of the effects of class III peroxidases on the degradation of anthocyanins and the possible regulatory mechanisms involved.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiao-Yu Huang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
5
|
Ram H, Sardar S, Gandass N. Vacuolar Iron Transporter (Like) proteins: Regulators of cellular iron accumulation in plants. PHYSIOLOGIA PLANTARUM 2021; 171:823-832. [PMID: 33580885 DOI: 10.1111/ppl.13363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Iron is not only important for plant physiology, but also a very important micronutrient in human diets. The vacuole is the main site for accumulation of excess amounts of various nutrients and toxic substances in plant cells. During the past decade, many Vacuolar Iron Transporter (VIT) and VIT-Like (VTL) genes have been identified and shown to play important roles in iron homeostasis in different plants. Furthermore, recent reports identified novel roles of these transporter genes in symbiotic nitrogen fixation (SNF) in legume crops as well as in the blue coloration of petals in flowers. The literature indicates their universal role in Fe transport across different tissues (grains, nodules, flowers) to different biological processes (cellular iron homeostasis, SNF, petal coloration) in different plants. Here, we have systematically reviewed different aspects, such as structure, molecular evolution, expression, and function of VIT/VTL proteins. This will help future studies aimed at functional analysis of VIT/VTL genes in other plant species, vacuolar transportation mechanisms, and iron biofortification at large.
Collapse
Affiliation(s)
- Hasthi Ram
- National Institute of Plant Genome Research, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Nishu Gandass
- National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
6
|
Yoshida K, Ito D, Miki N, Kondo T. Single-cell analysis clarifies mosaic color development in purple hydrangea sepal. THE NEW PHYTOLOGIST 2021; 229:3549-3557. [PMID: 33220077 DOI: 10.1111/nph.17099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Hydrangea sepals exhibit a wide range of colors, from red, through purple, to blue; the purple color is a color mosaic. However, all of these colors are derived from the same components: simple anthocyanins, 3-O-glycosyldelphinidins, three co-pigment components, acylquinic acids and aluminum ions (Al3+ ). We show the color mosaic is a result of graded differences in intravacuolar factors. In order to clarify the mechanisms of mosaic color, we performed single-cell analyses of vacuolar pH, and anthocyanin, co-pigment and Al3+ content. From the sepals, a protoplast mixture of various colors was obtained. The cell color was evaluated by microspectrophotometry and vacuolar pH then was recorded by using a pH microelectrode. The organic and Al3+ contents were quantified by micro-HPLC. We found that the bluer the cell, the greater the ratio of 5-O-acylquinic acids and Al3+ to anthocyanins. Furthermore, reproducing experiments were conducted by mixing the components under various pH condition; all the colors could be reproduced in the various mixing conditions. Based on the above, we provide experimental evidence for cell color variation in hydrangea. Our study demonstrates the expression of phenotypic differences without any direct genomic control.
Collapse
Affiliation(s)
- Kumi Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Daisuke Ito
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Naoko Miki
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Tadao Kondo
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
7
|
Dyer AG, Jentsch A, Burd M, Garcia JE, Giejsztowt J, Camargo MGG, Tjørve E, Tjørve KMC, White P, Shrestha M. Fragmentary Blue: Resolving the Rarity Paradox in Flower Colors. FRONTIERS IN PLANT SCIENCE 2021; 11:618203. [PMID: 33552110 PMCID: PMC7859648 DOI: 10.3389/fpls.2020.618203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 05/05/2023]
Abstract
Blue is a favored color of many humans. While blue skies and oceans are a common visual experience, this color is less frequently observed in flowers. We first review how blue has been important in human culture, and thus how our perception of blue has likely influenced the way of scientifically evaluating signals produced in nature, including approaches as disparate as Goethe's Farbenlehre, Linneaus' plant taxonomy, and current studies of plant-pollinator networks. We discuss the fact that most animals, however, have different vision to humans; for example, bee pollinators have trichromatic vision based on UV-, Blue-, and Green-sensitive photoreceptors with innate preferences for predominantly short-wavelength reflecting colors, including what we perceive as blue. The subsequent evolution of blue flowers may be driven by increased competition for pollinators, both because of a harsher environment (as at high altitude) or from high diversity and density of flowering plants (as in nutrient-rich meadows). The adaptive value of blue flowers should also be reinforced by nutrient richness or other factors, abiotic and biotic, that may reduce extra costs of blue-pigments synthesis. We thus provide new perspectives emphasizing that, while humans view blue as a less frequently evolved color in nature, to understand signaling, it is essential to employ models of biologically relevant observers. By doing so, we conclude that short wavelength reflecting blue flowers are indeed frequent in nature when considering the color vision and preferences of bees.
Collapse
Affiliation(s)
- Adrian G. Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Anke Jentsch
- Department of Disturbance Ecology, Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Jair E. Garcia
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Justyna Giejsztowt
- Department of Disturbance Ecology, Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Maria G. G. Camargo
- Phenology Lab, Biosciences Institute, Department of Biodiversity, UNESP – São Paulo State University, São Paulo, Brazil
| | - Even Tjørve
- Inland Norway University of Applied Sciences, Lillehammer, Norway
| | | | - Peter White
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mani Shrestha
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
- Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Liang CY, Rengasamy KP, Huang LM, Hsu CC, Jeng MF, Chen WH, Chen HH. Assessment of violet-blue color formation in Phalaenopsis orchids. BMC PLANT BIOLOGY 2020; 20:212. [PMID: 32397954 PMCID: PMC7218627 DOI: 10.1186/s12870-020-02402-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/22/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis. RESULTS Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al3+, Ca2+ and Fe3+) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis. CONCLUSION Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al3+, Ca2+ and Fe3+ to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis.
Collapse
Affiliation(s)
- Che-Yu Liang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | | | - Li-Min Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Mei-Fen Jeng
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Huei Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan.
- , Nantou City, Taiwan.
| |
Collapse
|
9
|
Nanjaraj Urs AN, Hu Y, Li P, Yuchi Z, Chen Y, Zhang Y. Cloning and Expression of a Nonribosomal Peptide Synthetase to Generate Blue Rose. ACS Synth Biol 2019; 8:1698-1704. [PMID: 30216051 DOI: 10.1021/acssynbio.8b00187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rose has been entwined with human culture and history. "Blue rose" in English signifies unattainable hope or an impossible mission as it does not exist naturally and is not breedable regardless of centuries of effort by gardeners. With the knowledge of genes and enzymes involved in flower pigmentation and modern genetic technologies, synthetic biologists have undertaken the challenge of producing blue rose by engineering the complicated vacuolar flavonoid pigmentation pathway and resulted in a mauve-colored rose. A completely different strategy presented in this study employs a dual expression plasmid containing bacterial idgS and sfp genes. The holo-IdgS, activated by Sfp from its apo-form, is a functional nonribosomal peptide synthetase that converts l-glutamine into the blue pigment indigoidine. Expression of these genes upon petal injection with agro-infiltration solution generates blue-hued rose flowers. We envision that implementing this proof-of-concept with obligatory modifications may have tremendous impact in floriculture to achieve a historic milestone in rose breeding.
Collapse
Affiliation(s)
- Ankanahalli N. Nanjaraj Urs
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yiling Hu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Ishizaka H. Breeding of fragrant cyclamen by interspecific hybridization and ion-beam irradiation. BREEDING SCIENCE 2018; 68:25-34. [PMID: 29681745 PMCID: PMC5903983 DOI: 10.1270/jsbbs.17117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Conventional breeding of cyclamen has relied on crossings among Cyclamen persicum cultivars without consideration of the scent of the flowers. Cyclamen purpurascens is a wild species with the most fragrant flowers in the genus Cyclamen. Allodiploid (2n = 2x = 41, AB) and allotriploid (2n = 3x = 65, AAB) plants have been produced from crosses of diploid and autotetraploid cultivars of C. persicum (2n = 2x = 48, AA; 4x = 96, AAAA) × diploid wild C. purpurascens (2n = 2x = 34, BB) by embryo rescue, but are sterile. Fertile allotetraploid (2n = 4x = 82, AABB) plants have been produced by chromosome doubling of the sterile allodiploids in vitro. Autotetraploid C. purpurascens (2n = 4x = 68, BBBB) has been produced by chromosome doubling of diploid C. purpurascens, and other fertile allotetraploids (2n = 4x = 82, AABB) have been produced from crosses of autotetraploid cultivars of C. persicum × autotetraploid C. purpurascens by embryo rescue. Commercial cultivars of fragrant cyclamen have been bred by conventional crosses among the allotetraploids. Mutation breeding using ion-beam irradiation combined with plant tissue culture has resulted in fragrant cyclamens with novel flower colors and pigments. In contrast, allotriploids (AAB) have not been commercialized because of seed sterility and poor ornamental value. The flower colors are determined by anthocyanins and flavonol glycosides or chalcone glucoside, and the fragrances are determined by monoterpenes, sesquiterpenes, phenylpropanoids, or aliphatics. Techniques for the production of fragrant cyclamen and knowledge of flower pigments and volatiles will allow innovation in conventional cyclamen breeding.
Collapse
Affiliation(s)
- Hiroshi Ishizaka
- Horticultural Laboratory, Saitama Prefecture Agriculture and Forestry Research Center,
91 Rokumanbu, Kuki, Saitama 346-0037,
Japan
- Present address: Saitama Agricultural Technology Research Center,
784, Sugahiro, Kumagaya, Saitama 360-0102,
Japan
| |
Collapse
|
11
|
Noda N. Recent advances in the research and development of blue flowers. BREEDING SCIENCE 2018; 68:79-87. [PMID: 29681750 PMCID: PMC5903984 DOI: 10.1270/jsbbs.17132] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/18/2017] [Indexed: 05/22/2023]
Abstract
Flower color is the most important trait in the breeding of ornamental plants. In the floriculture industry, however, bluish colored flowers of desirable plants have proved difficult to breed. Many ornamental plants with a high production volume, such as rose and chrysanthemum, lack the key genes for producing the blue delphinidin pigment or do not have an intracellular environment suitable for developing blue color. Recently, it has become possible to incorporate a blue flower color trait through progress in molecular biological analysis of pigment biosynthesis genes and genetic engineering. For example, introduction of the F3'5'H gene encoding flavonoid 3',5'-hydroxylase can produce delphinidin in various flowers such as roses and carnations, turning the flower color purple or violet. Furthermore, the world's first blue chrysanthemum was recently produced by introducing the A3'5'GT gene encoding anthocyanin 3',5'-O-glucosyltransferase, in addition to F3'5'H, into the host plant. The B-ring glucosylated delphinidin-based anthocyanin that is synthesized by the two transgenes develops blue coloration by co-pigmentation with colorless flavone glycosides naturally present in the ray floret of chrysanthemum. This review focuses on the biotechnological efforts to develop blue flowers, and describes future prospects for blue flower breeding and commercialization.
Collapse
|
12
|
Biochemical and Comparative Transcriptomic Analyses Identify Candidate Genes Related to Variegation Formation in Paeonia rockii. Molecules 2017; 22:molecules22081364. [PMID: 28817092 PMCID: PMC6152351 DOI: 10.3390/molecules22081364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Paeonia rockii is a wild tree peony species with large and dark purple variegations at the base of its petals. It is the genetic resource for various variegation patterns in tree peony cultivars, which is in contrast to the pure white petals of Paeonia ostii. However, the molecular mechanism underlying the formation of variegation in this plant is still unknown. Here, we conducted Illumina transcriptome sequencing for P. rockii, P. ostii (with pure white petals) and their F1 individuals (with purple-red variegation). A total of 181,866 unigenes were generated, including a variety of unigenes involved in anthocyanin biosynthesis and sequestration and the regulation of anthocyanin biosynthesis. The dark purple or purple-red variegation patterns mainly occurred due to the proportions of cyanidin (Cy)- and peonidin (Pn)-based anthocyanins. The variegations of P. rockii exhibited a “Cy > Pn” phenotype, whereas the F1 progeny showed a “Pn > Cy” phenotype. The CHS, DFR, ANS, and GST genes might play key roles in variegation pigmentation in P. rockii according to gene expression and interaction network analysis. Two R2R3-MYB transcription factors (c131300.graph_c0 and c133735.graph_c0) regulated variegation formation by controlling CHS, ANS and GST genes. Our results indicated that the various variegation patterns were caused by transcriptional regulation of anthocyanin biosynthesis genes, and the transcription profiles of the R2R3-MYBs provided clues to elucidate the mechanisms underlying this trait. The petal transcriptome data produced in this study will provide a valuable resource for future association investigations of the genetic regulation of various variegation patterns in tree peonies.
Collapse
|
13
|
Fedenko VS, Shemet SA, Landi M. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:13-28. [PMID: 28242414 DOI: 10.1016/j.jplph.2017.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 05/24/2023]
Abstract
Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L*a*b* and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool more accessible to plant physiologists and ecologists.
Collapse
Affiliation(s)
- Volodymyr S Fedenko
- Scientific Research Institute of Biology, Oles Honchar Dnipropetrovsk National University,72 Gagarin Avenue, Dnipro 49010, Ukraine
| | - Sergiy A Shemet
- Scientific Research Institute of Biology, Oles Honchar Dnipropetrovsk National University,72 Gagarin Avenue, Dnipro 49010, Ukraine
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80 I-56124, Pisa, Italy.
| |
Collapse
|
14
|
Yoshida K, Tojo K, Mori M, Yamashita K, Kitahara S, Noda M, Uchiyama S. Chemical mechanism of petal color development of Nemophila menziesii by a metalloanthocyanin, nemophilin. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Oyama KI, Yamada T, Ito D, Kondo T, Yoshida K. Metal Complex Pigment Involved in the Blue Sepal Color Development of Hydrangea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7630-5. [PMID: 26006163 DOI: 10.1021/acs.jafc.5b02368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Anthocyanins exhibit various vivid colors from red through purple to blue and are potential sources of food colorants. However, their usage is restricted because of their instability, especially as a blue colorant. The blue sepal color of Hydrangea macrophylla is due to a metal complex named "hydrangea-blue complex" composed of delphinidin 3-O-glucoside, 1, 5-O-caffeoylquinic acid, 2, and/or 5-O-p-coumaroylquinic acid, 3, as copigments, and Al(3+) in aqueous solution at approximately pH 4.0. However, the ratio of each component ins not stoichiometric, but is fluctuates within a certain range. The hydrangea-blue complex exists only in aqueous solution, exhibiting a stable blue color, but attempts at crystallization have failed; therefore, the structure remains obscure. To clarify the basis of the character of the hydrangea-blue pigment and to obtain its structural information, we studied the mixing conditions to reconstruct the same blue color as observed in the sepals. In highly concentrated sodium acetate buffer (6 M, pH 4.0) we could measure (1)H NMR of both the hydrangea-blue complex composed of 1 (5 mM), 2 (10 mM), and Al(3+) (10 mM) and a simple 1-Al(3+) complex. We also recorded the spectra of complexes composed with structurally different anthocyanins and copigments. Comparison of those signals indicated that in the hydrangea-blue complex 1 might be under equilibrium between chelating and nonchelating structures having an interaction with 2.
Collapse
Affiliation(s)
- Kin-ichi Oyama
- Research Center for Materials Science and ‡Graduate School of Information Science, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| | - Tomomi Yamada
- Research Center for Materials Science and ‡Graduate School of Information Science, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| | - Daisuke Ito
- Research Center for Materials Science and ‡Graduate School of Information Science, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| | - Tadao Kondo
- Research Center for Materials Science and ‡Graduate School of Information Science, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| | - Kumi Yoshida
- Research Center for Materials Science and ‡Graduate School of Information Science, Nagoya University , Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
16
|
Zhao D, Tao J. Recent advances on the development and regulation of flower color in ornamental plants. FRONTIERS IN PLANT SCIENCE 2015; 6:261. [PMID: 25964787 PMCID: PMC4410614 DOI: 10.3389/fpls.2015.00261] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/02/2015] [Indexed: 05/12/2023]
Abstract
Flower color is one of the most important features of ornamental plants. Its development and regulation are influenced by many internal and external factors. Therefore, understanding the mechanism of color development and its regulation provides an important theoretical basis and premise for the cultivation and improvement of new color varieties of ornamental plants. This paper outlines the functions of petal tissue structure, as well as the distribution and type of pigments, especially anthocyanins, in color development. The progress of research on flower color regulation with a focus on physical factors, chemical factors, and genetic engineering is introduced. The shortcomings of flower color research and the potential directions for future development are explored to provide a broad background for flower color improvements in ornamental plants.
Collapse
Affiliation(s)
| | - Jun Tao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| |
Collapse
|
17
|
Sasaki N, Nakayama T. Achievements and Perspectives in Biochemistry Concerning Anthocyanin Modification for Blue Flower Coloration. ACTA ACUST UNITED AC 2014; 56:28-40. [DOI: 10.1093/pcp/pcu097] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Nishizaki Y, Sasaki N, Yasunaga M, Miyahara T, Okamoto E, Okamoto M, Hirose Y, Ozeki Y. Identification of the glucosyltransferase gene that supplies the p-hydroxybenzoyl-glucose for 7-polyacylation of anthocyanin in delphinium. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2495-506. [PMID: 24723398 DOI: 10.1093/jxb/eru134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In delphiniums (Delphinium grandiflorum), blue flowers are produced by the presence of 7-polyacylated anthocyanins. The polyacyl moiety is composed of glucose and p-hydroxybenzoic acid (pHBA). The 7-polyacylation of anthocyanin has been shown to be catalysed by two different enzymes, a glucosyltransferase and an acyltransferase; both enzymes utilize p-hydroxybenzoyl-glucose (pHBG) as a bi-functional (Zwitter) donor. To date, however, the enzyme that synthesizes pHBG and the gene that encodes it have not been elucidated. Here, five delphinium cultivars were investigated and found to show reduced or undetectable 7-polyacylation activity; these cultivars synthesized delphinidin 3-O-rutinoside (Dp3R) to produce mauve sepals. One cultivar showed a deficiency for the acyl-glucose-dependent anthocyanin 7-O-glucosyltransferase (AA7GT) necessary for mediating the first step of 7-polyacylation. The other four cultivars showed both AA7GT activity and DgAA7GT expression; nevertheless, pHBG accumulation was significantly reduced compared with wild-type cultivars, whereas p-glucosyl-oxybenzoic acid (pGBA) was accumulated. Three candidate cDNAs encoding a UDP-glucose-dependent pHBA glucosyltransferase (pHBAGT) were identified. A phylogenetic analysis of DgpHBAGT amino acid sequences showed a close relationship with UGTs that act in acyl-glucose synthesis in other plant species. Recombinant DgpHBAGT protein synthesized pHBG and had a high preference for pHBA in vitro. Mutant cultivars accumulating pGBA had very low expression of DgpHBAGT, whereas expression during the development of sepals and tissues in a wild cultivar showed a close correlation to the level of accumulation of pHBG. These results support the conclusion that DgpHBAGT is responsible for in vivo synthesis of pHBG in delphiniums.
Collapse
Affiliation(s)
- Yuzo Nishizaki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Nobuhiro Sasaki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Motoki Yasunaga
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Taira Miyahara
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Emi Okamoto
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Mitsutoshi Okamoto
- Department of Agricultural Research, Ehime Research Institute of Agriculture, Forestry and Fisheries, Matsuyama, Ehime 799-2405, Japan
| | - Yukio Hirose
- Department of Agricultural Research, Ehime Research Institute of Agriculture, Forestry and Fisheries, Matsuyama, Ehime 799-2405, Japan
| | - Yoshihiro Ozeki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
19
|
Yamagishi M, Toda S, Tasaki K. The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies (Lilium spp.). THE NEW PHYTOLOGIST 2014; 201:1009-1020. [PMID: 24180488 DOI: 10.1111/nph.12572] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/27/2013] [Indexed: 05/21/2023]
Abstract
Many angiosperm families develop spatially regulated anthocyanin spots on their flowers. The Asiatic hybrid lily (Lilium spp.) cv 'Latvia' develops splatter-type spots on its tepals. The splatters arise simply from the deposition of anthocyanin pigments in the tepal epidermis. To determine how splatter development was regulated, we analysed the transcription of anthocyanin biosynthesis genes, and isolated and characterized an R2R3-MYB gene specific to splatter pigmentation. All anthocyanin biosynthesis genes were expressed in splatter-containing regions of tepals, but not in other regions, indicating that splatter pigmentation is caused by the transcriptional regulation of biosynthesis genes. Previously characterized LhMYB12 regulators were not involved in splatter pigmentation, but, instead, a new allele of the LhMYB12 gene, LhMYB12-Lat, isolated in this study, contributed to splatter development. In 'Latvia' and other lily plants expressing splatters, LhMYB12-Lat was preferentially transcribed in the splatter-containing region of tepals. Progeny segregation analysis showed that LhMYB12-Lat genotype and splatter phenotype were co-segregated among the F1 population, indicating that LhMYB12-Lat determines the presence or absence of splatters. LhMYB12-Lat contributes to splatter development, but not to full-tepal pigmentation and raised spot pigmentation. As a result of its unique sequences and different transcription profiles, this new allele of LhMYB12 should be a novel R2R3-MYB specifically associating with splatter spot development.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9 Kita-ku, Sapporo, 060-8589, Japan
| | - Shinya Toda
- School of Agriculture, Hokkaido University, N9W9 Kita-ku, Sapporo, 060-8589, Japan
| | - Keisuke Tasaki
- Research Faculty of Agriculture, Hokkaido University, N9W9 Kita-ku, Sapporo, 060-8589, Japan
| |
Collapse
|
20
|
Qi Y, Lou Q, Li H, Yue J, Liu Y, Wang Y. Anatomical and biochemical studies of bicolored flower development in Muscari latifolium. PROTOPLASMA 2013; 250:1273-81. [PMID: 23677687 DOI: 10.1007/s00709-013-0509-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 05/26/2023]
Abstract
The inflorescence of the broad-leafed grape hyacinth, Muscari latifolium, shows an interesting, two-tone appearance with the upper flowers being pale blue and the lower ones purple. To elucidate the mechanism of the differential color development, anatomical research was carried out and a cytological study of the colored protoplasts in which the shapes of the cells accumulating anthocyanin were observed by scanning electron microscopy. Next, vacuolar pH was recorded using a pH meter with a micro combination pH electrode, and the sap's metal-ion content was measured by inductively coupled plasma mass spectrometry. The anthocyanin and co-pigment composition was determined by high-performance liquid chromatography (HPLC). Chemical analyses reveal that the difference in metal-ion content of the two parts was not great. The vacuolar pHs of the upper and lower flowers were 5.91 and 5.84, respectively, with the difference being nonsignificant. HPLC results indicate that the dihydroflavonol and flavonol contents are also very similar in the two sorts of flower. However, the upper flowers contained only delphinidin, whereas the lower flowers also contained cyanidin. The total anthocyanin content in the lower flowers was 4.36 mg g(-1), which is approximately seven times higher than in the upper flowers, while the delphinidin content is four times higher. Quantitative real-time PCR analysis established that the two-tone flower was a result of different expressions of the F3'5'H, F3'H and DFR genes, and these lead to different amounts of anthocyanin.
Collapse
Affiliation(s)
- Yinyan Qi
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Yoshida K, Negishi T. The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals. PHYTOCHEMISTRY 2013; 94:60-7. [PMID: 23838627 DOI: 10.1016/j.phytochem.2013.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/28/2013] [Accepted: 04/22/2013] [Indexed: 05/21/2023]
Abstract
The blue petal color of the cornflower (Centaurea cyanus) is caused by protocyanin, a kind of metalloanthocyanin, which is a self-assembled supramolecular metal complex pigment. Protocyanin is composed of six molecules of anthocyanin, six molecules of flavone, one ferric ion, and one magnesium ion. The ferric ion is essential for blue color development. Here, we identify the vacuolar iron transporter gene (CcVIT) from the blue petals of C. cyanus and its function is identified and characterized. The CcVIT transcript was observed only in the petals. Its amino acid sequence is highly homologous to the Arabidopsis thaliana (AtVIT1) and Tulipa gesneriana (TgVit1) vacuolar iron transporters. Heterologous expression of the CcVIT gene in yeast indicated that the corresponding gene product transports ferrous ion into vacuoles. Analysis of purple mutant-line petals clarified that the anthocyanin and flavone components were the same as those found in plants with blue petals, but the amount of iron ions in the colored cells decreased, and consequently the amount of blue protocyanin was reduced. The CcVIT gene was expressed even in purple mutant petals, however, an amino acid substitution (A236E) occurred in that case. This change in the CcVIT gene sequence also resulted in loss of iron transport activity. The CcVIT protein thus plays a critical role in the blue coloration of cornflower petals.
Collapse
Affiliation(s)
- Kumi Yoshida
- Graduate School of Information Science, Nagoya University, Japan.
| | | |
Collapse
|
22
|
Vignolini S, Davey MP, Bateman RM, Rudall PJ, Moyroud E, Tratt J, Malmgren S, Steiner U, Glover BJ. The mirror crack'd: both pigment and structure contribute to the glossy blue appearance of the mirror orchid, Ophrys speculum. THE NEW PHYTOLOGIST 2012; 196:1038-1047. [PMID: 23043621 DOI: 10.1111/j.1469-8137.2012.04356.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/23/2012] [Indexed: 05/27/2023]
Abstract
The Mediterranean orchid genus Ophrys is remarkable for its pseudocopulatory pollination mechanism; naïve male pollinators are attracted to the flowers by olfactory, visual and tactile cues. The most striking visual cue is a highly reflective, blue speculum region at the centre of the labellum, which mimics the corresponding female insect and reaches its strongest development in the mirror orchid, O. speculum. We explored the structure and properties of the much-discussed speculum by scanning and transmission electron microscopic examination of its ultrastructure, visible and ultraviolet (UV) angle-resolved spectrophotometry of the intact tissue, and mass spectrometry of extracted pigments. The speculum contrasts with the surrounding labellar epidermis in being flat-celled with a thick, smooth cuticle. The speculum is extremely glossy, reflecting intense white light in a specular direction, but at more oblique angles it predominantly reflects blue and UV light. Pigments in the speculum, dominantly the cyanidin 3-(3''-malonylglucoside), are less diverse than in the surrounding regions of the labellar epidermis and lack quercetin copigments. Several physical and biochemical processes interact to produce the striking and much-discussed optical effects in these flowers, but the blue colour is not produced by structural means and is not iridescent.
Collapse
Affiliation(s)
- Silvia Vignolini
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Matthew P Davey
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Richard M Bateman
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK
| | - Paula J Rudall
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK
| | - Edwige Moyroud
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Julia Tratt
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK
| | | | - Ullrich Steiner
- Department of Physics, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
23
|
Shoji K, Momonoi K, Tsuji T. Alternative Expression of Vacuolar Iron Transporter and Ferritin Genes Leads to Blue/Purple Coloration of Flowers in Tulip cv. ‘Murasakizuisho’. ACTA ACUST UNITED AC 2009; 51:215-24. [DOI: 10.1093/pcp/pcp181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Recent progress of flower colour modification by biotechnology. Int J Mol Sci 2009; 10:5350-5369. [PMID: 20054474 PMCID: PMC2801998 DOI: 10.3390/ijms10125350] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 11/16/2022] Open
Abstract
Genetically-modified, colour-altered varieties of the important cut-flower crop carnation have now been commercially available for nearly ten years. In this review we describe the manipulation of the anthocyanin biosynthesis pathway that has lead to the development of these varieties and how similar manipulations have been successfully applied to both pot plants and another cut-flower species, the rose. From this experience it is clear that down- and up-regulation of the flavonoid and anthocyanin pathway is both possible and predictable. The major commercial benefit of the application of this technology has so far been the development of novel flower colours through the development of transgenic varieties that produce, uniquely for the target species, anthocyanins derived from delphinidin. These anthocyanins are ubiquitous in nature, and occur in both ornamental plants and common food plants. Through the extensive regulatory approval processes that must occur for the commercialization of genetically modified organisms, we have accumulated considerable experimental and trial data to show the accumulation of delphinidin based anthocyanins in the transgenic plants poses no environmental or health risk.
Collapse
|
25
|
Momonoi K, Yoshida K, Mano S, Takahashi H, Nakamori C, Shoji K, Nitta A, Nishimura M. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:437-47. [PMID: 19366427 DOI: 10.1111/j.1365-313x.2009.03879.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Blue color in flowers is due mainly to anthocyanins, and a considerable part of blue coloration can be attributed to metal-complexed anthocyanins. However, the mechanism of metal ion transport into vacuoles and subsequent flower color development has yet to be fully explored. Previously, we studied the mechanism of blue color development specifically at the bottom of the inner perianth in purple tulip petals of Tulipa gesneriana cv. Murasakizuisho. We found that differences in iron content were associated with the development of blue- and purple-colored cells. Here, we identify a vacuolar iron transporter in T. gesneriana (TgVit1), and characterize the localization and function of this transporter protein in tulip petals. The amino acid sequence of TgVit1 is 85% similar that of the Arabidopsis thaliana vacuolar iron transporter AtVIT1, and also showed similarity to the AtVIT1 homolog in yeast, Ca(2+)-sensitive cross-complementer 1 (CCC1). The gene TgVit1 was expressed exclusively in blue-colored epidermal cells, and protein levels increased with increasing mRNA expression and blue coloration. Transient expression experiments revealed that TgVit1 localizes to the vacuolar membrane, and is responsible for the development of the blue color in purple cells. Expression of TgVit1 in yeast rescued the growth defect of ccc1 mutant cells in the presence of high concentrations of FeSO(4). Our results indicate that TgVit1 plays an essential role in blue coloration as a vacuolar iron transporter in tulip petals. These results suggest a new role for involvement of a vacuolar iron transporter in blue flower color development.
Collapse
Affiliation(s)
- Kazumi Momonoi
- Graduate School of Information Science, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yoshida K, Mori M, Kondo T. Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 2009; 26:884-915. [PMID: 19554240 DOI: 10.1039/b800165k] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blue flower colors are primarily due to anthocyanin, a flavonoid pigment. Anthocyanin itself is purple in neutral aqueous solutions, ans its color is very unstable and quickly fades. Therefore, the mechanism of blue color development in living flower petals is one of the most intriguing problems in natural product chemistry. Much progress has been made in understanding blue flower coloration since the comprehensive review by Goto and Kondo in 1991. This review focuses on the advances in the last 15 years, and cites 149 references.
Collapse
Affiliation(s)
- Kumi Yoshida
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | | | | |
Collapse
|
27
|
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:733-49. [PMID: 18476875 DOI: 10.1111/j.1365-313x.2008.03447.x] [Citation(s) in RCA: 1048] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant compounds that are perceived by humans to have color are generally referred to as 'pigments'. Their varied structures and colors have long fascinated chemists and biologists, who have examined their chemical and physical properties, their mode of synthesis, and their physiological and ecological roles. Plant pigments also have a long history of use by humans. The major classes of plant pigments, with the exception of the chlorophylls, are reviewed here. Anthocyanins, a class of flavonoids derived ultimately from phenylalanine, are water-soluble, synthesized in the cytosol, and localized in vacuoles. They provide a wide range of colors ranging from orange/red to violet/blue. In addition to various modifications to their structures, their specific color also depends on co-pigments, metal ions and pH. They are widely distributed in the plant kingdom. The lipid-soluble, yellow-to-red carotenoids, a subclass of terpenoids, are also distributed ubiquitously in plants. They are synthesized in chloroplasts and are essential to the integrity of the photosynthetic apparatus. Betalains, also conferring yellow-to-red colors, are nitrogen-containing water-soluble compounds derived from tyrosine that are found only in a limited number of plant lineages. In contrast to anthocyanins and carotenoids, the biosynthetic pathway of betalains is only partially understood. All three classes of pigments act as visible signals to attract insects, birds and animals for pollination and seed dispersal. They also protect plants from damage caused by UV and visible light.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Institute for Plant Science, Suntory Ltd, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan.
| | | | | |
Collapse
|
28
|
Tanikawa N, Kashiwabara T, Hokura A, Abe T, Shibata M, Nakayama M. A Peculiar Yellow Flower Coloration of Camellia Using Aluminum-flavonoid Interaction. ACTA ACUST UNITED AC 2008. [DOI: 10.2503/jjshs1.77.402] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. PLANT & CELL PHYSIOLOGY 2007; 48:1589-600. [PMID: 17925311 DOI: 10.1093/pcp/pcm131] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flower color is mainly determined by anthocyanins. Rosa hybrida lacks violet to blue flower varieties due to the absence of delphinidin-based anthocyanins, usually the major constituents of violet and blue flowers, because roses do not possess flavonoid 3',5'-hydoxylase (F3'5'H), a key enzyme for delphinidin biosynthesis. Other factors such as the presence of co-pigments and the vacuolar pH also affect flower color. We analyzed the flavonoid composition of hundreds of rose cultivars and measured the pH of their petal juice in order to select hosts of genetic transformation that would be suitable for the exclusive accumulation of delphinidin and the resulting color change toward blue. Expression of the viola F3'5'H gene in some of the selected cultivars resulted in the accumulation of a high percentage of delphinidin (up to 95%) and a novel bluish flower color. For more exclusive and dominant accumulation of delphinidin irrespective of the hosts, we down-regulated the endogenous dihydroflavonol 4-reductase (DFR) gene and overexpressed the Irisxhollandica DFR gene in addition to the viola F3'5'H gene in a rose cultivar. The resultant roses exclusively accumulated delphinidin in the petals, and the flowers had blue hues not achieved by hybridization breeding. Moreover, the ability for exclusive accumulation of delphinidin was inherited by the next generations.
Collapse
Affiliation(s)
- Yukihisa Katsumoto
- Suntory Limited Research Center, Institute for Plant Science, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka, 618-8503 Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|