1
|
Liu X, Xing Q, Liu X, Müller-Xing R. Expression of the Populus Orthologues of AtYY1, YIN and YANG Activates the Floral Identity Genes AGAMOUS and SEPALLATA3 Accelerating Floral Transition in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24087639. [PMID: 37108801 PMCID: PMC10146089 DOI: 10.3390/ijms24087639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
YIN YANG 1 (YY1) encodes a dual-function transcription factor, evolutionary conserved between the animal and plant kingdom. In Arabidopsis thaliana, AtYY1 is a negative regulator of ABA responses and floral transition. Here, we report the cloning and functional characterization of the two AtYY1 paralogs, YIN and YANG (also named PtYY1a and PtYY1b) from Populus (Populus trichocarpa). Although the duplication of YY1 occurred early during the evolution of the Salicaceae, YIN and YANG are highly conserved in the willow tree family. In the majority of Populus tissues, YIN was more strongly expressed than YANG. Subcellular analysis showed that YIN-GFP and YANG-GFP are mainly localized in the nuclei of Arabidopsis. Stable and constitutive expression of YIN and YANG resulted in curled leaves and accelerated floral transition of Arabidopsis plants, which was accompanied by high expression of the floral identity genes AGAMOUS (AG) and SEPELLATA3 (SEP3) known to promote leaf curling and early flowering. Furthermore, the expression of YIN and YANG had similar effects as AtYY1 overexpression to seed germination and root growth in Arabidopsis. Our results suggest that YIN and YANG are functional orthologues of the dual-function transcription factor AtYY1 with similar roles in plant development conserved between Arabidopsis and Populus.
Collapse
Affiliation(s)
- Xinying Liu
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qian Xing
- Lushan Botanical Garden, Chinese Academy of Sciences (CAS), Jiujiang 332900, China
| | - Xuemei Liu
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ralf Müller-Xing
- Lushan Botanical Garden, Chinese Academy of Sciences (CAS), Jiujiang 332900, China
| |
Collapse
|
2
|
Li Y, Zhang B, Yu H. Molecular genetic insights into orchid reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1841-1852. [PMID: 35104310 DOI: 10.1093/jxb/erac016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Orchids are members of the Orchidaceae, one of the largest families of flowering plants, and occupy a wide range of ecological habitats with highly specialized reproductive features. They exhibit unique developmental characteristics, such as generation of storage organs during flowering and spectacular floral morphological features, which contribute to their reproductive success in different habitats in response to various environmental cues. Here we review current understanding of the molecular genetic basis of orchid reproductive development, including flowering time control, floral patterning and flower color, with a focus on the orchid genes that have been functionally validated in plants. Furthermore, we summarize recent progress in annotating orchid genomes, and discuss how integration of high-quality orchid genome sequences with other advanced tools, such as the ever-improving multi-omics approaches and genome editing technologies as well as orchid-specific technical platforms, could open up new avenues to elucidate the molecular genetic basis of highly specialized reproductive organs and strategies in orchids.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Bin Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
| | - Hao Yu
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
| |
Collapse
|
3
|
Zhang C, Wei L, Wang W, Qi W, Cao Z, Li H, Bao M, He Y. Identification, characterization and functional analysis of AGAMOUS subfamily genes associated with floral organs and seed development in Marigold (Tagetes erecta). BMC PLANT BIOLOGY 2020; 20:439. [PMID: 32967618 PMCID: PMC7510299 DOI: 10.1186/s12870-020-02644-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AGAMOUS (AG) subfamily genes regulate the floral organs initiation and development, fruit and seed development. At present, there has been insufficient study of the function of AG subfamily genes in Asteraceae. Marigold (Tagetes erecta) belongs to Asteraceae family whose unique inflorescence structure makes it an important research target for understanding floral organ development in plants. RESULTS Four AG subfamily genes of marigold were isolated and phylogenetically grouped into class C (TeAG1 and TeAG2) and class D (TeAGL11-1 and TeAGL11-2) genes. Expression profile analysis demonstrated that these four genes were highly expressed in reproductive organs of marigold. Subcellular localization analysis suggested that all these four proteins were located in the nucleus. Protein-protein interactions analysis indicated that class C proteins had a wider interaction manner than class D proteins. Function analysis of ectopic expression in Arabidopsis thaliana revealed that TeAG1 displayed a C function specifying the stamen identity and carpel identity, and that TeAGL11-1 exhibited a D function regulating seed development and petal development. In addition, overexpression of both TeAG1 and TeAGL11-1 leaded to curling rosette leaf and early flowering in Arabidopsis thaliana. CONCLUSIONS This study provides an insight into molecular mechanism of AG subfamily genes in Asteraceae species and technical support for improvement of several floral traits.
Collapse
Affiliation(s)
- Chunling Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Ludan Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Wenjing Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Wenquan Qi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Zhe Cao
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, S7N5A8, Saskatoon, Canada
| | - Hang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| | - Yanhong He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070 China
| |
Collapse
|
4
|
Pramanik D, Dorst N, Meesters N, Spaans M, Smets E, Welten M, Gravendeel B. Evolution and development of three highly specialized floral structures of bee-pollinated Phalaenopsis species. EvoDevo 2020; 11:16. [PMID: 32793330 PMCID: PMC7418404 DOI: 10.1186/s13227-020-00160-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background Variation in shape and size of many floral organs is related to pollinators. Evolution of such organs is driven by duplication and modification of MADS-box and MYB transcription factors. We applied a combination of micro-morphological (SEM and micro 3D-CT scanning) and molecular techniques (transcriptome and RT-PCR analysis) to understand the evolution and development of the callus, stelidia and mentum, three highly specialized floral structures of orchids involved in pollination. Early stage and mature tissues were collected from flowers of the bee-pollinated Phalaenopsis equestris and Phalaenopsis pulcherrima, two species that differ in floral morphology: P. equestris has a large callus but short stelidia and no mentum, whereas P. pulcherrima has a small callus, but long stelidia and a pronounced mentum. Results Our results show the stelidia develop from early primordial stages, whereas the callus and mentum develop later. In combination, the micro 3D-CT scan analysis and gene expression analyses show that the callus is of mixed petaloid-staminodial origin, the stelidia of staminodial origin, and the mentum of mixed sepaloid-petaloid-staminodial origin. SEP clade 1 copies are expressed in the larger callus of P. equestris, whereas AP3 clade 1 and AGL6 clade 1 copies are expressed in the pronounced mentum and long stelidia of P. pulcherrima. AP3 clade 4, PI-, AGL6 clade 2 and PCF clade 1 copies might have a balancing role in callus and gynostemium development. There appears to be a trade-off between DIV clade 2 expression with SEP clade 1 expression in the callus, on the one hand, and with AP3 clade 1 and AGL6 clade 1 expression in the stelidia and mentum on the other. Conclusions We detected differential growth and expression of MADS box AP3/PI-like, AGL6-like and SEP-like, and MYB DIV-like gene copies in the callus, stelidia and mentum of two species of Phalaenopsis, of which these floral structures are very differently shaped and sized. Our study provides a first glimpse of the evolutionary developmental mechanisms driving adaptation of Phalaenopsis flowers to different pollinators by providing combined micro-morphological and molecular evidence for a possible sepaloid–petaloid–staminodial origin of the orchid mentum.
Collapse
Affiliation(s)
- Dewi Pramanik
- Naturalis Biodiversity Center, Endless Forms Group, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Intitute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Indonesian Ornamental Crops Research Institute (IOCRI), Jl. Raya Ciherang, Pacet-Cianjur, 43253 West Java Indonesia
| | - Nemi Dorst
- Faculty of Science and Technology, University of Applied Sciences Leiden, Zernikedreef 11, 2333 CK Leiden, The Netherlands
| | - Niels Meesters
- Life Sciences, HAN University of Applied Sciences, Ruitenbergerlaan 31, 6826 CC Arnhem, The Netherlands
| | - Marlies Spaans
- Faculty of Science and Technology, University of Applied Sciences Leiden, Zernikedreef 11, 2333 CK Leiden, The Netherlands
| | - Erik Smets
- Naturalis Biodiversity Center, Endless Forms Group, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Intitute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Ecology, Evolution and Biodiversity Conservation, KU Leuven, Kasteelpark Arenberg 31, P.O. Box 2435, 3001 Heverlee, Belgium
| | - Monique Welten
- Naturalis Biodiversity Center, Endless Forms Group, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Barbara Gravendeel
- Naturalis Biodiversity Center, Endless Forms Group, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Intitute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,IWWR, Radboud University, Heyendaalseweg 135, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
5
|
Suppression of B function by chimeric repressor gene-silencing technology (CRES-T) reduces the petaloid tepal identity in transgenic Lilium sp. PLoS One 2020; 15:e0237176. [PMID: 32745128 PMCID: PMC7398511 DOI: 10.1371/journal.pone.0237176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
Some monocotyledonous plants, including liliaceous, amaryllidaceous and iridaceous ones, produce flowers with petaloid tepals in whorls 1 and 2 organs. For explaining the molecular mechanism of two-layered petaloid tepal development, the modified ABC model has been proposed, in which B class genes are expressed in whorl 1 organs as well as in whorls 2 and 3 organs. We have previously obtained results strongly support the modified ABC model by chimeric repressor gene-silencing technology (CRES-T)-mediated suppression of B function in the liliaceous plant Tricyrtis sp. In the present study, we introduced a CRES-T construct derived from the B class gene of Tricyrtis sp. (TrihDEFa-SRDX) into Lilium sp. in order to examine the effect of suppressing B function on the floral organ identity. Flowers of transgenic plants did not open fully and had pale pink-colored tepals with decreased numbers of papillae on the adaxial side in whorls 1 and 2 compared with those of non-transgenic plants. No apparent morphological alterations were observed in whorls 3 and 4 organs. Both the amount of total anthocyanins and the expression levels of endogenous flavonoid biosynthesis-related genes (LhMYB12, LhbHLH2, LhCHS, LhF3H, LhF3’H, LhDFR and LhANS) decreased in whorls 1 and 2 organs of transgenic plants compared with non-transgenic plants. In addition, the expression levels of endogenous B class genes (LFDEF, LFGLOA and LFGLOB) decreased in transgenic plants and the level was negatively correlated with the degree of morphological alteration. Thus suppression of B function may reduce the identity of petaloid tepals in whorls 1 and 2 of transgenic Lilium sp.
Collapse
|
6
|
Jing D, Chen W, Hu R, Zhang Y, Xia Y, Wang S, He Q, Guo Q, Liang G. An Integrative Analysis of Transcriptome, Proteome and Hormones Reveals Key Differentially Expressed Genes and Metabolic Pathways Involved in Flower Development in Loquat. Int J Mol Sci 2020; 21:E5107. [PMID: 32698310 PMCID: PMC7404296 DOI: 10.3390/ijms21145107] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
Flower development is a vital developmental process in the life cycle of woody perennials, especially fruit trees. Herein, we used transcriptomic, proteomic, and hormone analyses to investigate the key candidate genes/proteins in loquat (Eriobotrya japonica) at the stages of flower bud differentiation (FBD), floral bud elongation (FBE), and floral anthesis (FA). Comparative transcriptome analysis showed that differentially expressed genes (DEGs) were mainly enriched in metabolic pathways of hormone signal transduction and starch and sucrose metabolism. Importantly, the DEGs of hormone signal transduction were significantly involved in the signaling pathways of auxin, gibberellins (GAs), cytokinin, ethylene, abscisic acid (ABA), jasmonic acid, and salicylic acid. Meanwhile, key floral integrator genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and floral meristem identity genes SQUAMOSA PROMOTER BINDING LIKE (SPL), LEAFY (LFY), APETALA1 (AP1), and AP2 were significantly upregulated at the FBD stage. However, key floral organ identity genes AGAMOUS (AG), AP3, and PISTILLATA (PI) were significantly upregulated at the stages of FBE and FA. Furthermore, transcription factors (TFs) such as bHLH (basic helix-loop-helix), NAC (no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF1/2) and cup-shaped cotyledon (CUC2)), MYB_related (myeloblastosis_related), ERF (ethylene response factor), and C2H2 (cysteine-2/histidine-2) were also significantly differentially expressed. Accordingly, comparative proteomic analysis of differentially accumulated proteins (DAPs) and combined enrichment of DEGs and DAPs showed that starch and sucrose metabolism was also significantly enriched. Concentrations of GA3 and zeatin were high before the FA stage, but ABA concentration remained high at the FA stage. Our results provide abundant sequence resources for clarifying the underlying mechanisms of the flower development in loquat.
Collapse
Affiliation(s)
- Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (D.J.); (W.C.); (Y.X.); (S.W.); (Q.H.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China; (R.H.); (Y.Z.)
| | - Weiwei Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (D.J.); (W.C.); (Y.X.); (S.W.); (Q.H.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China; (R.H.); (Y.Z.)
| | - Ruoqian Hu
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China; (R.H.); (Y.Z.)
| | - Yuchen Zhang
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China; (R.H.); (Y.Z.)
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (D.J.); (W.C.); (Y.X.); (S.W.); (Q.H.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China; (R.H.); (Y.Z.)
| | - Shuming Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (D.J.); (W.C.); (Y.X.); (S.W.); (Q.H.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China; (R.H.); (Y.Z.)
| | - Qiao He
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (D.J.); (W.C.); (Y.X.); (S.W.); (Q.H.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China; (R.H.); (Y.Z.)
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (D.J.); (W.C.); (Y.X.); (S.W.); (Q.H.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China; (R.H.); (Y.Z.)
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (D.J.); (W.C.); (Y.X.); (S.W.); (Q.H.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China; (R.H.); (Y.Z.)
| |
Collapse
|
7
|
Jing D, Chen W, Xia Y, Shi M, Wang P, Wang S, Wu D, He Q, Liang G, Guo Q. Homeotic transformation from stamen to petal in Eriobotrya japonica is associated with hormone signal transduction and reduction of the transcriptional activity of EjAG. PHYSIOLOGIA PLANTARUM 2020; 168:893-908. [PMID: 31587280 DOI: 10.1111/ppl.13029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Double-flower loquat (Eriobotrya japonica) is a new germplasm with homeotic transformation of stamen into petal in whorl 3. However, little information is available on the molecular mechanism of this transformation. Herein, we analyzed the transcriptome, candidate genes and endogenous hormones to investigate the mechanisms underlying this homeotic transformation. Some transcription factors, such as MADS-box, TCP and MYB, were significantly differentially expressed. Importantly, we confirmed that one of these (DN39625_c0_g1), which encoded a C-class floral homeotic protein referred to as AGAMOUS ortholog (EjAG), was significantly downregulated. Subcellular localization of EjAG was found to be in the nucleus. Ectopic expression of EjAG rescued the development of stamens and carpels from the double-flower phenotype in an Arabidopsis ag mutant, suggesting that EjAG expression is associated with double-flower formation. Meanwhile, enrichment analyses showed that the differentially expressed genes (DEGs) were mainly involved in the metabolic pathways of hormone signal transduction. The DEGs of auxin, gibberellin A (GA) and cytokinin signaling pathways were mainly upregulated. However, the DEGs of abscisic acid (ABA) and the ethylene signaling pathway were mainly downregulated. Accordingly, the concentrations of indoleacetic acid, kinetin and GA3 were high at the petaloid stamen stage, but the ABA concentration remained low. The identified genes and pathways provide abundant sequence resources for studying the mechanisms underlying the homeotic transformation in loquat and other Rosaceae species.
Collapse
Affiliation(s)
- Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Weiwei Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Min Shi
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Peng Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Shuming Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Qiao He
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| |
Collapse
|
8
|
Ma J, Deng S, Jia Z, Sang Z, Zhu Z, Zhou C, Ma L, Chen F. Conservation and divergence of ancestral AGAMOUS/SEEDSTICK subfamily genes from the basal angiosperm Magnolia wufengensis. TREE PHYSIOLOGY 2020; 40:90-107. [PMID: 31553477 DOI: 10.1093/treephys/tpz091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
AGAMOUS/SEEDSTICK (AG/STK) subfamily genes play crucial roles in the reproductive development of plants. However, most of our current knowledge of AG/STK subfamily genes is restricted to core eudicots and grasses, and the knowledge of ancestral exon-intron structures, expression patterns, protein-protein interaction patterns and functions of AG/STK subfamily genes remains unclear. To determine these, we isolated AG/STK subfamily genes (MawuAG1, MawuAG2 and MawuSTK) from a woody basal angiosperm Magnolia wufengensis (Magnoliaceae). MawuSTK arose from the gene duplication event occurring before the diversification of extant angiosperms, and MawuAG1 and MawuAG2 may result from a gene duplication event occurring before the divergence of Magnoliaceae and Lauraceae. Gene duplication led to apparent diversification in their expression and interaction patterns. It revealed that expression in both stamens and carpels likely represents the ancestral expression profiles of AG lineage genes, and expression of STK-like genes in stamens may have been lost soon after the appearance of the STK lineage. Moreover, AG/STK subfamily proteins may have immediately established interactions with the SEPALLATA (SEP) subfamily proteins following the emergence of the SEP subfamily; however, their interactions with the APETALA1/FRUITFULL subfamily proteins or themselves differ from those found in monocots and basal and core eudicots. MawuAG1 plays highly conserved roles in the determinacy of stamen, carpel and ovule identity, while gene duplication contributed to the functional diversification of MawuAG2 and MawuSTK. In addition, we investigated the evolutionary history of exon-intron structural changes of the AG/STK subfamily, and a novel splice-acceptor mode (GUU-AU) and the convergent evolution of N-terminal extension in the euAG and PLE subclades were revealed for the first time. These results further advance our understanding of ancestral AG/STK subfamily genes in terms of phylogeny, exon-intron structures, expression and interaction patterns, and functions, and provide strong evidence for the significance of gene duplication in the expansion and evolution of the AG/STK subfamily.
Collapse
Affiliation(s)
- Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Yichang, 443002, Hubei Province, PR China
| | - Zhonglong Zhu
- Wufeng Bo Ling Magnolia Wufengensis Technology Development Co., Ltd, Yichang, 443002, Hubei Province, PR China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| | - Lvyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| |
Collapse
|
9
|
Himani, Ramkumar TR, Tyagi S, Sharma H, Upadhyay SK, Sembi JK. Tracing the footprints of the ABCDE model of flowering in Phalaenopsis equestris(Schauer) Rchb.f. (Orchidaceae). JOURNAL OF PLANT BIOTECHNOLOGY 2019; 46:255-273. [DOI: 10.5010/jpb.2019.46.4.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 10/09/2024]
Affiliation(s)
- Himani
- Department of Botany, Panjab University, Chandigarh, India
| | - Thakku R. Ramkumar
- Department of Botany, Panjab University, Chandigarh, India
- Agronomy department, IFAS, University of Florida, Gainesville, FL, 32611, USA
| | - Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, India
| | - Himanshu Sharma
- Department of Botany, Panjab University, Chandigarh, India
- IKG Punjab Technical University, Jalandhar
| | | | | |
Collapse
|
10
|
Teo ZWN, Zhou W, Shen L. Dissecting the Function of MADS-Box Transcription Factors in Orchid Reproductive Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1474. [PMID: 31803211 PMCID: PMC6872546 DOI: 10.3389/fpls.2019.01474] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
The orchid family (Orchidaceae) represents the second largest angiosperm family, having over 900 genera and 27,000 species in almost all over the world. Orchids have evolved a myriad of intriguing ways in order to survive extreme weather conditions, acquire nutrients, and attract pollinators for reproduction. The family of MADS-box transcriptional factors have been shown to be involved in the control of many developmental processes and responses to environmental stresses in eukaryotes. Several findings in different orchid species have elucidated that MADS-box genes play critical roles in the orchid growth and development. An in-depth understanding of their ecological adaptation will help to generate more interest among breeders and produce novel varieties for the floriculture industry. In this review, we summarize recent findings of MADS-box transcription factors in regulating various growth and developmental processes in orchids, in particular, the floral transition and floral patterning. We further discuss the prospects for the future directions in light of new genome resources and gene editing technologies that could be applied in orchid research and breeding.
Collapse
Affiliation(s)
- Zhi Wei Norman Teo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Wei Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
The MADS-box genes expressed in the inflorescence of Orchis italica (Orchidaceae). PLoS One 2019; 14:e0213185. [PMID: 30822337 PMCID: PMC6396907 DOI: 10.1371/journal.pone.0213185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/15/2019] [Indexed: 11/21/2022] Open
Abstract
The Orchidaceae family, which is one of the most species-rich flowering plant families, includes species with highly diversified and specialized flower shapes. The aim of this study was to analyze the MADS-box genes expressed in the inflorescence of Orchis italica, a wild Mediterranean orchid species. MADS-box proteins are transcription factors involved in various plant biological processes, including flower development. In the floral tissues of O. italica, 29 MADS-box genes are expressed that are classified as both class I and II. Class I MADS-box genes include one Mβ-type gene, thereby confirming the presence of this type of MADS-box genes in orchids. The class II MIKC* gene is highly expressed in the column, which is consistent with the conserved function of the MIKC* genes in gametophyte development. In addition, homologs of the SOC, SVP, ANR1, AGL12 and OsMADS32 genes are expressed. Compared with previous knowledge on class II MIKCC genes of O. italica involved in the ABCDE model of flower development, the number of class B and D genes has been confirmed. In addition, 4 class A (AP1/FUL) transcripts, 2 class E (SEP) transcripts, 2 new class C (AG) transcripts and 1 new AGL6 transcript have been identified. Within the AP1/FUL genes, the sequence divergence, relaxation of purifying selection and expression profiles suggest a possible functional diversification within these orchid genes. The detection of only two SEP transcripts in O. italica, in contrast with the 4 genes found in other orchids, suggests that only two SEP genes could be present in the subfamily Orchidoideae. The expression pattern of the MIKCC genes of O. italica indicates that low levels at the boundary of the domain of a given MADS-box gene can overlap with the expression of genes belonging to a different functional A-E class in the adjacent domain, thereby following a “fading borders” model.
Collapse
|
12
|
Wang SL, Viswanath KK, Tong CG, An HR, Jang S, Chen FC. Floral Induction and Flower Development of Orchids. FRONTIERS IN PLANT SCIENCE 2019; 10:1258. [PMID: 31649713 PMCID: PMC6795766 DOI: 10.3389/fpls.2019.01258] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 05/19/2023]
Abstract
Orchids comprise one of the largest, most highly evolved angiosperm families, and form an extremely peculiar group of plants. Various orchids are available through traditional breeding and micro-propagation since they are valuable as potted plants and/or cut flowers in horticultural markets. The flowering of orchids is generally influenced by environmental signals such as temperature and endogenous developmental programs controlled by genetic factors as is usual in many flowering plant species. The process of floral transition is connected to the flower developmental programs that include floral meristem maintenance and floral organ specification. Thanks to advances in molecular and genetic technologies, the understanding of the molecular mechanisms underlying orchid floral transition and flower developmental processes have been widened, especially in several commercially important orchids such as Phalaenopsis, Dendrobium and Oncidium. In this review, we consolidate recent progress in research on the floral transition and flower development of orchids emphasizing representative genes and genetic networks, and also introduce a few successful cases of manipulation of orchid flowering/flower development through the application of molecular breeding or biotechnology tools.
Collapse
Affiliation(s)
- Shan-Li Wang
- Biotechnology Center in Southern Taiwan (BCST) of the Agricultural Biotechnology Research Center (ABRC), Academia Sinica, Tainan, Taiwan
| | - Kotapati Kasi Viswanath
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chii-Gong Tong
- Biotechnology Center in Southern Taiwan (BCST) of the Agricultural Biotechnology Research Center (ABRC), Academia Sinica, Tainan, Taiwan
| | - Hye Ryun An
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, South Korea
- *Correspondence: Seonghoe Jang, ; Fure-Chyi Chen,
| | - Fure-Chyi Chen
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
- *Correspondence: Seonghoe Jang, ; Fure-Chyi Chen,
| |
Collapse
|
13
|
Su S, Shao X, Zhu C, Xu J, Tang Y, Luo D, Huang X. An AGAMOUS-like factor is associated with the origin of two domesticated varieties in Cymbidium sinense (Orchidaceae). HORTICULTURE RESEARCH 2018; 5:48. [PMID: 30181888 PMCID: PMC6119200 DOI: 10.1038/s41438-018-0052-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 05/15/2023]
Abstract
Cymbidium has been artificially domesticated for centuries in Asia, which produced numerous cultivated varieties. Flowers with stamenoid tepals or those with multiple tepals have been found in different species of Cymbidium; however, the molecular basis controlling the formation of these phenotypes is still largely unknown. Previous work demonstrated that AGAMOUS/AG lineage MADS genes function in floral meristem determinacy as well as in reproductive organs development in both dicots and monocots, indicating a possible relationship with the origin of two flower varieties in Cymbidium. Here, we characterized and analyzed two AG lineage paralogues, CsAG1 and CsAG2, from Cymbidium sinense, both of which were highly expressed in the gynostemium column of a standard C. sinense. Interestingly, we detected ectopic expression of CsAG1 rather than CsAG2 in all floral organs of a stamenoid-tepal variety and significant down-regulation of CsAG1 in a variety with multiple tepals. Over-expression of CsAG1 in wild type Arabidopsis resulted in petal-to-stamen homeotic conversion, suggesting a conserved C-function of CsAG1 in the development of Cymbidium flower. Altogether, our results supported a hypothesis that disruption of a single AG-like factor would be associated with the formation of two domesticated varieties in C. sinense.
Collapse
Affiliation(s)
- Shihao Su
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Aichi Japan
| | - Xiaoyu Shao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Changfa Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jiayin Xu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Yuhuan Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Da Luo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Xia Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
14
|
Liao WY, Lin LF, Lin MD, Hsieh SC, Li AYS, Tsay YS, Chou ML. Overexpression of Lilium formosanumMADS-box ( LFMADS) Causing Floral Defects While Promoting Flowering in Arabidopsis thaliana, Whereas Only Affecting Floral Transition Time in Nicotiana tabacum. Int J Mol Sci 2018; 19:E2217. [PMID: 30060634 PMCID: PMC6121541 DOI: 10.3390/ijms19082217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/04/2023] Open
Abstract
The Formosa lily (Lilium formosanum) is one of the most common horticultural species in Taiwan. To explore gene regulation involved in this species, we used transcriptome analysis to generate PH-FB (mixed floral buds) and PH-LF (mature leaves) datasets. Combination of the PH-FB and PH-LF constructed a de novo assembly of the ALL dataset, including 18,041 contigs and 23,807 unigenes by Nr, GO, COG, and KEGG databases. The differential gene expression (DGE) analysis revealed 9937 genes were upregulated while 10,383 genes were downregulated in the developing floral buds compared to mature leaves. Seven putative genes (LFMADS1 to 7) encoding floral organ identity proteins were selected for further analysis. LFMADS1-6 genes were specifically expressed in the floral organ, while LFMADS7 in the floral buds and mature leaves. Phylogenetic analysis revealed that LFMADS1-3 is classified into B-class, LFMADS4 into C-class, LFMADS5 into D-class, and LFMADS6-7 into E-class, respectively. LFMADS-GFP fusion proteins appeared to localize in the nucleus, supporting their roles as transcription factors (TFs). Overexpression of the LFMADS2, LFMADS4, and LFMADS6 genes in Arabidopsis resulted in early flowering and floral defect, however, only early flowering in transgenic tobacco was observed. Highly expressed floral integrator genes, including AtFT, AtLFY, and AtFUL in transgenic Arabidopsis and NtFUL and NtSOC1 in transgenic tobacco, resulted in early flowering phenotype through qRT-PCR analysis. Yeast two-hybrid analysis suggested that LFMADSs may form higher order complexes with the B-, C-, D, and/or E-class proteins to determine the floral organ identity. Furthermore, E-class LFMADS proteins may function as a glue to mediate and strengthen the protein-protein interactions. Therefore, our de novo datasets would provide information for investigating other differentially expressed candidate transcripts. In addition, functional conservation of LFMADSs appears to be vital in floral transition and floral organ identity.
Collapse
Affiliation(s)
- Wan-Yu Liao
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
| | - Lee-Fong Lin
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan.
| | - Sheng-Che Hsieh
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
| | - Althea Yi-Shan Li
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
| | - Yueh-Shiah Tsay
- Division of Crop Improvement, Hualien District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Hualien 97365, Taiwan.
| | - Ming-Lun Chou
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
15
|
Ma J, Shen X, Liu Z, Zhang D, Liu W, Liang H, Wang Y, He Z, Chen F. Isolation and Characterization of AGAMOUS-Like Genes Associated With Double-Flower Morphogenesis in Kerria japonica (Rosaceae). FRONTIERS IN PLANT SCIENCE 2018; 9:959. [PMID: 30050547 PMCID: PMC6052346 DOI: 10.3389/fpls.2018.00959] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/14/2018] [Indexed: 05/30/2023]
Abstract
Double-flower phenotype is more popular and attractive in garden and ornamental plants. There is great interest in exploring the molecular mechanisms underlying the double-flower formation for further breeding and selection. Kerria japonica, a commercial ornamental shrub of the Rosaceae family, is considered an excellent system to determine the mechanisms of morphological alterations, because it naturally has a single-flower form and double-flower variant with homeotic conversion of stamens into petals and carpels into leaf-like carpels. In this study, Sf-KjAG (AGAMOUS homolog of single-flower K. japonica) and Df-KjAG (AGAMOUS homolog of double-flower K. japonica) were isolated and characterized as two AGAMOUS (AG) homologs that occur strictly in single- and double-flower K. japonica, respectively. Our sequence comparison showed that Df-KjAG is derived from ectopic splicing with the insertion of a 2411 bp transposon-like fragment, which might disrupt mRNA accumulation and protein function, into intron 1. Ectopic expression analysis in Arabidopsis revealed that Sf-KjAG is highly conserved in specifying carpel and stamen identities. However, Df-KjAG did not show any putative C-class function in floral development. Moreover, yeast-two-hybrid assays showed that Sf-KjAG can interact with KjAGL2, KjAGL9, and KjAP1, whereas Df-KjAG has lost interactions with these floral identity genes. In addition, loss-of-function of Df-KjAG affected not only its own expression, but also that of other putative floral organ identity genes such as KjAGL2, KjAGL9, KjAP1, KjAP2, KjAP3, and KjPI. In conclusion, our findings suggest that double-flower formation in K. japonica can be attributed to Df-KjAG, which appears to be a mutant produced by the insertion of a transposon-like fragment in the normal AG homolog (Sf-KjAG) of single-flower K. japonica. Highlights:Sf-KjAG and Df-KjAG are different variations only distinguished by a transposon-like fragment insertion which lead to the evolutionary transformation from single-flower to double-flowers morphogenesis in Kerria japonica.
Collapse
Affiliation(s)
- Jiang Ma
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
- Forestry College, Beijing Forestry University, Beijing, China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Zhixiong Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Dechun Zhang
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Wen Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Hongwei Liang
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Yubing Wang
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| |
Collapse
|
16
|
Callens C, Tucker MR, Zhang D, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2435-2459. [PMID: 29718461 DOI: 10.1093/jxb/ery086] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/16/2018] [Indexed: 05/05/2023]
Abstract
Many monocot plants have high social and economic value. These include grasses such as rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare), which produce soft commodities for many food and beverage industries, and ornamental flowers such ase lily (Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important component of international flower markets. There is constant pressure to improve the development and diversity of these species, with a significant emphasis on flower development, and this is particularly relevant considering the impact of changing environments on reproduction and thus yield. MADS-box proteins are a family of transcription factors that contain a conserved 60 amino acid MADS-box motif. In plants, attention has been devoted to characterization of this family due to their roles in inflorescence and flower development, which holds promise for the modification of floral architecture for plant breeding. This has been explored in diverse angiosperms, but particularly the dicot model Arabidopsis thaliana. The focus of this review is on the less well characterized roles of the MADS-box proteins in monocot flower development and how changes in MADS-box proteins throughout evolution may have contributed to creating a diverse range of flowers. Examining these changes within the monocots can identify the importance of certain genes and pinpoint those which might be useful in future crop improvement and breeding strategies.
Collapse
Affiliation(s)
- Cindy Callens
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
17
|
Suárez-Baron H, Pérez-Mesa P, Ambrose BA, González F, Pabón-Mora N. Deep into the Aristolochia Flower: Expression of C, D, and E-Class Genes in Aristolochia fimbriata (Aristolochiaceae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:55-71. [PMID: 27507740 DOI: 10.1002/jez.b.22686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/13/2016] [Accepted: 06/18/2016] [Indexed: 02/02/2023]
Abstract
Aristolochia fimbriata (Aristolochiaceae) is a member of an early diverging lineage of flowering plants and a promising candidate for evo-devo studies. Aristolochia flowers exhibit a unique floral synorganization that consists of a monosymmetric and petaloid calyx formed by three congenitally fused sepals, and a gynostemium formed by the congenital fusion between stamens and the stigmatic region of the carpels. This floral ground plan atypical in the magnoliids can be used to evaluate the role of floral organ identity MADS-box genes during early flower evolution. In this study, we present in situ hybridization experiments for the homologs of the canonical C-, D-, and E-class genes. Spatiotemporal expression of the C-class gene AfimAG is restricted to stamens, ovary, and ovules, suggesting a conserved stamen and carpel identity function, consistent with that reported in core-eudicots and monocots. The D-class gene AfimSTK is detected in the anthers, the stigmas, the ovary, the ovules, the fruit, and the seeds, suggesting conserved roles in ovule and seed identity and unique roles in stamens, ovary, and fruit development. In addition, AfimSTK expression patterns in areas of organ abscission and dehiscence zones suggest putative roles linked to senescence processes. We found that both E-class genes are expressed in the anthers and the ovary; however, AfimSEP2 exhibits higher expression compared to AfimSEP1. These findings provide a comprehensive picture of the ancestral expression patterns of the canonical MADS-box floral organ identity genes and the foundations for further comparative analyses in other magnoliids.
Collapse
Affiliation(s)
| | - Pablo Pérez-Mesa
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Sede Bogotá, Colombia
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.,The New York Botanical Garden, Bronx, NY, USA
| |
Collapse
|
18
|
Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, Huang YT, Chen JJW, Ko SS, Chan MT, Shih MC. Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:284-98. [PMID: 25917508 DOI: 10.1111/pbi.12383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 05/04/2023]
Abstract
Orchids exhibit a range of unique flower shapes and are a valuable ornamental crop. MADS-box transcription factors are key regulatory components in flower initiation and development. Changing the flower shape and flowering time can increase the value of the orchid in the ornamental horticulture industry. In this study, 28 MADS-box genes were identified from the transcriptome database of the model orchid Erycina pusilla. The full-length genomic sequences of these MADS-box genes were obtained from BAC clones. Of these, 27 were MIKC-type EpMADS (two truncated forms) and one was a type I EpMADS. Eleven EpMADS genes contained introns longer than 10 kb. Phylogenetic analysis classified the 24 MIKC(c) genes into nine subfamilies. Three specific protein motifs, AG, FUL and SVP, were identified and used to classify three subfamilies. The expression profile of each EpMADS gene correlated with its putative function. The phylogenetic analysis was highly correlated with the protein domain identification and gene expression results. Spatial expression of EpMADS6, EpMADS12 and EpMADS15 was strongly detected in the inflorescence meristem, floral bud and seed via in situ hybridization. The subcellular localization of the 28 EpMADS proteins was also investigated. Although EpMADS27 lacks a complete MADS-box domain, EpMADS27-YFP was localized in the nucleus. This characterization of the orchid MADS-box family genes provides useful information for both orchid breeding and studies of flowering and evolution.
Collapse
Affiliation(s)
- Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-yi, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Acri-Nunes-Miranda R, Mondragón-Palomino M. Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. FRONTIERS IN PLANT SCIENCE 2014; 5:76. [PMID: 24659990 PMCID: PMC3950491 DOI: 10.3389/fpls.2014.00076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/17/2014] [Indexed: 05/05/2023]
Abstract
The diverse flowers of Orchidaceae are the result of several major morphological transitions, among them the most studied is the differentiation of the inner median tepal into the labellum, a perianth organ key in pollinator attraction. Type A peloria lacking stamens and with ectopic labella in place of inner lateral tepals are useful for testing models on the genes specifying these organs by comparing their patterns of expression between wild-type and peloric flowers. Previous studies focused on DEFICIENS- and GLOBOSA-like MADS-box genes because of their conserved role in perianth and stamen development. The "orchid code" model summarizes this work and shows in Orchidaceae there are four paralogous lineages of DEFICIENS/AP3-like genes differentially expressed in each floral whorl. Experimental tests of this model showed the conserved, higher expression of genes from two specific DEF-like gene lineages is associated with labellum development. The present study tests whether eight MADS-box candidate SEP-, FUL-, AG-, and STK-like genes have been specifically duplicated in the Orchidaceae and are also differentially expressed in association with the distinct flower organs of Phalaenopsis hyb. "Athens." The gene trees indicate orchid-specific duplications. In a way analogous to what is observed in labellum-specific DEF-like genes, a two-fold increase in the expression of SEP3-like gene PhaMADS7 was measured in the labellum-like inner lateral tepals of peloric flowers. The overlap between SEP3-like and DEF-like genes suggests both are associated with labellum specification and similar positional cues determine their domains of expression. In contrast, the uniform messenger levels of FUL-like genes suggest they are involved in the development of all organs and their expression in the ovary suggests cell differentiation starts before pollination. As previously reported AG-like and STK-like genes are exclusively expressed in gynostemium and ovary, however no evidence for transcriptional divergence was found in the stage investigated. Gene expression suggests a developmental regulatory system based on the combined activity of duplicate MADS-box genes. We discuss its feasibility based on documented protein interactions and patterns of expression.
Collapse
Affiliation(s)
| | - Mariana Mondragón-Palomino
- *Correspondence: Mariana Mondragón-Palomino, Department of Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany e-mail:
| |
Collapse
|
20
|
Mondragón-Palomino M. Perspectives on MADS-box expression during orchid flower evolution and development. FRONTIERS IN PLANT SCIENCE 2013; 4:377. [PMID: 24065980 PMCID: PMC3779858 DOI: 10.3389/fpls.2013.00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/03/2013] [Indexed: 05/09/2023]
Abstract
The diverse morphology of orchid flowers and their complex, often deceptive strategies to become pollinated have fascinated researchers for a long time. However, it was not until the 20th century that the ontogeny of orchid flowers, the genetic basis of their morphology and the complex phylogeny of Orchidaceae were investigated. In parallel, the improvement of techniques for in vitro seed germination and tissue culture, together with studies on biochemistry, physiology, and cytology supported the progress of what is now a highly productive industry of orchid breeding and propagation. In the present century both basic research in orchid flower evo-devo and the interest for generating novel horticultural varieties have driven the characterization of many members of the MADS-box family encoding key regulators of flower development. This perspective summarizes the picture emerging from these studies and discusses the advantages and limitations of the comparative strategy employed so far. I address the growing role of natural and horticultural mutants in these studies and the emergence of several model species in orchid evo-devo and genomics. In this context, I make a plea for an increasingly integrative approach.
Collapse
Affiliation(s)
- Mariana Mondragón-Palomino
- Department of Cell Biology and Plant Biochemistry, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Chou ML, Shih MC, Chan MT, Liao SY, Hsu CT, Haung YT, Chen JJW, Liao DC, Wu FH, Lin CS. Global transcriptome analysis and identification of a CONSTANS-like gene family in the orchid Erycina pusilla. PLANTA 2013; 237:1425-41. [PMID: 23417646 DOI: 10.1007/s00425-013-1850-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/17/2013] [Indexed: 05/09/2023]
Abstract
The high chromosome numbers, polyploid genomes, and long juvenile phases of most ornamental orchid species render functional genomics difficult and limit the discovery of genes influencing horticultural traits. The orchid Erycina pusilla has a low chromosome number (2n = 12) and flowers in vitro within 1 year, making it a standout candidate for use as a model orchid. However, transcriptomic and genomic information from E. pusilla remains limited. In this study, next-generation sequencing (NGS) technology was used to identify 90,668 unigenes by de novo assembly. These unigenes were annotated functionally and analyzed with regard to their gene ontology (GO), clusters of orthologous groups (COG), and KEGG pathways. To validate the discovery methods, a homolog of CONSTANS (CO), one of the key genes in the flowering pathway, was further analyzed. The Arabidopsis CO-Like (COL) amino acid sequences were used to screen for homologs in the E. pusilla transcriptome database. Specific primers to the homologous unigenes were then used to isolate BAC clones, which were sequenced to identify 12 E. pusilla CO-like (EpCOL) full-length genes. Based on sequence homology, domain structure, and phylogenetic analysis, these EpCOL genes were divided into four groups. Four EpCOLs fused with GFP were localized in the nucleus. Some EpCOL genes were regulated by light. These results demonstrate that nascent E. pusilla resources (transcriptome and BAC library) can be used to investigate the E. pusilla photoperiod-dependent flowering genes. In future, this strategy can be applied to other biological processes, marketable traits, and molecular breeding in this model orchid.
Collapse
Affiliation(s)
- Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wei B, Liu D, Guo J, Leseberg CH, Zhang X, Mao L. Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:424-431. [PMID: 23286997 DOI: 10.1016/j.jplph.2012.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
MADS-box genes are core members of the ABCDE model for flower development where D-lineage genes play essential roles in ovule identity determination. We report here the cloning and functional characterization of two duplicated MADS-box genes, BdMADS2 and BdMADS4 from Brachypodium distachyon, the model plant of temperate grasses. BdMADS2 and BdMADS4 were highly similar to grass D-lineage MADS-box genes on the protein level and they fell in a distinctive clade on the phylogenetic tree, with conserved intron/exon structures to their rice and maize orthologues. Quantitative real time PCR revealed comparable expression levels were detected in all floral organs of Brachypodium for both genes, except for the carpel where the expression level of BdMADS2 was five times higher than that of BdMADS4. Over expression of these two genes in Arabidopsis caused curly rosette leaves, small sepals and petals, and early flowering. However, BdMADS4 showed stronger phenotypic effects than BdMADS2, suggesting functional divergence between the two genes. Cis-regulatory element prediction showed that the promoter region (including the first intron) of BdMADS4 possesses much less class I BPC protein binding motifs than that of BdMADS2 which may be responsible for the specific expression in carpels. Yeast two-hybrid assays showed that both BdMADS2 and BdMADS4 can interact with BdSEP3, but BdMADS2 can additionally interact with the putative APETALA1 orthologue (BdAP1), suggesting a deviation in their protein interaction patterns. Taken together, our data demonstrate a significant divergence between the two Brachypodium D-lineage MADS-box genes and provide evidences for their sub-functionalization.
Collapse
Affiliation(s)
- Bo Wei
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | | | | | | | | | | |
Collapse
|
23
|
Liu Z, Zhang D, Liu D, Li F, Lu H. Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae). PLANT CELL REPORTS 2013; 32:227-237. [PMID: 23096754 DOI: 10.1007/s00299-012-1357-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/28/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
KEY MESSAGE : Two transcript isoforms of AGAMOUS homologs, from single and double flower Prunus lannesiana, respectively, showed different functions. The Arabidopsis floral homeotic C function gene AGAMOUS (AG) confers stamen and carpel identity. Loss of AG function results in homeotic conversions of stamens into petals and formation of double flowers. In order to present a molecular dissection of a double-flower cultivar in Prunus lannesiana (Rosaceae), we isolated and identified a single-copy gene, AG homolog from two genetically cognate P. lannesiana bearing single and double flowers, respectively. Sequence analysis revealed that the AG homolog, prseag-1, from double flowers showed a 170-bp exon skipping as compared to PrseAG (Prunus serrulata AGAMOUS) from the single flowers. Genomic DNA sequence revealed that abnormal splicing resulted in mutant prseag-1 protein with the C-terminal AG motifs I and II deletions. In addition, protein sequence alignment and phylogenetic analyses revealed that the PrseAG was grouped into the euAG lineage. A semi-quantitative PCR analysis showed that the expression of PrseAG was restricted to reproductive organs of stamens and carpels in single flowers of P. lannesiana 'speciosa', while the prseag-1 mRNA was highly transcribed throughout the petals, stamens, and carpels in double flowers from 'Albo-rosea'. The transgenic Arabidopsis containing 35S::PrseAG displayed extremely early flowering, bigger stamens and carpels and homeotic conversion of petals into staminoid organs, but ectopic expression of prseag-1 could not mimic the phenotypic ectopic expression of PrseAG in Arabidopsis. In general, this study provides evidences to show that double flower 'Albo-rosea' is a putative C functional ag mutant in P. lannesiana.
Collapse
Affiliation(s)
- Zhixiong Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, Beijing 100083, PR China.
| | | | | | | | | |
Collapse
|
24
|
Salemme M, Sica M, Gaudio L, Aceto S. The OitaAG and OitaSTK genes of the orchid Orchis italica: a comparative analysis with other C- and D-class MADS-box genes. Mol Biol Rep 2013; 40:3523-35. [PMID: 23277396 DOI: 10.1007/s11033-012-2426-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
According to the ABCDE model of flower development, the C- and D- class MADS box genes are involved in the formation of male and female reproductive organs (fused to form the column in orchids) and in ovule maturation (triggered by fertilization in orchids). In the present study, we report the isolation of the Orchis italica genes OitaAG and OitaSTK, homologs of the C-class AGAMOUS and the D-class SEEDSTICK genes of Arabidopsis, respectively. Analysis of their expression profiles reveals high levels of mRNA in columns and ovaries, particularly after pollination. However, weak expression is also detectable in the inner tepals (OitaAG) and the lip and root (OitaSTK). This expression profile is only partially overlapping with those reported in other orchid species and may be the consequence of a different evolutionary history of these functional gene classes in orchids. The genomic characterization of the OitaAG and OitaSTK genes shows that a high number of traces of mobile elements are present in introns and could have contributed to the size expansion of some of them (e.g., intron 2 and 3 of OitaAG and intron 3, 4 and 5 of OitaSTK). Nucleotide sequences of intron 1 of the OitaSTK gene and other STK-like genes do not share regulatory motifs, whereas sequence comparison of intron 2 of the OitaAG gene with that of intron 2 of other AG-like genes reveals, for the first time in an orchid species, the presence of conserved cis-regulatory boxes and binding sites for transcription factors that positively (e.g., LEAFY and WUSCHEL) or negatively (e.g., BELLRINGER) regulate the expression of the AG homologs in dicots and monocots.
Collapse
Affiliation(s)
- Marinella Salemme
- Department of Biological Sciences, University of Naples Federico II, via Mezzocannone 8, 80134 Naples, Italy
| | | | | | | |
Collapse
|
25
|
Aceto S, Gaudio L. The MADS and the Beauty: Genes Involved in the Development of Orchid Flowers. Curr Genomics 2012; 12:342-56. [PMID: 22294877 PMCID: PMC3145264 DOI: 10.2174/138920211796429754] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 11/22/2022] Open
Abstract
Since the time of Darwin, biologists have studied the origin and evolution of the Orchidaceae, one of the largest families of flowering plants. In the last two decades, the extreme diversity and specialization of floral morphology and the uncoupled rate of morphological and molecular evolution that have been observed in some orchid species have spurred interest in the study of the genes involved in flower development in this plant family. As part of the complex network of regulatory genes driving the formation of flower organs, the MADS-box represents the most studied gene family, both from functional and evolutionary perspectives. Despite the absence of a published genome for orchids, comparative genetic analyses are clarifying the functional role and the evolutionary pattern of the MADS-box genes in orchids. Various evolutionary forces act on the MADS-box genes in orchids, such as diffuse purifying selection and the relaxation of selective constraints, which sometimes reveals a heterogeneous selective pattern of the coding and non-coding regions. The emerging theory regarding the evolution of floral diversity in orchids proposes that the diversification of the orchid perianth was a consequence of duplication events and changes in the regulatory regions of the MADS-box genes, followed by sub- and neo-functionalization. This specific developmental-genetic code is termed the "orchid code."
Collapse
Affiliation(s)
- Serena Aceto
- Department of Biological Sciences, University of Naples Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
| | | |
Collapse
|
26
|
Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, Lee YI, Liu KW, Chen LJ, Liu ZJ, Tsai WC. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. PLANT & CELL PHYSIOLOGY 2012; 53:1053-67. [PMID: 22499266 DOI: 10.1093/pcp/pcs048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Gynostemium and ovule development in orchid are unique developmental processes in the plant kingdom. Characterization of C- and D-class MADS-box genes could help reveal the molecular mechanisms underlying gynostemium and ovule development in orchids. In this study, we isolated and characterized a C- and a D-class gene, PeMADS1 and PeMADS7, respectively, from Phalaenopsis equestris. These two genes showed parallel spatial and temporal expression profiles, which suggests their cooperation in gynostemium and ovule development. Furthermore, only PeMADS1 was ectopically expressed in the petals of the gylp (gynostemium-like petal) mutant, whose petals were transformed into gynostemium-like structures. Protein-protein interaction analyses revealed that neither PeMADS1 and PeMADS7 could form a homodimer or a heterodimer. An E-class protein was needed to bridge the interaction between these two proteins. A complementation test revealed that PeMADS1 could rescue the phenotype of the AG mutant. Overexpression of PeMADS7 in Arabidopsis caused typical phenotypes of the D-class gene family. Together, these results indicated that both C-class PeMADS1 and D-class PeMADS7 play important roles in orchid gynostemium and ovule development.
Collapse
MESH Headings
- Amino Acid Sequence
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Complementation Test
- MADS Domain Proteins/genetics
- MADS Domain Proteins/metabolism
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Orchidaceae/anatomy & histology
- Orchidaceae/genetics
- Orchidaceae/growth & development
- Ovule/genetics
- Ovule/growth & development
- Ovule/ultrastructure
- Phenotype
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/anatomy & histology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Pollination
- Protein Interaction Mapping
Collapse
Affiliation(s)
- You-Yi Chen
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Garay-Arroyo A, Piñeyro-Nelson A, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER. When ABC becomes ACB. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2377-2395. [PMID: 22442416 DOI: 10.1093/jxb/ers024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Understanding how the information contained in genes is mapped onto the phenotypes, and deriving formal frameworks to search for generic aspects of developmental constraints and evolution remains one of the main challenges of contemporary biological research. The Mexican endemic triurid Lacandonia schismatica (Lacandoniaceae), a mycoheterotrophic monocotyledonous plant with hermaphroditic reproductive axes is alone among 250,000 species of angiosperms, as it has central stamens surrounded by a peripheral gynoecium, representing a natural instance of a homeotic mutant. Based on the classical ABC model of flower development, it has recently been shown that the B-function gene APETALA3 (AP3), essential for stamen identity, was displaced toward the flower centre in L. schismatica (ABC to ACB) from the early stages of flower development. A functional conservation of B-function genes from L. schismatica through the rescue of B-gene mutants in Arabidopsis thaliana, as well as conserved protein interactions, has also been demonstrated. Thus, it has been shown that relatively simple genetic alterations may underlie large morphological shifts fixed in extant natural populations. Nevertheless, critical questions remain in order to have a full and sufficient explanation of the molecular genetic mechanisms underlying L. schismatica's unique floral arrangement. Evolutionary approaches to developmental mechanisms and systems biology, including high-throughput functional genomic studies and models of complex developmental gene regulatory networks, constitute two main approaches to meet such a challenge. In this review, the aim is to address some of the pending questions with the ultimate goal of investigating further the mechanisms of L. schismatica's unique homeotic flower arrangement and its evolution.
Collapse
Affiliation(s)
- Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | | | | | | | | |
Collapse
|
28
|
Chen MK, Hsieh WP, Yang CH. Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:941-61. [PMID: 22068145 PMCID: PMC3254690 DOI: 10.1093/jxb/err323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two lily (Lilium longiflorum) PISTILLATA (PI) genes, Lily MADS Box Gene 8 and 9 (LMADS8/9), were characterized. LMADS9 lacked 29 C-terminal amino acids including the PI motif that was present in LMADS8. Both LMADS8/9 mRNAs were prevalent in the first and second whorl tepals during all stages of development and were expressed in the stamen only in young flower buds. LMADS8/9 could both form homodimers, but the ability of LMADS8 homodimers to bind to CArG1 was relatively stronger than that of LMADS9 homodimers. 35S:LMADS8 completely, and 35S:LMADS9 only partially, rescued the second whorl petal formation and partially converted the first whorl sepal into a petal-like structure in Arabidopsis pi-1 mutants. Ectopic expression of LMADS8-C (with deletion of the 29 amino acids of the C-terminal sequence) or LMADS8-PI (with only the PI motif deleted) only partially rescued petal formation in pi mutants, which was similar to what was observed in 35S:LMADS9/pi plants. In contrast, 35:LMADS9+L8C (with the addition of the 29 amino acids of the LMADS8 C-terminal sequence) or 35S:LMADS9+L8PI (with the addition of the LMADS8 PI motif) demonstrated an increased ability to rescue petal formation in pi mutants, which was similar to what was observed in 35S:LMADS8/pi plants. Furthermore, ectopic expression of LMADS8-M (with the MADS domain truncated) generated more severe dominant negative phenotypes than those seen in 35S:LMADS9-M flowers. These results revealed that the 29 amino acids including the PI motif in the C-terminal region of the lily PI orthologue are valuable for its function in regulating perianth organ formation.
Collapse
|
29
|
Chen MK, Lee PF, Yang CH. Delay of flower senescence and abscission in Arabidopsis transformed with an FOREVER YOUNG FLOWER homolog from Oncidium orchid. PLANT SIGNALING & BEHAVIOR 2011; 6:1841-3. [PMID: 22041990 PMCID: PMC3329364 DOI: 10.4161/psb.6.11.17612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ectopic expression of FOREVER YOUNG FLOWER (FYF), a MADS box gene in Arabidopsis, caused significant delay of senescence and a deficiency of abscission in flowers of transgenic Arabidopsis. It was proposed that the function of the FYF gene was related to the regulation of senescence and abscission. This hypothesis was further supported by one line of evidence reported in this study. The evidence is the similar delay of flower senescence and abscission observed in transgenic Arabidopsis ectopically expressing OnFYF, an FYF homolog from the Oncidium orchid, a monocot. This data suggested that the function of FYF homologs in regulating flower senescence and abscission was highly conserved in both dicot and monocot plants.
Collapse
|
30
|
Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. ACTA ACUST UNITED AC 2011; 25:11-26. [PMID: 22012076 DOI: 10.1007/s00497-011-0176-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/30/2011] [Indexed: 12/21/2022]
Abstract
Agave tequilana is a monocarpic perennial species that flowers after 5-8 years of vegetative growth signaling the end of the plant's life cycle. When fertilization is unsuccessful, vegetative bulbils are induced on the umbels of the inflorescence near the bracteoles from newly formed meristems. Although the regulation of inflorescence and flower development has been described in detail for monocarpic annuals and polycarpic species, little is known at the molecular level for these processes in monocarpic perennials, and few studies have been carried out on bulbils. Histological samples revealed the early induction of umbel meristems soon after the initiation of the vegetative to inflorescence transition in A. tequilana. To identify candidate genes involved in the regulation of floral induction, a search for MADS-box transcription factor ESTs was conducted using an A. tequilana transcriptome database. Seven different MIKC MADS genes classified into 6 different types were identified based on previously characterized A. thaliana and O. sativa MADS genes and sequences from non-grass monocotyledons. Quantitative real-time PCR analysis of the seven candidate MADS genes in vegetative, inflorescence, bulbil and floral tissues uncovered novel patterns of expression for some of the genes in comparison with orthologous genes characterized in other species. In situ hybridization studies using two different genes showed expression in specific tissues of vegetative meristems and floral buds. Distinct MADS gene regulatory patterns in A. tequilana may be related to the specific reproductive strategies employed by this species.
Collapse
|
31
|
Chang YY, Chu YW, Chen CW, Leu WM, Hsu HF, Yang CH. Characterization of Oncidium 'Gower Ramsey' transcriptomes using 454 GS-FLX pyrosequencing and their application to the identification of genes associated with flowering time. PLANT & CELL PHYSIOLOGY 2011; 52:1532-45. [PMID: 21785129 DOI: 10.1093/pcp/pcr101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oncidium 'Gower Ramsey' is a valuable and successful commercial orchid for the floriculture industry in Taiwan. However, no genome reference for entire sequences of the transcribed genes currently exists for Oncidium orchids, to facilitate the development of molecular biological studies and the breeding of these orchids. In this study, we generated Oncidium cDNA libraries for six different organs: leaves, pseudobulbs, young inflorescences, inflorescences, flower buds and mature flowers. We utilized 454-pyrosequencing technology to perform high-throughput deep sequencing of the Oncidium transcriptome, yielding >0.9 million reads with an average length of 328 bp, for a total of 301 million bases. De novo assembly of the sequences yielded 50,908 contig sequences with an average length of 493 bp from 796,463 reads and 120,219 singletons. The assembled sequences were annotated using BLAST, and a total of 12,757 and 13,931 unigene transcripts from the Arabidopsis and rice genomes were matched by TBLASTX, respectively. A Gene Ontology (GO) analysis of the annotated Oncidium contigs revealed that the majority of sequenced genes were associated with 'unknown molecular function', 'cellular process' and 'intracellular components'. Furthermore, a complete flowering-associated expressed sequence that included most of the genes in the photoperiod pathway and the 15 CONSTANS-LIKE (COL) homologs with the conserved CCT domain was obtained in this collection. These data revealed that the Oncidium expressed sequence tag (EST) database generated in this study has sufficient coverage to be used as a tool to investigate the flowering pathway and various other biological pathways in orchids. An OncidiumOrchidGenomeBase (OOGB) website has been constructed and is publicly available online (http://predictor.nchu.edu.tw/oogb/).
Collapse
Affiliation(s)
- Yu-Yun Chang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227, ROC
| | | | | | | | | | | |
Collapse
|
32
|
Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Shih HH, Chen WH, Tsai WC, Chen HH. Research on orchid biology and biotechnology. PLANT & CELL PHYSIOLOGY 2011; 52:1467-86. [PMID: 21791545 DOI: 10.1093/pcp/pcr100] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Orchidaceae constitute one of the largest families of angiosperms. They are one of the most ecological and evolutionary significant plants and have successfully colonized almost every habitat on earth. Because of the significance of plant biology, market needs and the current level of breeding technologies, basic research into orchid biology and the application of biotechnology in the orchid industry are continually endearing scientists to orchids in Taiwan. In this introductory review, we give an overview of the research activities in orchid biology and biotechnology, including the status of genomics, transformation technology, flowering regulation, molecular regulatory mechanisms of floral development, scent production and color presentation. This information will provide a broad scope for study of orchid biology and serve as a starting point for uncovering the mysteries of orchid evolution.
Collapse
Affiliation(s)
- Yu-Yun Hsiao
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hsu CT, Liao DC, Wu FH, Liu NT, Shen SC, Chou SJ, Tung SY, Yang CH, Chan MT, Lin CS. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey. BMC PLANT BIOLOGY 2011; 11:60. [PMID: 21473751 PMCID: PMC3079641 DOI: 10.1186/1471-2229-11-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 04/07/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. RESULTS Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR). A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI) genes (OnTI1, OnTI2 and OnTI3), which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. CONCLUSIONS By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.
Collapse
Affiliation(s)
- Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Nien-Tze Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Chen Shen
- Scientific Instrument Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
34
|
Hamada K, Hongo K, Suwabe K, Shimizu A, Nagayama T, Abe R, Kikuchi S, Yamamoto N, Fujii T, Yokoyama K, Tsuchida H, Sano K, Mochizuki T, Oki N, Horiuchi Y, Fujita M, Watanabe M, Matsuoka M, Kurata N, Yano K. OryzaExpress: an integrated database of gene expression networks and omics annotations in rice. PLANT & CELL PHYSIOLOGY 2011; 52:220-9. [PMID: 21186175 PMCID: PMC3037078 DOI: 10.1093/pcp/pcq195] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 12/07/2010] [Indexed: 05/19/2023]
Abstract
Similarity of gene expression profiles provides important clues for understanding the biological functions of genes, biological processes and metabolic pathways related to genes. A gene expression network (GEN) is an ideal choice to grasp such expression profile similarities among genes simultaneously. For GEN construction, the Pearson correlation coefficient (PCC) has been widely used as an index to evaluate the similarities of expression profiles for gene pairs. However, calculation of PCCs for all gene pairs requires large amounts of both time and computer resources. Based on correspondence analysis, we developed a new method for GEN construction, which takes minimal time even for large-scale expression data with general computational circumstances. Moreover, our method requires no prior parameters to remove sample redundancies in the data set. Using the new method, we constructed rice GENs from large-scale microarray data stored in a public database. We then collected and integrated various principal rice omics annotations in public and distinct databases. The integrated information contains annotations of genome, transcriptome and metabolic pathways. We thus developed the integrated database OryzaExpress for browsing GENs with an interactive and graphical viewer and principal omics annotations (http://riceball.lab.nig.ac.jp/oryzaexpress/). With integration of Arabidopsis GEN data from ATTED-II, OryzaExpress also allows us to compare GENs between rice and Arabidopsis. Thus, OryzaExpress is a comprehensive rice database that exploits powerful omics approaches from all perspectives in plant science and leads to systems biology.
Collapse
Affiliation(s)
- Kazuki Hamada
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Kohei Hongo
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Akifumi Shimizu
- School of Environmental Science, University of Shiga Prefecture, Hikone, 522-8533 Japan
| | - Taishi Nagayama
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Reina Abe
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Shunsuke Kikuchi
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Naoki Yamamoto
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Takaaki Fujii
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Koji Yokoyama
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Hiroko Tsuchida
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Kazumi Sano
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Takako Mochizuki
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | - Nobuhiko Oki
- National Agricultural Research Center for Kyushu Okinawa Region, National Agriculture and Food Research Organization, Koushi, 861-1192 Japan
| | - Youko Horiuchi
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | - Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
- *Corresponding author: E-mail, ; Fax, +81-44-934-7046
| |
Collapse
|