1
|
Zu SH, Jiang YT, Chang JH, Zhang YJ, Xue HW, Lin WH. Interaction of brassinosteroid and cytokinin promotes ovule initiation and increases seed number per silique in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:702-716. [PMID: 34837335 DOI: 10.1111/jipb.13197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Ovule initiation is a key step that strongly influences ovule number and seed yield. Notably, mutants with enhanced brassinosteroid (BR) and cytokinin (CK) signaling produce more ovules and have a higher seed number per silique (SNS) than wild-type plants. Here, we crossed BR- and CK-related mutants to test whether these phytohormones function together in ovule initiation. We determined that simultaneously enhancing BR and CK contents led to higher ovule and seed numbers than enhancing BR or CK separately, and BR and CK enhanced each other. Further, the BR-response transcription factor BZR1 directly interacted with the CK-response transcription factor ARABIDOPSIS RESPONSE REGULATOR1 (ARR1). Treatments with BR or BR plus CK strengthened this interaction and subsequent ARR1 targeting and induction of downstream genes to promote ovule initiation. Enhanced CK signaling partially rescued the reduced SNS phenotype of BR-deficient/insensitive mutants whereas enhanced BR signaling failed to rescue the low SNS of CK-deficient mutants, suggesting that BR regulates ovule initiation and SNS through CK-mediated and -independent pathways. Our study thus reveals that interaction between BR and CK promotes ovule initiation and increases seed number, providing important clues for increasing the seed yield of dicot crops.
Collapse
Affiliation(s)
- Song-Hao Zu
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Tong Jiang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin-Hui Chang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan-Jie Zhang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Wei Xue
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
iTRAQ-Based Protein Profiling Provides Insights into the Mechanism of Light-Induced Anthocyanin Biosynthesis in Chrysanthemum ( Chrysanthemum × morifolium). Genes (Basel) 2019; 10:genes10121024. [PMID: 31835383 PMCID: PMC6947405 DOI: 10.3390/genes10121024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 11/16/2022] Open
Abstract
The generation of chrysanthemum (Chrysanthemum × morifolium) flower color is mainly attributed to the accumulation of anthocyanins. Light is one of the key environmental factors that affect the anthocyanin biosynthesis, but the deep molecular mechanism remains elusive. In our previous study, a series of light-induced structural and regulatory genes involved in the anthocyanin biosynthetic pathway in the chrysanthemum were identified using RNA sequencing. In the present study, differentially expressed proteins that are in response to light with the capitulum development of the chrysanthemum 'Purple Reagan' were further identified using isobaric tags for relative and absolute quantification (iTRAQ) technique, and correlation between the proteomic and the transcriptomic libraries was analyzed. In general, 5106 raw proteins were assembled based on six proteomic libraries (three capitulum developmental stages × two light treatments). As many as 160 proteins were differentially expressed between the light and the dark libraries with 45 upregulated and 115 downregulated proteins in response to shading. Comparative analysis between the pathway enrichment and the gene expression patterns indicated that most of the proteins involved in the anthocyanin biosynthetic pathway were downregulated after shading, which was consistent with the expression patterns of corresponding encoding genes; while five light-harvesting chlorophyll a/b-binding proteins were initially downregulated after shading, and their expressions were enhanced with the capitulum development thereafter. As revealed by correlation analysis between the proteomic and the transcriptomic libraries, GDSL esterase APG might also play an important role in light signal transduction. Finally, a putative mechanism of light-induced anthocyanin biosynthesis in the chrysanthemum was proposed. This study will help us to clearly identify light-induced proteins associated with flower color in the chrysanthemum and to enrich the complex mechanism of anthocyanin biosynthesis for use in cultivar breeding.
Collapse
|
3
|
You WJ, Feng YR, Shen YH, Chen YR, Chen TY, Fu SF. Silencing of NbCMT3s has Pleiotropic Effects on Development by Interfering with Autophagy-Related Genes in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2019; 60:1120-1135. [PMID: 30785195 DOI: 10.1093/pcp/pcz034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/14/2019] [Indexed: 05/25/2023]
Abstract
DNA methylation is a chromatin mark that has a crucial role in regulating gene expression. The chromomethylase (CMT) protein family is a plant-specific DNA methyltransferase that mediates growth and development. However, the roles of CMT3 in autophagy remain to be elucidated. Here, we identified the potential targets of CMT3 in Nicotiana benthamiana (NbCMT3) during developmental programs. Virus-induced gene silencing of NbCMT3/3-2 in N. benthamiana had pleiotropic effects on plant morphology, which indicates its indispensible role in development. Genome-wide transcriptome analysis of NbCMT3/3-2-silenced plants revealed interference with genes related to autophagy and ubiquitination. The expression of NbBeclin 1 and NbHRD1B was higher in NbCMT3/3-2-silenced than control plants. The formation of autophagosomes and starch degradation was disrupted in NbCMT3/3-2-silenced plants, which implies a perturbed autophagic processes. We further generated transgenic N. benthamiana plants carrying a chimeric promoter-reporter construct linking the NbBeclin 1 promoter region and β-glucuronidase (GUS) reporter (pNbBeclin::GUS). NbBeclin 1 promoter activity was significantly enhanced in NbCMT3/3-2-silenced plants. Thus, NbCMT3/3-2 silencing had pleiotropic effects on development by interfering with NbBeclin 1 expression and autophagy-related processes.
Collapse
Affiliation(s)
- Wen-Jing You
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| | - Yun-Ru Feng
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| | - Ya-Han Shen
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| | - Yi-Ru Chen
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| | - Tzy-Yi Chen
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, No.1, Jin-De Road, Changhua, Taiwan
| |
Collapse
|
4
|
Tucker MR, Lou H, Aubert MK, Wilkinson LG, Little A, Houston K, Pinto SC, Shirley NJ. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E42. [PMID: 29857498 PMCID: PMC6028917 DOI: 10.3390/plants7020042] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.
Collapse
Affiliation(s)
- Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Haoyu Lou
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Alan Little
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Sara C Pinto
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| |
Collapse
|
5
|
Mamedes-Rodrigues TC, Batista DS, Vieira NM, Matos EM, Fernandes D, Nunes-Nesi A, Cruz CD, Viccini LF, Nogueira FTS, Otoni WC. Regenerative potential, metabolic profile, and genetic stability of Brachypodium distachyon embryogenic calli as affected by successive subcultures. PROTOPLASMA 2018; 255:655-667. [PMID: 29080994 DOI: 10.1007/s00709-017-1177-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Brachypodium distachyon, a model species for forage grasses and cereal crops, has been used in studies seeking improved biomass production and increased crop yield for biofuel production purposes. Somatic embryogenesis (SE) is the morphogenetic pathway that supports in vitro regeneration of such species. However, there are gaps in terms of studies on the metabolic profile and genetic stability along successive subcultures. The physiological variables and the metabolic profile of embryogenic callus (EC) and embryogenic structures (ES) from successive subcultures (30, 60, 90, 120, 150, 180, 210, 240, and 360-day-old subcultures) were analyzed. Canonical discriminant analysis separated EC into three groups: 60, 90, and 120 to 240 days. EC with 60 and 90 days showed the highest regenerative potential. EC grown for 90 days and submitted to SE induction in 2 mg L-1 of kinetin-supplemented medium was the highest ES producer. The metabolite profiles of non-embryogenic callus (NEC), EC, and ES submitted to principal component analysis (PCA) separated into two groups: 30 to 240- and 360-day-old calli. The most abundant metabolites for these groups were malonic acid, tryptophan, asparagine, and erythrose. PCA of ES also separated ages into groups and ranked 60- and 90-day-old calli as the best for use due to their high levels of various metabolites. The key metabolites that distinguished the ES groups were galactinol, oxaloacetate, tryptophan, and valine. In addition, significant secondary metabolites (e.g., caffeoylquinic, cinnamic, and ferulic acids) were important in the EC phase. Ferulic, cinnamic, and phenylacetic acids marked the decreases in the regenerative capacity of ES in B. distachyon. Decreased accumulations of the amino acids aspartic acid, asparagine, tryptophan, and glycine characterized NEC, suggesting that these metabolites are indispensable for the embryogenic competence in B. distachyon. The genetic stability of the regenerated plants was evaluated by flow cytometry, showing that ploidy instability in regenerated plants from B. distachyon calli is not correlated with callus age. Taken together, our data indicated that the loss of regenerative capacity in B. distachyon EC occurs after 120 days of subcultures, demonstrating that the use of EC can be extended to 90 days.
Collapse
Affiliation(s)
- T C Mamedes-Rodrigues
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - D S Batista
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - N M Vieira
- Departamento de Microbiologia/Núcleo de Análises de Biomoléculas-NUBIOMOL, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - E M Matos
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - D Fernandes
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - A Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - C D Cruz
- Laboratório de Bioinformática/BIOAGRO, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 35670-900, Brazil
| | - L F Viccini
- Laboratório de Genética e Biotecnologia, Departamento de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - F T S Nogueira
- Laboratório de Genética Molecular do Desenvolvimento Vegetal (LGMDV), Universidade de São Paulo / ESALQ, Av. Pádua Dias, Piracicaba, SP, 13418-900, Brazil
| | - W C Otoni
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
6
|
Mo Z, Feng G, Su W, Liu Z, Peng F. Transcriptomic Analysis Provides Insights into Grafting Union Development in Pecan (Carya illinoinensis). Genes (Basel) 2018; 9:genes9020071. [PMID: 29401757 PMCID: PMC5852567 DOI: 10.3390/genes9020071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 11/16/2022] Open
Abstract
Pecan (Carya illinoinensis), as a popular nut tree, has been widely planted in China in recent years. Grafting is an important technique for its cultivation. For a successful grafting, graft union development generally involves the formation of callus and vascular bundles at the graft union. To explore the molecular mechanism of graft union development, we applied high throughput RNA sequencing to investigate the transcriptomic profiles of graft union at four timepoints (0 days, 8 days, 15 days, and 30 days) during the pecan grafting process. After de novo assembly, 83,693 unigenes were obtained, and 40,069 of them were annotated. A total of 12,180 differentially expressed genes were identified between by grafting. Genes involved in hormone signaling, cell proliferation, xylem differentiation, cell elongation, secondary cell wall deposition, programmed cell death, and reactive oxygen species (ROS) scavenging showed significant differential expression during the graft union developmental process. In addition, we found that the content of auxin, cytokinin, and gibberellin were accumulated at the graft unions during the grafting process. These results will aid in our understanding of successful grafting in the future.
Collapse
Affiliation(s)
- Zhenghai Mo
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Gang Feng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Wenchuan Su
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhuangzhuang Liu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Fangren Peng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Liu Y, Zhang HL, Guo HR, Xie L, Zeng RZ, Zhang XQ, Zhang ZS. Transcriptomic and Hormonal Analyses Reveal that YUC-Mediated Auxin Biogenesis Is Involved in Shoot Regeneration from Rhizome in Cymbidium. FRONTIERS IN PLANT SCIENCE 2017; 8:1866. [PMID: 29163591 PMCID: PMC5664085 DOI: 10.3389/fpls.2017.01866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/12/2017] [Indexed: 05/22/2023]
Abstract
Cymbidium, one of the most important orchid genera in horticulture, can be classified into epiphytic and terrestrial species. Generally, epiphytic Cymbidium seedlings can be easily propagated by tissue culture, but terrestrial seedlings are difficult to propagate. To date, the molecular mechanisms underlying the differences in the ease with which terrestrial and epiphytic cymbidiums can be propagated are largely unknown. Using RNA-sequencing, quantitative reverse transcription PCR and enzyme-linked immunosorbent assay, Cymbidium 'Xiaofeng' (CXF), which can be efficiently micropropagated, and terrestrial Cymbidium sinense 'Qijianbaimo' (CSQ), which has a low regeneration ability, were used to explore the molecular mechanisms underlying the micropropagation ability of Cymbidium species. To this end, 447 million clean short reads were generated, and 31,264 annotated unigenes were obtained from 10 cDNA libraries. A total of 1,290 differentially expressed genes (DEGs) were identified between CXF and CSQ during shoot induction. Gene ontology (GO) enrichment analysis indicated that the DEGs were significantly enriched in auxin pathway-related GO terms. Further analysis demonstrated that YUC and GH3 family genes, which play crucial roles in the regulation of auxin/IAA (indole-3-acetic acid) metabolism, acted quickly in response to shoot induction culture in vitro and were closely correlated with variation in shoot regeneration between CXF and CSQ. In addition, the study showed that IAA accumulated rapidly and significantly during shoot induction in CXF compared to that in CSQ; in contrast, no significant changes in other hormones were observed between CXF and CSQ. Furthermore, shoot regeneration in CXF was inhibited by a yucasin-auxin biosynthesis inhibitor, indicating that increased IAA level is required for high-frequency shoot regeneration in CXF. In conclusion, our study revealed that YUC-mediated auxin biogenesis is involved in shoot regeneration from rhizome in Cymbidium.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang-Qian Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhi-Sheng Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn.spp. baijianlian). J Proteomics 2016; 131:61-70. [DOI: 10.1016/j.jprot.2015.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 11/23/2022]
|
9
|
Lin YT, Wei HM, Lu HY, Lee YI, Fu SF. Developmental- and Tissue-Specific Expression of NbCMT3-2 Encoding a Chromomethylase in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2015; 56:1124-43. [PMID: 25745030 DOI: 10.1093/pcp/pcv036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/23/2015] [Indexed: 05/11/2023]
Abstract
The chromomethylase (CMT) protein family is unique to plants and controls non-CpG methylation. Here, we investigated the developmental expression of CMT3-2 in Nicotiana benthamiana (NbCMT3-2) and its significance by analyzing plants with silenced NbCMT3-2 and leaf tissues transiently expressing the N-terminal polypeptide. Alignment of the NbCMT3-2 amino acid sequence with that of other plant CMT3s showed a specific N-terminal extension required for nuclear localization. Transient expression of the N-terminal polypeptide in N. benthamiana resulted in chlorotic lesions. NbCMT3-2 was expressed mainly in proliferating tissues such as the shoot apex and developing leaves. We generated transgenic N. benthamiana harboring a fusion reporter construct linking the NbCMT3-2 promoter region and the β-glucuronidase (GUS) reporter (pNbCMT3-2::GUS) to analyze the tissue-specific expression of NbCMT3-2. NbCMT3-2 was expressed in the shoot and root apical meristem and leaf primordia in young seedlings and highly expressed in developing leaves and ovary as well as lateral buds in mature plants. Virus-induced gene silencing used to knock down the expression of NbCMT3 or NbCMT3-2 or both led to partial loss of genomic DNA methylation. Plants with suppressed NbCMT3 expression grew and developed normally, whereas leaves with NbCMT3-2 knockdown showed mild curling as compared with controls. Silencing NbCMT3/3-2 severely interfered with leaf development and directly or indirectly affected the expression of genes involved in jasmonate homeostasis. The differential roles of NbCMT3 and NbCMT3-2 were investigated and compared. We reveal the expression patterns of NbCMT3-2 in proliferating tissues. NbCMT3-2 may play an essential role in leaf development by modulating jasmonate pathways.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Huei-Mei Wei
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Hsueh-Yu Lu
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Yung-I Lee
- Botany Department, National Museum of Natural Science, No. 1, Guancian Road, Taichung 404, Taiwan
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| |
Collapse
|
10
|
Ma Q, Zhou W, Zhang P. Transition from somatic embryo to friable embryogenic callus in cassava: dynamic changes in cellular structure, physiological status, and gene expression profiles. FRONTIERS IN PLANT SCIENCE 2015; 6:824. [PMID: 26500668 PMCID: PMC4594424 DOI: 10.3389/fpls.2015.00824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 05/20/2023]
Abstract
Friable embryogenic callus (FEC) is considered as the most suitable material for efficient genetic transformation of cassava. Heavy genotype dependence of FEC induction and amenability to somaclonal variation limits the production and maintenance of reliable FEC. Identifying key elements involved in biological processes from somatic embryos (SEs) to FEC at different stages provides critical insights for FEC improvement. Cytological observation showed a dramatic change of subcellular structures among SEs, fresh FEC (FFEC), and old FEC (OFEC). Decrease of sucrose and increase of fructose and glucose were detected in OFEC. A total of 6871 differentially expressed genes (DEGs) were identified from SEs, FFEC, and OFEC by RNA-seq. Analysis of the DEGs showed that FEC induction was accompanied by the process of dedifferentiation, whereas the epigenetics modification occurred during the continuous subculturing process. The cell structure was reconstructed, mainly including the GO terms of "cell periphery" and "external encapsulating structure"; in parallel, the internal mechanisms changed correspondingly, including the biological process of glycolysis and metabolisms of alanine, aspartate, and glutamate. The significant reduction of genomic DNA methylation in OFEC indicated altered gene expression via chromatin modification. These results indicate that the induction and long-term subculture of FEC is a complicated biological process involving changes of genome modification, gene expression, and subcellular reconstruction. The findings will be useful for improving FEC induction and maintenance from farmer-preferred cassava cultivars recalcitrant to genetic transformation, hence improving cassava through genetic engineering.
Collapse
Affiliation(s)
| | | | - Peng Zhang
- *Correspondence: Peng Zhang, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| |
Collapse
|
11
|
Geng L, Duan X, Liang C, Shu C, Song F, Zhang J. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing. PLANT & CELL PHYSIOLOGY 2014; 55:1793-801. [PMID: 25231965 DOI: 10.1093/pcp/pcu111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Peanut (Arachis hypogaea L.), one of the most important oil legumes in the world, is heavily damaged by white grubs. Tissue-specific promoters are needed to incorporate insect resistance genes into peanut by genetic transformation to control the subterranean pests. Transcriptome sequencing is the most effective way to analyze differential gene expression in this non-model species and contribute to promoter cloning. The transcriptomes of the roots, seeds and leaves of peanut were sequenced using Illumina technology. A simple digital expression profile was established based on number of transcripts per million clean tags (TPM) from different tissues. Subsequently, 584 root-specific candidate transcript assembly contigs (TACs) and 316 seed-specific candidate TACs were identified. Among these candidate TACs, 55.3% were root-specific and 64.6% were seed-specific by semi-quantitative RT-PCR analysis. Moreover, the consistency of semi-quantitative RT-PCR with the simple digital expression profile was correlated with the length and TPM value of TACs. The results of gene ontology showed that some root-specific TACs are involved in stress resistance and respond to auxin stimulus, whereas, seed-specific candidate TACs are involved in embryo development, lipid storage and long-chain fatty acid biosynthesis. One root-specific promoter was cloned and characterized. We developed a high-yield screening system in peanut by establishing a simple digital expression profile based on Illumina sequencing. The feasible and rapid method presented by this study can be used for other non-model crops to explore tissue-specific or spatially specific promoters.
Collapse
Affiliation(s)
- Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohong Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH 45056, USA Department of Computer Science and Software Engineering, Miami University, Oxford, OH 45056, USA
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Fabi JP, Broetto SG, da Silva SLGL, Zhong S, Lajolo FM, do Nascimento JRO. Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening. PLoS One 2014; 9:e105685. [PMID: 25162506 PMCID: PMC4146514 DOI: 10.1371/journal.pone.0105685] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/23/2014] [Indexed: 01/14/2023] Open
Abstract
Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening.
Collapse
Affiliation(s)
- João Paulo Fabi
- Department of Food Science and Experimental Nutrition, FCF, University of São Paulo, São Paulo, São Paulo, Brazil
- University of São Paulo, – NAPAN – Food and Nutrition Research Center, São Paulo, São Paulo, Brazil
| | - Sabrina Garcia Broetto
- Department of Food Science and Experimental Nutrition, FCF, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Franco Maria Lajolo
- Department of Food Science and Experimental Nutrition, FCF, University of São Paulo, São Paulo, São Paulo, Brazil
- University of São Paulo, – NAPAN – Food and Nutrition Research Center, São Paulo, São Paulo, Brazil
| | - João Roberto Oliveira do Nascimento
- Department of Food Science and Experimental Nutrition, FCF, University of São Paulo, São Paulo, São Paulo, Brazil
- University of São Paulo, – NAPAN – Food and Nutrition Research Center, São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Díaz-Sala C. Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile-adult transition. FRONTIERS IN PLANT SCIENCE 2014; 5:310. [PMID: 25071793 PMCID: PMC4083218 DOI: 10.3389/fpls.2014.00310] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/10/2014] [Indexed: 05/12/2023]
Abstract
Cellular plasticity refers, among others, to the capability of differentiated cells to switch the differentiation process and acquire new fates. One way by which plant cell plasticity is manifested is through de novo regeneration of organs from somatic differentiated cells in an ectopic location. However, switching the developmental program of adult cells prior to organ regeneration is difficult in many plant species, especially in forest tree species. In these species, a decline in the capacity to regenerate shoots, roots, or embryos from somatic differentiated cells is associated with tree age and maturation. The decline in the ability to form adventitious roots from stem cuttings is one of the most dramatic effects of maturation, and has been the subject of investigations on the basic nature of the process. Cell fate switches, both in plants and animals, are characterized by remarkable changes in the pattern of gene expression, as cells switch from the characteristic expression pattern of a somatic cell to a new one directing a new developmental pathway. Therefore, determining the way by which cells reset their gene expression pattern is crucial to understand cellular plasticity. The presence of specific cellular signaling pathways or tissue-specific factors underlying the establishment, maintenance, and redirection of gene expression patterns in the tissues involved in adventitious root formation could be crucial for cell fate switch and for the control of age-dependent cellular plasticity.
Collapse
Affiliation(s)
- Carmen Díaz-Sala
- *Correspondence: Carmen Díaz-Sala, Department of Life Sciences, University of Alcalá, Carretera Madrid–Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid, Spain e-mail:
| |
Collapse
|
14
|
Hou PQ, Lee YI, Hsu KT, Lin YT, Wu WZ, Lin JY, Nam TN, Fu SF. Functional characterization of Nicotiana benthamiana chromomethylase 3 in developmental programs by virus-induced gene silencing. PHYSIOLOGIA PLANTARUM 2014; 150:119-32. [PMID: 23683172 DOI: 10.1111/ppl.12071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 05/11/2023]
Abstract
DNA methylation is essential for normal developmental processes and genome stability. DNA methyltransferases are key enzymes catalyzing DNA methylation. Chromomethylase (CMT) genes are specific to the plant kingdom and encode chromodomain-containing methyltransferases. However, the function of CMT genes in plants remains elusive. In this study, we isolated and characterized a CMT gene from Nicotiana benthamiana, designated NbCMT3. Alignment of the NbCMT3 amino acid sequence with other plant CMT3s showed conservation of bromo-adjacent-homology and methyltransferase catalytic domains. We investigated the expression patterns of NbCMT3 and its function in developmental programs. NbCMT3 was expressed predominately in proliferating tissues such as apical shoots and young leaves. NbCMT3 protein showed a nuclear location, which could be related to its putative cellular functions. Knocking down NbCMT3 expression by virus-induced gene silencing revealed its vital role(s) in leaf morphogenesis. The formation of palisade cells was defective in NbCMT3-silenced plants as compared with controls. NbCMT3 has a role in developmental programs.
Collapse
Affiliation(s)
- Pin-Quan Hou
- Department of Biology, National Chunghua University of Education, No.1, Jin-De Road, 500, Changhua, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|