1
|
Jerez C, Llop A, Salinas P, Bibak S, Forchhammer K, Contreras A. Analysing the Cyanobacterial PipX Interaction Network Using NanoBiT Complementation in Synechococcus elongatus PCC7942. Int J Mol Sci 2024; 25:4702. [PMID: 38731921 PMCID: PMC11083307 DOI: 10.3390/ijms25094702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding to them, in vivo studies are required to understand the physiological significance and contribution of environmental factors to the regulation of PipX complexes. Here, we have used the NanoBiT complementation system to analyse the regulation of complex formation in Synechococcus elongatus PCC 7942 between PipX and each of its two best-characterized partners, PII and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in Synechococcus elongatus. The demonstration of a positive role of PII on PipX-NtcA complexes during their initial response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals additional regulatory complexities in the PipX interaction network, opening a path for future research on cyanobacteria.
Collapse
Affiliation(s)
- Carmen Jerez
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
- Interfaculty Institute of Microbiology and Infection Biology, University Tübingen, 72076 Tübingen, Germany;
| | - Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Sirine Bibak
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Biology, University Tübingen, 72076 Tübingen, Germany;
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| |
Collapse
|
2
|
Llop A, Tremiño L, Cantos R, Contreras A. The Signal Transduction Protein PII Controls the Levels of the Cyanobacterial Protein PipX. Microorganisms 2023; 11:2379. [PMID: 37894037 PMCID: PMC10609283 DOI: 10.3390/microorganisms11102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Cyanobacteria, microorganisms performing oxygenic photosynthesis, must adapt their metabolic processes to environmental challenges such as day and night changes. PipX, a unique regulatory protein from cyanobacteria, provides a mechanistic link between the signalling protein PII, a widely conserved (in bacteria and plants) transducer of carbon/nitrogen/energy richness, and the transcriptional regulator NtcA, which controls a large regulon involved in nitrogen assimilation. PipX is also involved in translational regulation through interaction with the ribosome-assembly GTPase EngA. However, increases in the PipX/PII ratio are toxic, presumably due to the abnormally increased binding of PipX to other partner(s). Here, we present mutational and structural analyses of reported PipX-PII and PipX-NtcA complexes, leading to the identification of single amino acid changes that decrease or abolish PipX toxicity. Notably, 4 out of 11 mutations decreasing toxicity did not decrease PipX levels, suggesting that the targeted residues (F12, D23, L36, and R54) provide toxicity determinants. In addition, one of those four mutations (D23A) argued against the over-activation of NtcA as the cause of PipX toxicity. Most mutations at residues contacting PII decreased PipX levels, indicating that PipX stability would depend on its ability to bind to PII, a conclusion supported by the light-induced decrease of PipX levels in Synechococcus elongatus PCC7942 (hereafter S. elongatus).
Collapse
Affiliation(s)
| | | | | | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (A.L.); (L.T.); (R.C.)
| |
Collapse
|
3
|
Llop A, Bibak S, Cantos R, Salinas P, Contreras A. The ribosome assembly GTPase EngA is involved in redox signaling in cyanobacteria. Front Microbiol 2023; 14:1242616. [PMID: 37637111 PMCID: PMC10448771 DOI: 10.3389/fmicb.2023.1242616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Photosynthetic organisms must cope with environmental challenges, like those imposed by the succession of days and nights or by sudden changes in light intensities, that trigger global changes in gene expression and metabolism. The photosynthesis machinery is particularly susceptible to environmental changes and adaptation to them often involves redox-sensing proteins that are the targets of reactive oxygen species generated by photosynthesis activity. Here we show that EngA, an essential GTPase and ribosome-assembly protein involved in ribosome biogenesis in bacteria and chloroplasts, also plays a role in acclimatization to environmentally relevant stress in Synechococcus elongatus PCC7942 and that PipX, a promiscuous regulatory protein that binds to EngA, appears to fine-tune EngA activity. During growth in cold or high light conditions, the EngA levels rise, with a concomitant increase of the EngA/PipX ratio. However, a sudden increase in light intensity turns EngA into a growth inhibitor, a response involving residue Cys122 of EngA, which is part of the GD1-G4 motif NKCES of EngA proteins, with the cysteine conserved just in the cyanobacteria-chloroplast lineage. This work expands the repertoire of ribosome-related factors transmitting redox signals in photosynthetic organisms and provides additional insights into the complexity of the regulatory interactions mediated by EngA and PipX.
Collapse
Affiliation(s)
| | | | | | | | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
4
|
Llop A, Labella JI, Borisova M, Forchhammer K, Selim KA, Contreras A. Pleiotropic effects of PipX, PipY, or RelQ overexpression on growth, cell size, photosynthesis, and polyphosphate accumulation in the cyanobacterium Synechococcus elongatus PCC7942. Front Microbiol 2023; 14:1141775. [PMID: 37007489 PMCID: PMC10060972 DOI: 10.3389/fmicb.2023.1141775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The cyanobacterial protein PipY belongs to the Pyridoxal-phosphate (PLP)-binding proteins (PLPBP/COG0325) family of pyridoxal-phosphate-binding proteins, which are represented in all three domains of life. These proteins share a high degree of sequence conservation, appear to have purely regulatory functions, and are involved in the homeostasis of vitamin B6 vitamers and amino/keto acids. Intriguingly, the genomic context of the pipY gene in cyanobacteria connects PipY with PipX, a protein involved in signaling the intracellular energy status and carbon-to-nitrogen balance. PipX regulates its cellular targets via protein–protein interactions. These targets include the PII signaling protein, the ribosome assembly GTPase EngA, and the transcriptional regulators NtcA and PlmA. PipX is thus involved in the transmission of multiple signals that are relevant for metabolic homeostasis and stress responses in cyanobacteria, but the exact function of PipY is still elusive. Preliminary data indicated that PipY might also be involved in signaling pathways related to the stringent stress response, a pathway that can be induced in the unicellular cyanobacterium Synechococcus elongatus PCC7942 by overexpression of the (p)ppGpp synthase, RelQ. To get insights into the cellular functions of PipY, we performed a comparative study of PipX, PipY, or RelQ overexpression in S. elongatus PCC7942. Overexpression of PipY or RelQ caused similar phenotypic responses, such as growth arrest, loss of photosynthetic activity and viability, increased cell size, and accumulation of large polyphosphate granules. In contrast, PipX overexpression decreased cell length, indicating that PipX and PipY play antagonistic roles on cell elongation or cell division. Since ppGpp levels were not induced by overexpression of PipY or PipX, it is apparent that the production of polyphosphate in cyanobacteria does not require induction of the stringent response.
Collapse
Affiliation(s)
- Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Jose I. Labella
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Marina Borisova
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Khaled A. Selim
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- *Correspondence: Asunción Contreras,
| |
Collapse
|
5
|
Jerez C, Salinas P, Llop A, Cantos R, Espinosa J, Labella JI, Contreras A. Regulatory Connections Between the Cyanobacterial Factor PipX and the Ribosome Assembly GTPase EngA. Front Microbiol 2021; 12:781760. [PMID: 34956147 PMCID: PMC8696166 DOI: 10.3389/fmicb.2021.781760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria, phototrophic organisms performing oxygenic photosynthesis, must adapt their metabolic processes to important environmental challenges, like those imposed by the succession of days and nights. Not surprisingly, certain regulatory proteins are found exclusively in this phylum. One of these unique proteins, PipX, provides a mechanistic link between signals of carbon/nitrogen and of energy, transduced by the signaling protein PII, and the control of gene expression by the global nitrogen regulator NtcA. PII, required for cell survival unless PipX is inactivated or downregulated, functions by protein-protein interactions with transcriptional regulators, transporters, and enzymes. PipX also functions by protein-protein interactions, and previous studies suggested the existence of additional interacting partners or included it into a relatively robust six-node synteny network with proteins apparently unrelated to the nitrogen regulation system. To investigate additional functions of PipX while providing a proof of concept for the recently developed cyanobacterial linkage network, here we analyzed the physical and regulatory interactions between PipX and an intriguing component of the PipX synteny network, the essential ribosome assembly GTPase EngA. The results provide additional insights into the functions of cyanobacterial EngA and of PipX, showing that PipX interacts with the GD1 domain of EngA in a guanosine diphosphate-dependent manner and interferes with EngA functions in Synechococcus elongatus at a low temperature, an environmentally relevant context. Therefore, this work expands the PipX interaction network and establishes a possible connection between nitrogen regulation and the translation machinery. We discuss a regulatory model integrating previous information on PII-PipX with the results presented in this work.
Collapse
Affiliation(s)
- Carmen Jerez
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Raquel Cantos
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Jose I Labella
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
6
|
Sakamoto T, Takatani N, Sonoike K, Jimbo H, Nishiyama Y, Omata T. Dissection of the Mechanisms of Growth Inhibition Resulting from Loss of the PII Protein in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT & CELL PHYSIOLOGY 2021; 62:721-731. [PMID: 33650637 PMCID: PMC8474142 DOI: 10.1093/pcp/pcab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/18/2021] [Indexed: 05/08/2023]
Abstract
In cyanobacteria, the PII protein (the glnB gene product) regulates a number of proteins involved in nitrogen assimilation including PipX, the coactivator of the global nitrogen regulator protein NtcA. In Synechococcus elongatus PCC 7942, construction of a PII-less mutant retaining the wild-type pipX gene is difficult because of the toxicity of uncontrolled action of PipX and the other defect(s) resulting from the loss of PIIper se, but the nature of the PipX toxicity and the PipX-independent defect(s) remains unclear. Characterization of a PipX-less glnB mutant (PD4) in this study showed that the loss of PII increases the sensitivity of PSII to ammonium. Ammonium was shown to stimulate the formation of reactive oxygen species in the mutant cells. The ammonium-sensitive growth phenotype of PD4 was rescued by the addition of an antioxidant α-tocopherol, confirming that photo-oxidative damage was the major cause of the growth defect. A targeted PII mutant retaining wild-type pipX was successfully constructed from the wild-type S. elongatus strain (SPc) in the presence of α-tocopherol. The resulting mutant (PD1X) showed an unusual chlorophyll fluorescence profile, indicating extremely slow reduction and re-oxidation of QA, which was not observed in mutants defective in both glnB and pipX. These results showed that the aberrant action of uncontrolled PipX resulted in an impairment of the electron transport reactions in both the reducing and oxidizing sides of QA.
Collapse
Affiliation(s)
- Takayuki Sakamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Nobuyuki Takatani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480 Japan
| | - Haruhiko Jimbo
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
- Graduate School of Arts and Sciences, University of Tokyo,Tokyo 153-8902Japan
| | - Yoshitaka Nishiyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
| | - Tatsuo Omata
- * Corresponding author: E-mail, ; Fax, +81-52-789-4107
| |
Collapse
|
7
|
Forchhammer K, Selim KA. Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol Rev 2020; 44:33-53. [PMID: 31617886 PMCID: PMC8042125 DOI: 10.1093/femsre/fuz025] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Carbon/nitrogen (C/N) balance sensing is a key requirement for the maintenance of cellular homeostasis. Therefore, cyanobacteria have evolved a sophisticated signal transduction network targeting the metabolite 2-oxoglutarate (2-OG), the carbon skeleton for nitrogen assimilation. It serves as a status reporter for the cellular C/N balance that is sensed by transcription factors NtcA and NdhR and the versatile PII-signaling protein. The PII protein acts as a multitasking signal-integrating regulator, combining the 2-OG signal with the energy state of the cell through adenyl-nucleotide binding. Depending on these integrated signals, PII orchestrates metabolic activities in response to environmental changes through binding to various targets. In addition to 2-OG, other status reporter metabolites have recently been discovered, mainly indicating the carbon status of the cells. One of them is cAMP, which is sensed by the PII-like protein SbtB. The present review focuses, with a main emphasis on unicellular model strains Synechoccus elongatus and Synechocystis sp. PCC 6803, on the physiological framework of these complex regulatory loops, the tight linkage to metabolism and the molecular mechanisms governing the signaling processes.
Collapse
Affiliation(s)
- Karl Forchhammer
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Khaled A Selim
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
8
|
Labella JI, Cantos R, Salinas P, Espinosa J, Contreras A. Distinctive Features of PipX, a Unique Signaling Protein of Cyanobacteria. Life (Basel) 2020; 10:life10060079. [PMID: 32481703 PMCID: PMC7344720 DOI: 10.3390/life10060079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
PipX is a unique cyanobacterial protein identified by its ability to bind to PII and NtcA, two key regulators involved in the integration of signals of the nitrogen/carbon and energy status, with a tremendous impact on nitrogen assimilation and gene expression in cyanobacteria. PipX provides a mechanistic link between PII, the most widely distributed signaling protein, and NtcA, a global transcriptional regulator of cyanobacteria. PII, required for cell survival unless PipX is inactivated or down-regulated, functions by protein–protein interactions with transcriptional regulators, transporters, and enzymes. In addition, PipX appears to be involved in a wider signaling network, supported by the following observations: (i) PII–PipX complexes interact with PlmA, an as yet poorly characterized transcriptional regulator also restricted to cyanobacteria; (ii) the pipX gene is functionally connected with pipY, a gene encoding a universally conserved pyridoxal phosphate binding protein (PLPBP) involved in vitamin B6 and amino acid homeostasis, whose loss-of-function mutations cause B6-dependent epilepsy in humans, and (iii) pipX is part of a relatively robust, six-node synteny network that includes pipY and four additional genes that might also be functionally connected with pipX. In this overview, we propose that the study of the protein–protein interaction and synteny networks involving PipX would contribute to understanding the peculiarities and idiosyncrasy of signaling pathways that are conserved in cyanobacteria.
Collapse
|
9
|
Cantos R, Labella JI, Espinosa J, Contreras A. The nitrogen regulator PipX acts in cis to prevent operon polarity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:495-507. [PMID: 30126050 DOI: 10.1111/1758-2229.12688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria, phototrophic organisms performing oxygenic photosynthesis, must adapt their metabolic processes to important environmental challenges, like those imposed by the succession of days and nights. Not surprisingly, certain regulatory proteins are found exclusively in this phylum. One of these unique factors, PipX, provides a mechanistic link between signals of carbon/nitrogen and of energy, transduced by the signalling protein PII, and the control of gene expression by the global nitrogen regulator NtcA. Here we report a new regulatory function of PipX: enhancement in cis of pipY expression, a gene encoding a universally conserved protein involved in amino/keto acid and Pyridoxal phosphate homeostasis. In Synechococcus elongatus and many other cyanobacteria these genes are expressed as a bicistronic pipXY operon. Despite being cis-acting, polarity suppression by PipX is nevertheless reminiscent of the function of NusG paralogues typified by RfaH, which are non-essential operon-specific bacterial factors acting in trans to upregulate horizontally-acquired genes. Furthermore, PipX and members of the NusG superfamily share a TLD/KOW structural domain, suggesting regulatory interactions of PipX with the translation machinery. Our results also suggest that the cis-acting function of PipX is a sophisticated regulatory strategy for maintaining appropriate PipX-PipY stoichiometry.
Collapse
Affiliation(s)
- Raquel Cantos
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jose I Labella
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
10
|
Watzer B, Spät P, Neumann N, Koch M, Sobotka R, Macek B, Hennrich O, Forchhammer K. The Signal Transduction Protein P II Controls Ammonium, Nitrate and Urea Uptake in Cyanobacteria. Front Microbiol 2019; 10:1428. [PMID: 31293555 PMCID: PMC6603209 DOI: 10.3389/fmicb.2019.01428] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/05/2019] [Indexed: 11/22/2022] Open
Abstract
PII signal transduction proteins are widely spread among all domains of life where they regulate a multitude of carbon and nitrogen metabolism related processes. Non-diazotrophic cyanobacteria can utilize a high variety of organic and inorganic nitrogen sources. In recent years, several physiological studies indicated an involvement of the cyanobacterial PII protein in regulation of ammonium, nitrate/nitrite, and cyanate uptake. However, direct interaction of PII has not been demonstrated so far. In this study, we used biochemical, molecular genetic and physiological approaches to demonstrate that PII regulates all relevant nitrogen uptake systems in Synechocystis sp. strain PCC 6803: PII controls ammonium uptake by interacting with the Amt1 ammonium permease, probably similar to the known regulation of E. coli ammonium permease AmtB by the PII homolog GlnK. We could further clarify that PII mediates the ammonium- and dark-induced inhibition of nitrate uptake by interacting with the NrtC and NrtD subunits of the nitrate/nitrite transporter NrtABCD. We further identified the ABC-type urea transporter UrtABCDE as novel PII target. PII interacts with the UrtE subunit without involving the standard interaction surface of PII interactions. The deregulation of urea uptake in a PII deletion mutant causes ammonium excretion when urea is provided as nitrogen source. Furthermore, the urea hydrolyzing urease enzyme complex appears to be coupled to urea uptake. Overall, this study underlines the great importance of the PII signal transduction protein in the regulation of nitrogen utilization in cyanobacteria.
Collapse
Affiliation(s)
- Björn Watzer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Philipp Spät
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany.,Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Niels Neumann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Moritz Koch
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czechia
| | - Boris Macek
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Oliver Hennrich
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Espinosa J, Labella JI, Cantos R, Contreras A. Energy drives the dynamic localization of cyanobacterial nitrogen regulators during diurnal cycles. Environ Microbiol 2018; 20:1240-1252. [PMID: 29441670 DOI: 10.1111/1462-2920.14071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
Cyanobacteria, phototrophic organisms performing oxygenic photosynthesis, must adapt their metabolic processes to the challenges imposed by the succession of days and nights. Two conserved cyanobacterial proteins, PII and PipX, function as hubs of the nitrogen interaction network, forming complexes with a variety of diverse targets. While PII proteins are found in all three domains of life as integrators of signals of the nitrogen and carbon balance, PipX proteins are unique to cyanobacteria, where they provide a mechanistic link between PII signalling and the control of gene expression by the global nitrogen regulator NtcA. Here we demonstrate that PII and PipX display distinct localization patterns during diurnal cycles, co-localizing into the same foci at the periphery and poles of the cells during dark periods, a circadian-independent process requiring a low ATP/ADP ratio. Genetic, cellular biology and biochemical approaches used here provide new insights into the nitrogen regulatory network, calling attention to the roles of PII as energy sensors and its interactions with PipX in the context of essential signalling pathways. This study expands the contribution of the nitrogen regulators PII and PipX to integrate and transduce key environmental signals that allow cyanobacteria to thrive in our planet.
Collapse
Affiliation(s)
- Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - José I Labella
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Raquel Cantos
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
12
|
Esteves-Ferreira AA, Inaba M, Fort A, Araújo WL, Sulpice R. Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. Crit Rev Microbiol 2018. [DOI: 10.1080/1040841x.2018.1446902] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Alberto A. Esteves-Ferreira
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Masami Inaba
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Antoine Fort
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Wagner L. Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ronan Sulpice
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| |
Collapse
|
13
|
Forcada-Nadal A, Palomino-Schätzlein M, Neira JL, Pineda-Lucena A, Rubio V. The PipX Protein, When Not Bound to Its Targets, Has Its Signaling C-Terminal Helix in a Flexed Conformation. Biochemistry 2017; 56:3211-3224. [PMID: 28581722 DOI: 10.1021/acs.biochem.7b00230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PipX, an 89-residue protein, acts as a coactivator of the global nitrogen regulator NtcA in cyanobacteria. NtcA-PipX interactions are regulated by 2-oxoglutarate (2-OG), an inverse indicator of the ammonia abundance, and by PII, a protein that binds to PipX at low 2-OG concentrations. The structure of PipX, when bound to NtcA or PII, consists of an N-terminal, five-stranded β-sheet (conforming a Tudor-like domain), and two long α-helices. These helices adopt either a flexed conformation, where they are in close contact and in an antiparallel mutual orientation, also packing against the β-sheet, or an open conformation (observed only in the PII-PipX complex) where the last α-helix moves apart from the rest of the protein. The aim of this work was to study the structure and dynamics of isolated PipX in solution by NMR. The backbone chemical shifts, the hydrogen-exchange, and the NOE patterns indicated that the isolated, monomeric PipX structure was formed by an N-terminal five-stranded β-sheet and two C-terminal α-helices. Furthermore, the observed NOEs between the two helices, and of α-helix2 with β-strand2 suggested that PipX adopted a flexed conformation. The β-strands 1 and 5 were highly flexible, as shown by the lack of interstrand backbone-backbone NOEs; in addition, the 15N-dynamics indicated that the C terminus of β-strand4 and the following β-turn (Phe42-Thr47), and the C-cap of α-helix1 (Arg70-Asn71) were particularly mobile. These two regions could act as hinges, allowing PipX to interact with its partners, including PlmA in the newly recognized PII-PipX-PlmA ternary complex.
Collapse
Affiliation(s)
| | | | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , Elche (Alicante), Spain.,Instituto de Biocomputación y Física de Sistemas Complejos , Zaragoza, Spain
| | - Antonio Pineda-Lucena
- Centro de Investigación Príncipe Felipe , Valencia, Spain.,Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe , Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.,Group 739 of the CIBER de Enfermedades Raras (CIBERER-ISCIII) , Valencia, Spain
| |
Collapse
|
14
|
Labella JI, Obrebska A, Espinosa J, Salinas P, Forcada-Nadal A, Tremiño L, Rubio V, Contreras A. Expanding the Cyanobacterial Nitrogen Regulatory Network: The GntR-Like Regulator PlmA Interacts with the PII-PipX Complex. Front Microbiol 2016; 7:1677. [PMID: 27840625 PMCID: PMC5083789 DOI: 10.3389/fmicb.2016.01677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/06/2016] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteria, phototrophic organisms that perform oxygenic photosynthesis, perceive nitrogen status by sensing 2-oxoglutarate levels. PII, a widespread signaling protein, senses and transduces nitrogen and energy status to target proteins, regulating metabolism and gene expression. In cyanobacteria, under conditions of low 2-oxoglutarate, PII forms complexes with the enzyme N-acetyl glutamate kinase, increasing arginine biosynthesis, and with PII-interacting protein X (PipX), making PipX unavailable for binding and co-activation of the nitrogen regulator NtcA. Both the PII-PipX complex structure and in vivo functional data suggested that this complex, as such, could have regulatory functions in addition to PipX sequestration. To investigate this possibility we performed yeast three-hybrid screening of genomic libraries from Synechococcus elongatus PCC7942, searching for proteins interacting simultaneously with PII and PipX. The only prey clone found in the search expressed PlmA, a member of the GntR family of transcriptional regulators proven here by gel filtration to be homodimeric. Interactions analyses further confirmed the simultaneous requirement of PII and PipX, and showed that the PlmA contacts involve PipX elements exposed in the PII-PipX complex, specifically the C-terminal helices and one residue of the tudor-like body. In contrast, PII appears not to interact directly with PlmA, possibly being needed indirectly, to induce an extended conformation of the C-terminal helices of PipX and for modulating the surface polarity at the PII-PipX boundary, two elements that appear crucial for PlmA binding. Attempts to inactive plmA confirmed that this gene is essential in S. elongatus. Western blot assays revealed that S. elongatus PlmA, irrespective of the nitrogen regime, is a relatively abundant transcriptional regulator, suggesting the existence of a large PlmA regulon. In silico studies showed that PlmA is universally and exclusively found in cyanobacteria. Based on interaction data, on the relative amounts of the proteins involved in PII-PipX-PlmA complexes, determined in western assays, and on the restrictions imposed by the symmetries of trimeric PII and dimeric PlmA molecules, a structural and regulatory model for PlmA function is discussed in the context of the cyanobacterial nitrogen interaction network.
Collapse
Affiliation(s)
- Jose I Labella
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | - Anna Obrebska
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| | | | - Lorena Tremiño
- Instituto de Biomedicina de Valencia of the CSIC Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia of the CSICValencia, Spain; Group 739, CIBER de Enfermedades Raras (CIBERER-ISCIII)Valencia, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante Alicante, Spain
| |
Collapse
|
15
|
Maeda SI, Murakami A, Ito H, Tanaka A, Omata T. Functional Characterization of the FNT Family Nitrite Transporter of Marine Picocyanobacteria. Life (Basel) 2015; 5:432-46. [PMID: 25809962 PMCID: PMC4390861 DOI: 10.3390/life5010432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/29/2015] [Indexed: 11/16/2022] Open
Abstract
Many of the cyanobacterial species found in marine and saline environments have a gene encoding a putative nitrite transporter of the formate/nitrite transporter (FNT) family. The presumed function of the gene (designated nitM) was confirmed by functional expression of the gene from the coastal marine species Synechococcus sp. strain PCC7002 in the nitrite-transport-less mutant (NA4) of the freshwater cyanobacterium Synechococcus elongatus strain PCC7942. The NitM-mediated nitrite uptake showed an apparent Km (NO2-) of about 8 μM and was not inhibited by nitrate, cyanate or formate. Of the nitM orthologs from the three oceanic cyanobacterial species, which are classified as α-cyanobacteria on the basis of the occurrence of Type 1a RuBisCO, the one from Synechococcus sp. strain CC9605 conferred nitrite uptake activity on NA4, but those from Synechococcus sp. strain CC9311 and Prochlorococcus marinus strain MIT9313 did not. A strongly conserved hydrophilic amino acid sequence was found at the C-termini of the deduced NitM sequences from α-cyanobacteria, with a notable exception of the Synechococcus sp. strain CC9605 NitM protein, which entirely lacked the C-terminal amino acids. The C-terminal sequence was not conserved in the NitM proteins from β-cyanobacteria carrying the Type 1b RuBisCO, including the one from Synechococcus sp. strain PCC7002. Expression of the truncated nitM genes from Synechococcus sp. strain CC9311 and Prochlorococcus marinus strain MIT9313, encoding the proteins lacking the conserved C-terminal region, conferred nitrite uptake activity on the NA4 mutant, indicating that the C-terminal region of α-cyanobacterial NitM proteins inhibits the activity of the transporter.
Collapse
Affiliation(s)
- Shin-Ichi Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan.
| | - Akio Murakami
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan.
- Research Center for Inland Seas, Kobe University, Awaji, Hyogo 656-2401, Japan.
| | - Hisashi Ito
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan.
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo 060-0819, Japan.
| | - Ayumi Tanaka
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan.
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo 060-0819, Japan.
| | - Tatsuo Omata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan.
| |
Collapse
|