1
|
Soudthedlath K, Nakamura T, Ushiwatari T, Fukazawa J, Osakabe K, Osakabe Y, Maruyama-Nakashita A. SULTR2;1 Adjusts the Bolting Timing by Transporting Sulfate from Rosette Leaves to the Primary Stem. PLANT & CELL PHYSIOLOGY 2024; 65:770-780. [PMID: 38424724 DOI: 10.1093/pcp/pcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.
Collapse
Affiliation(s)
- Khamsalath Soudthedlath
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
- Ministry of Agriculture and Forestry, Biotechnology and Ecology Institute, Vientiane 01170, Laos
| | - Toshiki Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Tsukasa Ushiwatari
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Jutarou Fukazawa
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, 739-8528 Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8506, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Tokyo, 226-8503, Japan
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
2
|
Hoffmann B, Aubry E, Marmagne A, Dinant S, Chardon F, Le Hir R. Impairment of sugar transport in the vascular system acts on nitrogen remobilization and nitrogen use efficiency in Arabidopsis. PHYSIOLOGIA PLANTARUM 2022; 174:e13830. [PMID: 36437708 DOI: 10.1111/ppl.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Carbon (C) and nitrogen (N) metabolisms have long been known to be coupled, and this is required for adjusting nitrogen use efficiency (NUE). Despite this intricate relationship, it is still unclear how deregulation of sugar transport impacts N allocation. Here, we investigated in Arabidopsis the consequences of the simultaneous downregulation of the genes coding for the sugar transporters SWEET11, SWEET12, SWEET16, and SWEET17 on various anatomical and physiological traits ranging from the stem's vascular system development to plant biomass production, seed yield, and N remobilization and use efficiency. Our results show that intracellular sugar exchanges mediated by SWEET16 and SWEET17 proteins specifically impact vascular development but do not play a significant role in the distribution of N. Most importantly, we showed that the double mutant swt11 swt12, which has an impacted vascular development, displays an improved NUE and nitrogen remobilization to the seeds. In addition, a significant negative correlation between sugar and amino acids contents and the inflorescence stem radial growth exists, highlighting the complex interaction between the maintenance of C/N homeostasis and the inflorescence stem development. Our results thus deepen the link between sugar transport, C/N allocation, and vascular system development.
Collapse
Affiliation(s)
- Beate Hoffmann
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Emilie Aubry
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
3
|
Kurita Y, Kanno S, Sugita R, Hirose A, Ohnishi M, Tezuka A, Deguchi A, Ishizaki K, Fukaki H, Baba K, Nagano AJ, Tanoi K, Nakanishi TM, Mimura T. Visualization of phosphorus re-translocation and phosphate transporter expression profiles in a shortened annual cycle system of poplar. PLANT, CELL & ENVIRONMENT 2022; 45:1749-1764. [PMID: 35348214 DOI: 10.1111/pce.14319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth. In deciduous trees, P is remobilized from senescing leaves and stored in perennial tissues during winter for further growth. Annual internal recycling and accumulation of P are considered an important strategy to support the vigorous growth of trees. However, the pathways of seasonal re-translocation of P and the molecular mechanisms of this transport have not been clarified. Here we show the seasonal P re-translocation route visualized using real-time radioisotope imaging and the macro- and micro-autoradiography. We analysed the seasonal re-translocation P in poplar (Populus alba. L) cultivated under 'a shortened annual cycle system', which mimicked seasonal phenology in a laboratory. From growing to senescing season, sink tissues of 32 P and/or 33 P shifted from young leaves and the apex to the lower stem and roots. The radioisotope P re-translocated from a leaf was stored in phloem and xylem parenchyma cells and redistributed to new shoots after dormancy. Seasonal expression profile of phosphate transporters (PHT1, PHT5 and PHO1 family) was obtained in the same system. Our results reveal the seasonal P re-translocation routes at the organ and tissue levels and provide a foothold for elucidating its molecular mechanisms.
Collapse
Affiliation(s)
- Yuko Kurita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Satomi Kanno
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- The French Alternative Energies and Atomic Energy Commission, Paris, France
| | - Ryohei Sugita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Radioisotope Research Center, Nagoya University, Nagoya, Japan
| | - Atsushi Hirose
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ayumi Tezuka
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Ayumi Deguchi
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Kei'ichi Baba
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- JST PRESTO, Kawaguchi, Saitama, Japan
| | - Tomoko M Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Mayer S, Munz E, Hammer S, Wagner S, Guendel A, Rolletschek H, Jakob PM, Borisjuk L, Neuberger T. Quantitative monitoring of paramagnetic contrast agents and their allocation in plant tissues via DCE-MRI. PLANT METHODS 2022; 18:47. [PMID: 35410361 PMCID: PMC8996644 DOI: 10.1186/s13007-022-00877-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Studying dynamic processes in living organisms with MRI is one of the most promising research areas. The use of paramagnetic compounds as contrast agents (CA), has proven key to such studies, but so far, the lack of appropriate techniques limits the application of CA-technologies in experimental plant biology. The presented proof-of-principle aims to support method and knowledge transfer from medical research to plant science. RESULTS In this study, we designed and tested a new approach for plant Dynamic Contrast Enhanced Magnetic Resonance Imaging (pDCE-MRI). The new approach has been applied in situ to a cereal crop (Hordeum vulgare). The pDCE-MRI allows non-invasive investigation of CA allocation within plant tissues. In our experiments, gadolinium-DTPA, the most commonly used contrast agent in medical MRI, was employed. By acquiring dynamic T1-maps, a new approach visualizes an alteration of a tissue-specific MRI parameter T1 (longitudinal relaxation time) in response to the CA. Both, the measurement of local CA concentration and the monitoring of translocation in low velocity ranges (cm/h) was possible using this CA-enhanced method. CONCLUSIONS A novel pDCE-MRI method is presented for non-invasive investigation of paramagnetic CA allocation in living plants. The temporal resolution of the T1-mapping has been significantly improved to enable the dynamic in vivo analysis of transport processes at low-velocity ranges, which are common in plants. The newly developed procedure allows to identify vascular regions and to estimate their involvement in CA allocation. Therefore, the presented technique opens a perspective for further development of CA-aided MRI experiments in plant biology.
Collapse
Affiliation(s)
- Simon Mayer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eberhard Munz
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sebastian Hammer
- Institute of Experimental Physics 6, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Andre Guendel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Peter M Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, 113 Chandlee Lab, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, 113 Chandlee Lab, University Park, PA, 16802, USA.
| |
Collapse
|
5
|
Higuchi K, Kurita K, Sakai T, Suzui N, Sasaki M, Katori M, Wakabayashi Y, Majima Y, Saito A, Ohyama T, Kawachi N. "Live-Autoradiography" Technique Reveals Genetic Variation in the Rate of Fe Uptake by Barley Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060817. [PMID: 35336699 PMCID: PMC8956111 DOI: 10.3390/plants11060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is an essential trace element in plants; however, the available Fe in soil solution does not always satisfy the demand of plants. Genetic diversity in the rate of Fe uptake by plants has not been broadly surveyed among plant species or genotypes, although plants have developed various Fe acquisition mechanisms. The "live-autoradiography" technique with radioactive 59Fe was adopted to directly evaluate the uptake rate of Fe by barley cultivars from a nutrient solution containing a very low concentration of Fe. The uptake rate of Fe measured by live autoradiography was consistent with the accumulation of Fe-containing proteins on the thylakoid membrane. The results revealed that the ability to acquire Fe from the low-Fe solution was not always the sole determinant of tolerance to Fe deficiency among barley genotypes. The live-autoradiography system visualizes the distribution of β-ray-emitting nuclides and has flexibility in the shape of the field of view. This technique will strongly support phenotyping with regard to the long-distance transport of nutrient elements in the plant body.
Collapse
Affiliation(s)
- Kyoko Higuchi
- Laboratory of Biochemistry in Plant Productivity, Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (M.S.); (M.K.); (Y.W.); (Y.M.); (A.S.); (T.O.)
- Correspondence: ; Tel.: +81-354772315
| | - Keisuke Kurita
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan; (K.K.); (T.S.)
| | - Takuro Sakai
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan; (K.K.); (T.S.)
| | - Nobuo Suzui
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), Takasaki 370-1292, Japan; (N.S.); (N.K.)
| | - Minori Sasaki
- Laboratory of Biochemistry in Plant Productivity, Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (M.S.); (M.K.); (Y.W.); (Y.M.); (A.S.); (T.O.)
| | - Maya Katori
- Laboratory of Biochemistry in Plant Productivity, Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (M.S.); (M.K.); (Y.W.); (Y.M.); (A.S.); (T.O.)
| | - Yuna Wakabayashi
- Laboratory of Biochemistry in Plant Productivity, Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (M.S.); (M.K.); (Y.W.); (Y.M.); (A.S.); (T.O.)
| | - Yuta Majima
- Laboratory of Biochemistry in Plant Productivity, Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (M.S.); (M.K.); (Y.W.); (Y.M.); (A.S.); (T.O.)
| | - Akihiro Saito
- Laboratory of Biochemistry in Plant Productivity, Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (M.S.); (M.K.); (Y.W.); (Y.M.); (A.S.); (T.O.)
| | - Takuji Ohyama
- Laboratory of Biochemistry in Plant Productivity, Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (M.S.); (M.K.); (Y.W.); (Y.M.); (A.S.); (T.O.)
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), Takasaki 370-1292, Japan; (N.S.); (N.K.)
| |
Collapse
|
6
|
Mochida K, Nishii R, Hirayama T. Decoding Plant-Environment Interactions That Influence Crop Agronomic Traits. PLANT & CELL PHYSIOLOGY 2020; 61:1408-1418. [PMID: 32392328 PMCID: PMC7434589 DOI: 10.1093/pcp/pcaa064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/26/2020] [Indexed: 05/16/2023]
Abstract
To ensure food security in the face of increasing global demand due to population growth and progressive urbanization, it will be crucial to integrate emerging technologies in multiple disciplines to accelerate overall throughput of gene discovery and crop breeding. Plant agronomic traits often appear during the plants' later growth stages due to the cumulative effects of their lifetime interactions with the environment. Therefore, decoding plant-environment interactions by elucidating plants' temporal physiological responses to environmental changes throughout their lifespans will facilitate the identification of genetic and environmental factors, timing and pathways that influence complex end-point agronomic traits, such as yield. Here, we discuss the expected role of the life-course approach to monitoring plant and crop health status in improving crop productivity by enhancing the understanding of plant-environment interactions. We review recent advances in analytical technologies for monitoring health status in plants based on multi-omics analyses and strategies for integrating heterogeneous datasets from multiple omics areas to identify informative factors associated with traits of interest. In addition, we showcase emerging phenomics techniques that enable the noninvasive and continuous monitoring of plant growth by various means, including three-dimensional phenotyping, plant root phenotyping, implantable/injectable sensors and affordable phenotyping devices. Finally, we present an integrated review of analytical technologies and applications for monitoring plant growth, developed across disciplines, such as plant science, data science and sensors and Internet-of-things technologies, to improve plant productivity.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Corresponding author: E-mail, ; Fax, +81-45-503-9609
| | - Ryuei Nishii
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
7
|
Brezovcsik K, Veres S, Molnár J, Fenyvesi A, Szűcs Z. Comparison of manganese uptake and transport of maize seedlings by mini-PET camera. Appl Radiat Isot 2020; 160:109127. [PMID: 32174463 DOI: 10.1016/j.apradiso.2020.109127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022]
Abstract
Manganese is one of the most important essential micronutrients for the plants. To monitor its uptake and transport by radioactive tracking is a powerful method due to the no carrier added 52Mn in 10-12 moldm-3 concentration range. The generally used method is to measure the radioactivity of cut parts of plants by gamma-spectrometry. Only few studies reported about noninvasive measurement, using pairs of detectors connected in coincidence. We use a full ring MiniPET machine for this purpose to dynamically visualize the uptake and distribution of the radionuclide in 4D. The results are controlled with the conventional gamma spectroscopy after chopping the plants into six parts. The study of stress tolerance initiated by PEG 6000 in different hybrids of maize is also presented as possible application for the phenotyping of plants by PET camera.
Collapse
Affiliation(s)
- Károly Brezovcsik
- Institute for Nuclear Research, Atomki, Bem tér 18/c, 4026, Debrecen, Hungary; University of Debrecen, Doctoral School of Chemistry, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Szilvia Veres
- University of Debrecen, Department of Agricultural Botany, Crop Physiolgy and Biotechnology, Institute of Crop Sciences, Egyetem tér 1., 4032, Debrecen, Hungary
| | - József Molnár
- Institute for Nuclear Research, Atomki, Bem tér 18/c, 4026, Debrecen, Hungary
| | - András Fenyvesi
- Institute for Nuclear Research, Atomki, Bem tér 18/c, 4026, Debrecen, Hungary
| | - Zoltán Szűcs
- Institute for Nuclear Research, Atomki, Bem tér 18/c, 4026, Debrecen, Hungary
| |
Collapse
|
8
|
Recent Advances in Radioisotope Imaging Technology for Plant Science Research in Japan. QUANTUM BEAM SCIENCE 2019. [DOI: 10.3390/qubs3030018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil provides most of the essential elements required for the growth of plants. These elements are absorbed by the roots and then transported to the leaves via the xylem. Photoassimilates and other nutrients are translocated from the leaves to the maturing organs via the phloem. Non-essential elements are also transported via the same route. Therefore, an accurate understanding of the movement of these elements across the plant body is of paramount importance in plant science research. Radioisotope imaging is often utilized to understand element kinetics in the plant body. Live plant imaging is one of the recent advancements in this field. In this article, we recapitulate the developments in radioisotope imaging technology for plant science research in Japanese research groups. This collation provides useful insights into the application of radioisotope imaging technology in wide domains including plant science.
Collapse
|
9
|
Endo S, Iwai Y, Fukuda H. Cargo-dependent and cell wall-associated xylem transport in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:159-170. [PMID: 30317651 DOI: 10.1111/nph.15540] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/06/2018] [Indexed: 05/06/2023]
Abstract
Sap molecules are transported by xylem flow throughout the whole plant body. Factors regulating the xylem transport of different molecules remain to be identified. We used fluorophores to visualize xylem transport from roots to leaves in Arabidopsis thaliana. Several previously established Arabidopsis lines with modified xylem cell walls were used to determine the contribution of xylem cell walls to xylem transport. Fluorophores underwent xylem flow-dependent transport from roots to leaves within 20 min. A comparison of rhodamine, fluorescein and three fluorescently labeled CLV3/ESR-related (CLE) peptides revealed cargo-dependent xylem transport patterns in terms of leaf position and vein order. Only minor changes in amino acid sequence were sufficient to alter the xylem transport patterns of the labeled CLE peptides. We found that the xylem transport pattern of fluorescein was affected in Arabidopsis lines with modified AtXYN1, LAC4 or CCoAOMT1 expression. In these lines, application of a defense inducer, pipecolic acid, to roots resulted in altered defense response patterns in leaves, whereas all the lines showed wild-type-like responses when pipecolic acid was sprayed onto leaves. The combined results reveal a finely controlled cargo-dependent xylem transport and suggest that the xylem cell wall structure is crucial for this transport system.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yumi Iwai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Leaf Tobacco Research Center, Japan Tobacco Inc., Tochigi, 323-0808, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
10
|
Aubry E, Dinant S, Vilaine F, Bellini C, Le Hir R. Lateral Transport of Organic and Inorganic Solutes. PLANTS (BASEL, SWITZERLAND) 2019; 8:E20. [PMID: 30650538 PMCID: PMC6358943 DOI: 10.3390/plants8010020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
Organic (e.g., sugars and amino acids) and inorganic (e.g., K⁺, Na⁺, PO₄2-, and SO₄2-) solutes are transported long-distance throughout plants. Lateral movement of these compounds between the xylem and the phloem, and vice versa, has also been reported in several plant species since the 1930s, and is believed to be important in the overall resource allocation. Studies of Arabidopsis thaliana have provided us with a better knowledge of the anatomical framework in which the lateral transport takes place, and have highlighted the role of specialized vascular and perivascular cells as an interface for solute exchanges. Important breakthroughs have also been made, mainly in Arabidopsis, in identifying some of the proteins involved in the cell-to-cell translocation of solutes, most notably a range of plasma membrane transporters that act in different cell types. Finally, in the future, state-of-art imaging techniques should help to better characterize the lateral transport of these compounds on a cellular level. This review brings the lateral transport of sugars and inorganic solutes back into focus and highlights its importance in terms of our overall understanding of plant resource allocation.
Collapse
Affiliation(s)
- Emilie Aubry
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Françoise Vilaine
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Catherine Bellini
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90183 Umeå, Sweden.
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
11
|
Nakanishi TM. What you can see by developing real-time radioisotope imaging system for plants: from water to element and CO 2 gas imaging. J Radioanal Nucl Chem 2018; 318:1689-1695. [PMID: 30546186 PMCID: PMC6267115 DOI: 10.1007/s10967-018-6324-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 11/30/2022]
Abstract
Since plants live on inorganic elements, absorbing ions from roots and transferring them to each tissue in a plant is an essential activity. However, little is known about the movement of the elements or water in plant tissue. Though fluorescent imaging is now overwhelmingly used at the microscopic level in biology, especially to visualize chemicals or organelles in a cell, radioisotope imaging has become one of the important methods for human imaging in the medical field. In the case of plant studies, however, real-time radioisotope imaging is little-known among plant researchers. The author has developed radioisotope imaging systems using various radioisotopes to study living plant activity, both for elements and for water. Here we review the real-time radioisotope imaging methods we developed, and show new aspects of plant physiology discovered by live imaging.
Collapse
Affiliation(s)
- Tomoko M Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-8657 Japan
| |
Collapse
|
12
|
Evaluation of plastic scintillators for live imaging of 14C-labeled photosynthate movement in plants. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6102-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Sugita R, Kobayashi NI, Tanoi K, Nakanishi TM. Visualization of 14CO 2 gas fixation by plants. J Radioanal Nucl Chem 2018; 318:585-590. [PMID: 30369689 PMCID: PMC6182725 DOI: 10.1007/s10967-018-6119-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 11/29/2022]
Abstract
Using the real-time radioisotope imaging system (RRIS), we present the carbon dioxide gas fixation process of a soybean plant applying the 14C-labeled gas. When 14CO2 gas was supplied to the selected mature leaf, the fixed carbon, photosynthate, was transferred and accumulated to the younger leaves preferentially within 24 h. When 14CO2 gas was supplied to the younger leaves, fixed carbon was hardly moved. In the case of the pods, fixed 14CO2 gas in the leaf was preferentially transferred to the closest pod.
Collapse
Affiliation(s)
- Ryohei Sugita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Natsuko I. Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan
| | - Tomoko M. Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
14
|
NAKANISHI TM. Agricultural aspects of radiocontamination induced by the Fukushima nuclear accident - A survey of studies by the Univ. of Tokyo Agricultural Dept. (2011-2016). PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:20-34. [PMID: 29321444 PMCID: PMC5829612 DOI: 10.2183/pjab.94.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Immediately after the Fukushima nuclear power plant accident, a team of 40-50 researchers at the Graduate School of Agricultural and Life Sciences at the University of Tokyo began to analyze the behavior of radioactive materials in the fallout regions. The fallout has remained in situ and become strongly adsorbed within the soil over time. 137Cs was found to bind strongly to the fine clay, weathered biotite, and organic matter in the soil; therefore, it has not mobilized from mountainous regions, even after heavy rainfall. In farmland, the quantity of 137Cs in the soil absorbed by crop plants was small. The downward migration of 137Cs in soil is now estimated at 1-2 mm/year. The intake of 137Cs by trees occurred through the bark and not from the roots. This report summarizes the findings of research across a wide variety of agricultural specialties.
Collapse
Affiliation(s)
- Tomoko M. NAKANISHI
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Visualization of how light changes affect ion movement in rice plants using a real-time radioisotope imaging system. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Nakanishi TM. Research with radiation and radioisotopes to better understand plant physiology and agricultural consequences of radioactive contamination from the Fukushima Daiichi nuclear accident. J Radioanal Nucl Chem 2017; 311:947-971. [PMID: 28250543 PMCID: PMC5306278 DOI: 10.1007/s10967-016-5148-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/02/2022]
Abstract
Research carried out by me and my group over the last almost four decades are summarized here. The main emphasis of my work was and continues to be on plant physiology using radiation and radioisotopes. Plants live on water and inorganic elements. In the case of water, we developed neutron imaging methods and produced 15O-labeled water (half-life 2 min) and applied them to understand water circulation pattern in the plant. In the case of elements, we developed neutron activation analysis methods to analyze a large number of plant tissues to follow element specific distribution. Then, we developed real-time imaging system using conventional radioisotopes for the macroscopic and microscopic observation of element movement. After the accident in Fukushima Daiichi nuclear power plant, we, the academic staff of Graduate School, have been studying agricultural effects of radioactive fallout; the main results are summarized in two books published by Springer.
Collapse
Affiliation(s)
- Tomoko M. Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo 113-8657 Japan
| |
Collapse
|
17
|
Ingram GC, Fujiwara T. Special Focus Issue on Plant Responses to the Environment. PLANT & CELL PHYSIOLOGY 2016; 57:657-659. [PMID: 27091852 DOI: 10.1093/pcp/pcw058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire de Reproduction et Devéloppement des Plantes, École Normale Supérieure de Lyon, CNRS UMR 5667, Lyon, France
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|