1
|
Yamashita K, Hanaki R, Mori A, Suzuki K, Tomo T, Tokunaga E. Reddening of the Unicellular Green Alga Euglena gracilis by Dried Bonito Stock and Intense Red Light Irradiation. PLANTS (BASEL, SWITZERLAND) 2024; 13:510. [PMID: 38498509 PMCID: PMC10892402 DOI: 10.3390/plants13040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
This study confirms for the first time that the significant red coloration of Euglena gracilis is induced by bonito stock (BS), a traditional Japanese food, and intense red light exposure (605~660 nm, 1000~1300 µmol photons/m2/s). Under the condition, excessive photosynthetic activity destroyed many chloroplasts, while carotenoids were maintained, resulting in the formation of reddened cells. The HPLC analysis revealed that diadinoxanthin was the primary carotenoid present in reddened cells. Additionally, an undefined xanthophyll, not produced under normal culture conditions, was synthesized and suggested to contain a C=O bond. While it has been reported that strong light stress can increase the total carotenoid content of cells, this study did not verify this claim, and it should be investigated further in future research. Under white light irradiation conditions (90 μmol photons/m2/s) in BS medium, no reddening of cells was observed, and good growth was achieved (over four times the cell density in CM medium on the seventh day). This cell suspension is considered to have a high nutritional value because it is composed of functional food, BS and E. gracilis. The fact that this method does not involve genetic modification suggests the possibility of industrial applications, including food use, even in reddened cells.
Collapse
Affiliation(s)
- Kyohei Yamashita
- Department of Physics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan (E.T.)
| | - Ryusei Hanaki
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ayaka Mori
- Department of Physics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan (E.T.)
| | - Kengo Suzuki
- Euglena Co., Ltd., 1-6, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Tatsuya Tomo
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Eiji Tokunaga
- Department of Physics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan (E.T.)
| |
Collapse
|
2
|
Du B, Sun M, Hui W, Xie C, Xu X. Recent Advances on Key Enzymes of Microbial Origin in the Lycopene Biosynthesis Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12927-12942. [PMID: 37609695 DOI: 10.1021/acs.jafc.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lycopene is a common carotenoid found mainly in ripe red fruits and vegetables that is widely used in the food industry due to its characteristic color and health benefits. Microbial synthesis of lycopene is gradually replacing the traditional methods of plant extraction and chemical synthesis as a more economical and productive manufacturing strategy. The biosynthesis of lycopene is a typical multienzyme cascade reaction, and it is important to understand the characteristics of each key enzyme involved and how they are regulated. In this paper, the catalytic characteristics of the key enzymes involved in the lycopene biosynthesis pathway and related studies are first discussed in detail. Then, the strategies applied to the key enzymes of lycopene synthesis, including fusion proteins, enzyme screening, combinatorial engineering, CRISPR/Cas9-based gene editing, DNA assembly, and scaffolding technologies are purposefully illustrated and compared in terms of both traditional and emerging multienzyme regulatory strategies. Finally, future developments and regulatory options for multienzyme synthesis of lycopene and similar secondary metabolites are also discussed.
Collapse
Affiliation(s)
- Bangmian Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Mengjuan Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Wenyang Hui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| |
Collapse
|
3
|
Peng T, Guo C, Yang J, Wan X, Wang W, Zhang J, Bao M, Zhang J. Transcriptome analysis revealed molecular basis of cold response in Prunus mume. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:34. [PMID: 37312744 PMCID: PMC10248647 DOI: 10.1007/s11032-023-01376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 06/15/2023]
Abstract
Japanese apricot (Prunus mume Sieb. et Zucc.) is a traditional woody flower and fruit tree restrictedly cultivated in northern area due to its inability to survive harsh winters and early springs. In the current study, RNA-seq and physiological assay were used to study the cold response of P. mume 'Xuemei'. A total of 4705 genes were identified as differentially expressed genes (DEGs) in the 21 pairwise comparisons among seven time points under 0 °C cold treatment, and 3678 of them showed differential levels compared with control at normal temperature. The gene expression profiles indicated that the number of upregulated genes increased with prolongation of treatment time throughout the whole 48 h. Hierarchical clustering suggested three obvious phases of the gene expression profiles. Gene ontology (GO) analysis of the 4705 DEGs resulted in 102 significantly enriched GO items in which the transcription activity was dominant. 225 DEGs were predicted to encode transcription factor (TF) genes. Some important TFs (ERF, CBF, WRKY, NAC, MYB, bHLH) were strongly induced during the whole cold treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that plant signal transduction pathways such as plant hormone and calcium (Ca2+) were notable. Metabolic pathways such as sugar metabolism, especially RFOs (raffinose family oligosaccharides) were activated, which was accompanied by the accumulation of soluble sugars. SOD and POD enzyme activities coupled with reactive oxygen species (ROS)-related gene expression profile implied a gradually induced ROS scavenging system under cold treatment. These results might shed light on the sensitivity to cold stress in Japanese apricot and provide new insights into hardiness studies in P. mume and its related species. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01376-2.
Collapse
Affiliation(s)
- Ting Peng
- College of Agriculture, Guizhou University, Guiyang, 550000 People’s Republic of China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Cong Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430070 People’s Republic of China
| | - Jie Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning, 437100 People’s Republic of China
| | - Xueli Wan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Wenwu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Junwei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
4
|
Zheng W, Yu S, Zhang W, Zhang S, Fu J, Ying H, Pingcuo G, Liu S, Zhao F, Wu Q, Xu Q, Ma Z, Zeng X. The content and diversity of carotenoids associated with high-altitude adaptation in Tibetan peach fruit. Food Chem 2023; 398:133909. [DOI: 10.1016/j.foodchem.2022.133909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
|
5
|
Yao R, Fu W, Du M, Chen ZX, Lei AP, Wang JX. Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis. Mar Drugs 2022; 20:496. [PMID: 36005499 PMCID: PMC9409970 DOI: 10.3390/md20080496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The carotenoids, including lycopene, lutein, astaxanthin, and zeaxanthin belong to the isoprenoids, whose basic structure is made up of eight isoprene units, resulting in a C40 backbone, though some of them are only trace components in Euglena. They are essential to all photosynthetic organisms due to their superior photoprotective and antioxidant properties. Their dietary functions decrease the risk of breast, cervical, vaginal, and colorectal cancers and cardiovascular and eye diseases. Antioxidant functions of carotenoids are based on mechanisms such as quenching free radicals, mitigating damage from reactive oxidant species, and hindering lipid peroxidation. With the development of carotenoid studies, their distribution, functions, and composition have been identified in microalgae and higher plants. Although bleached or achlorophyllous mutants of Euglena were among the earliest carotenoid-related microalgae under investigation, current knowledge on the composition and biosynthesis of these compounds in Euglena is still elusive. This review aims to overview what is known about carotenoid metabolism in Euglena, focusing on the carotenoid distribution and structure, biosynthesis pathway, and accumulation in Euglena strains and mutants under environmental stresses and different culture conditions. Moreover, we also summarize the potential applications in therapy preventing carcinogenesis, cosmetic industries, food industries, and animal feed.
Collapse
Affiliation(s)
| | | | | | | | - An-Ping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (R.Y.); (W.F.); (M.D.); (Z.-X.C.)
| | - Jiang-Xin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (R.Y.); (W.F.); (M.D.); (Z.-X.C.)
| |
Collapse
|
6
|
Pan X, Guan L, Lei K, Li J, Zhang X. Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S. BMC PLANT BIOLOGY 2022; 22:44. [PMID: 35062884 PMCID: PMC8781465 DOI: 10.1186/s12870-022-03437-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rice is highly sensitive to chilling stress during the seedling stage. However, the adaptable photo-thermo sensitive genic male sterile (PTGMS) rice line, Yu17S, exhibits tolerance to low temperatures. Currently, the molecular characteristics of Yu17S are unclear. RESULTS To evaluate the molecular mechanisms behind cold responses in rice seedlings, a comparative transcriptome analysis was performed in Yu17S during seedling development under normal temperature and low temperature conditions. In total, 9317 differentially expressed genes were detected. Gene ontology and pathway analyses revealed that these genes were involved mostly in photosynthesis, carotenoid biosynthesis, carbohydrate metabolism and plant hormone signal transduction. An integrated analysis of specific pathways combined with physiological data indicated that rice seedlings improved the performance of photosystem II when exposed to cold conditions. Genes involved in starch degradation and sucrose metabolism were activated in rice plants exposed to cold stress treatments, which was accompanied by the accumulation of soluble sugar, trehalose, raffinose and galactinol. Furthermore, chilling stress induced the expression of phytoene desaturase, 15-cis-ζ-carotene isomerase, ζ-carotene desaturase, carotenoid isomerase and β-carotene hydroxylase; this was coupled with the activation of carotenoid synthase activity and increases in abscisic acid (ABA) levels in rice seedlings. CONCLUSIONS Our results suggest that Yu17S exhibited better tolerance to cold stress with the activation of carotenoid synthase activity and increasing of ABA levels, and as well as the expression of photosynthesis-related genes under cold condition in rice seedlings.
Collapse
Affiliation(s)
- Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Ling Guan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Kairong Lei
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing, 401329, China
| | - Jingyong Li
- Chongqing Rationing Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China
| | - Xianwei Zhang
- Chongqing Rationing Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, China.
| |
Collapse
|
7
|
Tamaki S, Sato R, Koshitsuka Y, Asahina M, Kodama Y, Ishikawa T, Shinomura T. Suppression of the Lycopene Cyclase Gene Causes Downregulation of Ascorbate Peroxidase Activity and Decreased Glutathione Pool Size, Leading to H 2O 2 Accumulation in Euglena gracilis. FRONTIERS IN PLANT SCIENCE 2021; 12:786208. [PMID: 34925426 PMCID: PMC8678482 DOI: 10.3389/fpls.2021.786208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 06/02/2023]
Abstract
Carotenoids are photosynthetic pigments and hydrophobic antioxidants that are necessary for the survival of photosynthetic organisms, including the microalga Euglena gracilis. In the present study, we identified an uncharacterized gene encoding the E. gracilis β-carotene synthetic enzyme lycopene cyclase (EgLCY) and discovered a relationship between EgLCY-mediated carotenoid synthesis and the reactive oxygen species (ROS) scavenging system ascorbate-glutathione cycle. The EgLCY cDNA sequence was obtained via homology searching E. gracilis transcriptome data. An enzyme assay using Escherichia coli demonstrated that EgLCY converts lycopene to β-carotene. E. gracilis treated with EgLCY double-stranded RNA (dsRNA) produced colorless cells with hypertrophic appearance, inhibited growth, and marked decrease in carotenoid and chlorophyll content, suggesting that EgLCY is essential for the synthesis of β-carotene and downstream carotenoids, which are abundant and physiologically functional. In EgLCY dsRNA-treated cells, the ascorbate-glutathione cycle, composed of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR), was unusually modulated; APX and GR activities significantly decreased, whereas DHAR and MDAR activities increased. Ascorbate content was significantly increased and glutathione content significantly decreased in EgLCY dsRNA-treated cells and was correlated with their recycling enzyme activities. Fluorescent imaging demonstrated that EgLCY dsRNA-treated cells accumulated higher levels of H2O2 compared to wild-type cells. Taken together, this study revealed that EgLCY-mediated synthesis of β-carotene and downstream carotenoid species upregulates APX activity and increases glutathione pool size for H2O2 scavenging. Our study suggests a possible relationship between carotenoid synthesis and the ascorbate-glutathione cycle for ROS scavenging in E. gracilis.
Collapse
Affiliation(s)
- Shun Tamaki
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Ryosuke Sato
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Yuki Koshitsuka
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Masashi Asahina
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Tochigi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tomoko Shinomura
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| |
Collapse
|
8
|
Kashima M, Sakamoto RL, Saito H, Ohkubo S, Tezuka A, Deguchi A, Hashida Y, Kurita Y, Iwayama K, Adachi S, Nagano AJ. Genomic Basis of Transcriptome Dynamics in Rice under Field Conditions. PLANT & CELL PHYSIOLOGY 2021; 62:1436-1445. [PMID: 34131748 PMCID: PMC8600290 DOI: 10.1093/pcp/pcab088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/09/2021] [Accepted: 06/15/2021] [Indexed: 05/07/2023]
Abstract
How genetic variations affect gene expression dynamics of field-grown plants remains unclear. Expression quantitative trait loci (eQTL) analysis is frequently used to find genomic regions underlying gene expression polymorphisms. This approach requires transcriptome data for the complete set of the QTL mapping population under the given conditions. Therefore, only a limited range of environmental conditions is covered by a conventional eQTL analysis. We sampled sparse time series of field-grown rice from chromosome segment substitution lines (CSSLs) and conducted RNA sequencing (RNA-Seq). Then, by using statistical analysis integrating meteorological data and the RNA-Seq data, we identified 1,675 eQTLs leading to polymorphisms in expression dynamics under field conditions. A genomic region on chromosome 11 influences the expression of several defense-related genes in a time-of-day- and scaled-age-dependent manner. This includes the eQTLs that possibly influence the time-of-day- and scaled-age-dependent differences in the innate immunity between Koshihikari and Takanari. Based on the eQTL and meteorological data, we successfully predicted gene expression under environments different from training environments and in rice cultivars with more complex genotypes than the CSSLs. Our novel approach of eQTL identification facilitated the understanding of the genetic architecture of expression dynamics under field conditions, which is difficult to assess by conventional eQTL studies. The prediction of expression based on eQTLs and environmental information could contribute to the understanding of plant traits under diverse field conditions.
Collapse
Affiliation(s)
- Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | | | - Hiroki Saito
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake, Sakyo-ku, Kyoto 606-8317, Japan
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Maezato 1091-1, Ishigaki, Okinawa 907-0002, Japan
| | - Satoshi Ohkubo
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake, Sakyo-ku, Kyoto 606-8317, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Ayumi Tezuka
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Ayumi Deguchi
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Yoichi Hashida
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Yuko Kurita
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Koji Iwayama
- Faculty of Data Science, Shiga University, Bamba 1-1-1, Hikone, Shiga 522-0069, Japan
| | - Shunsuke Adachi
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | | |
Collapse
|
9
|
Huang JJ, Cheung PCK. Cold stress treatment enhances production of metabolites and biodiesel feedstock in Porphyridium cruentum via adjustment of cell membrane fluidity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146612. [PMID: 34030318 DOI: 10.1016/j.scitotenv.2021.146612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Porphyridium cruentum, a cell-wall-free marine Rhodophyta microalga was cultured under a 5-day cold stress at 0 °C and 15 °C, after reaching the late logarithmic growth phase. Compared with the control at 25 °C, the cold stress treatment significantly (p < 0.05) increased the microalgal biomass (1.21-fold); the amounts of total polyunsaturated fatty acids (1.22-fold); individual fatty acids including linoleic acid (1.50-fold) and eicosatrienoic acid (1.85-fold), and a major carotenoid zeaxanthin (1.53-fold). Furthermore, production of biodiesel feedstock including total C16 + C18 fatty acids was significantly enhanced (p < 0.05) by 1.18-fold after the cold stress treatment. Principal component analysis further indicated that the biosynthetic pathways of fatty acids and carotenoids in this microalga were correlated with the cold stress treatment. These results suggested that P. cruentum had adjusted its cellular membrane fluidity via an 'arm-raising and screw-bolt fastening' mechanism mediated by the synergistic roles of cis-unsaturated fatty acids and carotenoids. The insight obtained from the responses to cold stress in P. cruentum could be a novel technological approach to enhance the production of microalgal metabolites and biodiesel feedstock.
Collapse
Affiliation(s)
- Jim Junhui Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100, Waihuan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong Province, People's Republic of China; Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., People's Republic of China; Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore; Marine Biology Institute, Shantou University, Shantou 515063, Guangdong Province, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., People's Republic of China.
| |
Collapse
|
10
|
The Cell Division Cycle of Euglena gracilis Indicates That the Level of Circadian Plasticity to the External Light Regime Changes in Prolonged-Stationary Cultures. PLANTS 2021; 10:plants10071475. [PMID: 34371678 PMCID: PMC8309271 DOI: 10.3390/plants10071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
In unicellular photosynthetic organisms, circadian rhythm is tightly linked to gating of cell cycle progression, and is entrained by light signal. As several organisms obtain a fitness advantage when the external light/dark cycle matches their endogenous period, and aging alters circadian rhythms, senescence phenotypes of the microalga Euglena gracilis of different culture ages were characterized with respect to the cell division cycle. We report here the effects of prolonged-stationary-phase conditions on the cell division cycles of E. gracilis under non-24-h light/dark cycles (T-cycles). Under T-cycles, cells established from 1-month-old and 2-month-old cultures produced lower cell concentrations after cultivation in the fresh medium than cells from 1-week-old culture. This decrease was not due to higher concentrations of dead cells in the populations, suggesting that cells of different culture ages differ in their capacity for cell division. Cells from 1-week-old cultures had a shorter circadian period of their cell division cycle under shortened T-cycles than aged cells. When algae were transferred to free-running conditions after entrainment to shortened T-cycles, the young cells showed the peak growth rate at a time corresponding to the first subjective night, but the aged cells did not. This suggests that circadian rhythms are more plastic in younger E. gracilis cells.
Collapse
|
11
|
Tamaki S, Mochida K, Suzuki K. Diverse Biosynthetic Pathways and Protective Functions against Environmental Stress of Antioxidants in Microalgae. PLANTS (BASEL, SWITZERLAND) 2021; 10:1250. [PMID: 34205386 PMCID: PMC8234872 DOI: 10.3390/plants10061250] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
Eukaryotic microalgae have been classified into several biological divisions and have evolutionarily acquired diverse morphologies, metabolisms, and life cycles. They are naturally exposed to environmental stresses that cause oxidative damage due to reactive oxygen species accumulation. To cope with environmental stresses, microalgae contain various antioxidants, including carotenoids, ascorbate (AsA), and glutathione (GSH). Carotenoids are hydrophobic pigments required for light harvesting, photoprotection, and phototaxis. AsA constitutes the AsA-GSH cycle together with GSH and is responsible for photooxidative stress defense. GSH contributes not only to ROS scavenging, but also to heavy metal detoxification and thiol-based redox regulation. The evolutionary diversity of microalgae influences the composition and biosynthetic pathways of these antioxidants. For example, α-carotene and its derivatives are specific to Chlorophyta, whereas diadinoxanthin and fucoxanthin are found in Heterokontophyta, Haptophyta, and Dinophyta. It has been suggested that AsA is biosynthesized via the plant pathway in Chlorophyta and Rhodophyta and via the Euglena pathway in Euglenophyta, Heterokontophyta, and Haptophyta. The GSH biosynthetic pathway is conserved in all biological kingdoms; however, Euglenophyta are able to synthesize an additional thiol antioxidant, trypanothione, using GSH as the substrate. In the present study, we reviewed and discussed the diversity of microalgal antioxidants, including recent findings.
Collapse
Affiliation(s)
- Shun Tamaki
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
| | - Keiichi Mochida
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kengo Suzuki
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
- euglena Co., Ltd., Tokyo 108-0014, Japan
| |
Collapse
|
12
|
León-Vaz A, Romero LC, Gotor C, León R, Vigara J. Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111301. [PMID: 32949933 DOI: 10.1016/j.ecoenv.2020.111301] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Cadmium is one of the most common heavy metals in contaminated aquatic environments and one of the most toxic contaminants for phytoplankton. Nevertheless, there are not enough studies focused on the effect of this metal in algae. Through a proteomic approach, this work shows how Cd can alter the growth, cell morphology and metabolism of the microalga Chlorella sorokiniana. Using the sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS), we concluded that exposure of Chlorella sorokiniana to 250 μM Cd2+ for 40 h caused downregulation of different metabolic pathways, such as photosynthesis, oxidative phosphorylation, glycolysis, TCA cycle and ribosomal proteins biosynthesis. However, photorespiration, antioxidant enzymes, gluconeogenesis, starch catabolism, and biosynthesis of glutamate, cysteine, glycine and serine were upregulated, under the same conditions. Finally, exposure to Cd also led to changes in the metabolism of carotenoids and lipids. In addition, the high tolerance of Chlorella sorokiniana to Cd points to this microalga as a potential microorganism to be used in bioremediation processes.
Collapse
Affiliation(s)
- Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 210071, Huelva, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Seville. Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Seville. Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 210071, Huelva, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 210071, Huelva, Spain.
| |
Collapse
|
13
|
Zhang RX, Zhu WC, Cheng GX, Yu YN, Li QH, Haq SU, Said F, Gong ZH. A novel gene, CaATHB-12, negatively regulates fruit carotenoid content under cold stress in Capsicum annuum. Food Nutr Res 2020; 64:3729. [PMID: 33447178 PMCID: PMC7778427 DOI: 10.29219/fnr.v64.3729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Carotenoids, the secondary metabolites terpenoids, are the largest factors that form the fruit color. Similar to flavonoids, they are not only safe and natural colorants of fruits but also play a role as stress response biomolecules. METHODS To study the contribution of the key genes in carotenoids biosynthesis, fruit-color formation, and in response to cold stress, we characterized the key regulatory factor CaATHB-12 from the HD-ZIP I sub-gene family members in pepper. RESULTS Cold stress enhanced carotenoid accumulation as compared with the normal condition. CaATHB-12 silencing through virus-induced gene silencing changed the fruit color by regulating the carotenoid contents. CaATHB-12 silencing increased the antioxidant enzyme activities in the fruits of pepper, exposed to cold stress, whereas CaATHB-12 overexpression decreased the activities of antioxidant enzymes in the transgenic Arabidopsis lines, exposed to cold stress, suggesting that CaATHB-12 is involved in the regulation of cold stress in the pepper fruits. CONCLUSION Our research will provide insights into the formation of fruit color in pepper and contribution of CaATHB-12 in response to cold stress. Further study should be focused on the interaction between CaATHB-12 and its target gene.
Collapse
Affiliation(s)
- Rui-Xing Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wen-Chao Zhu
- Guizhou Institute of Pepper, Guiyang, P.R. China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fazal Said
- Department of Agriculture, Abdul Wali Khan University, Mardan, Paksitan
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
14
|
Tamaki S, Tanno Y, Kato S, Ozasa K, Wakazaki M, Sato M, Toyooka K, Maoka T, Ishikawa T, Maeda M, Shinomura T. Carotenoid accumulation in the eyespot apparatus required for phototaxis is independent of chloroplast development in Euglena gracilis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110564. [PMID: 32771165 DOI: 10.1016/j.plantsci.2020.110564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Euglena gracilis exhibits photomovements in response to various light stimuli, such as phototactic and photophobic responses. Our recent study revealed that carotenoids in the eyespot apparatus are required for triggering phototaxis in this alga. However, the role of chloroplasts in eyespot formation is not understood. Here, we isolated carotenoid-less (cl) strains of E. gracilis from cells silenced gene expression of phytoene synthase (EgcrtB). Unlike WT, the culture colors of cl1, cl3, and the non-photosynthetic mutant SM-ZK were orange, while that of cl4 was white. Electron microscope observations showed that SM-ZK, cl1, and cl3 had no developed chloroplast and formed a normal eyespot apparatus, similar to that of WT, but this was not the case for cl4. Carotenoids detected in WT were diadinoxanthin, neoxanthin, and β-carotene. However, the most abundant species of SM-ZK, cl1, and cl3 was zeaxanthin, and there was no diadinoxanthin or neoxanthin. Photomovement analysis showed that SM-ZK, cl1, and cl3 exhibited negative phototactic and photophobic responses, similar to those of WT, whereas cl4 lacked negative phototaxis. Taken together, the formation of the eyespot apparatus required for phototaxis is independent of chloroplast development in E. gracilis, suggesting that this property is different from other photosynthetic flagellates.
Collapse
Affiliation(s)
- Shun Tamaki
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Yuri Tanno
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University Graduate Schools, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Shota Kato
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Kazunari Ozasa
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mayumi Wakazaki
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayuko Sato
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiminori Toyooka
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamomorimoto-cho, Sakyo-ku, Kyoto, 606-0805, Japan
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Mizuo Maeda
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tomoko Shinomura
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan; Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University Graduate Schools, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
| |
Collapse
|
15
|
Tanno Y, Kato S, Takahashi S, Tamaki S, Takaichi S, Kodama Y, Sonoike K, Shinomura T. Light dependent accumulation of β-carotene enhances photo-acclimation of Euglena gracilis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111950. [PMID: 32682285 DOI: 10.1016/j.jphotobiol.2020.111950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Carotenoids are essential components of photosynthetic organisms including land plants, algae, cyanobacteria, and photosynthetic bacteria. Although the light-mediated regulation of carotenoid biosynthesis, including the light/dark cycle as well as the dependence of carotenoid biosynthesis-related gene translation on light wavelength, has been investigated in land plants, these aspects have not been studied in microalgae. Here, we investigated carotenoid biosynthesis in Euglena gracilis and found that zeaxanthin accumulates in the dark. The major carotenoid species in E. gracilis, namely β-carotene, neoxanthin, diadinoxanthin and diatoxanthin, accumulated corresponding to the duration of light irradiation under the light/dark cycle, although the translation of carotenoid biosynthesis genes hardly changed. Irradiation with either blue or red-light (3 μmol photons m-2 s-1) caused a 1.3-fold increase in β-carotene content compared with the dark control. Blue-light irradiation (300 μmol photons m-2 s-1) caused an increase in the cellular content of both zeaxanthin and all trans-diatoxanthin, and this increase was proportional to blue-light intensity. In addition, pre-irradiation with blue-light of 3 or 30 μmol photons m-2 s-1 enhanced the photosynthetic activity and tolerance to high-light stress. These findings suggest that the accumulation of β-carotene is regulated by the intensity of light, which may contribute to the acclimation of E. gracilis to the light environment in day night conditions.
Collapse
Affiliation(s)
- Yuri Tanno
- Plant Molecular and Cellular Biology Laboratory, Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University Graduate Schools, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Shota Kato
- Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan; Laboratory of Complex Biology, Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea; Center for Bioscience Research and Education, Utsunomiya University, 350 mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Senji Takahashi
- Plant Molecular and Cellular Biology Laboratory, Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University Graduate Schools, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan; Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Shun Tamaki
- Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, 350 mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tomoko Shinomura
- Plant Molecular and Cellular Biology Laboratory, Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University Graduate Schools, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan; Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan.
| |
Collapse
|
16
|
Sugiyama K, Takahashi K, Nakazawa K, Yamada M, Kato S, Shinomura T, Nagashima Y, Suzuki H, Ara T, Harada J, Takaichi S. Oxygenic Phototrophs Need ζ-Carotene Isomerase (Z-ISO) for Carotene Synthesis: Functional Analysis in Arthrospira and Euglena. PLANT & CELL PHYSIOLOGY 2020; 61:276-282. [PMID: 31593237 DOI: 10.1093/pcp/pcz192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/26/2019] [Indexed: 05/02/2023]
Abstract
For carotenogenesis, two biosynthetic pathways from phytoene to lycopene are known. Most bacteria and fungi require only phytoene desaturase (PDS, CrtI), whereas land plants require four enzymes: PDS (CrtP), ζ-carotene desaturase (ZDS, CrtQ), ζ-carotene isomerase (Z-ISO) and cis-carotene isomerase (CrtISO, CrtH). The gene encoding Z-ISO has been functionally identified in only two species, Arabidopsis thaliana and Zea mays, and has been little studied in other organisms. In this study, we found that the deduced amino acid sequences of Arthrospira Z-ISO and Euglena Z-ISO have 58% and 62% identity, respectively, with functional Z-ISO from Arabidopsis. We studied the function of Z-ISO genes from the cyanobacterium Arthrospira platensis and eukaryotic microalga Euglena gracilis. The Z-ISO genes of Arthrospira and Euglena were transformed into Escherichia coli strains that produced mainly 9,15,9'-tri-cis-ζ-carotene in darkness. In the resulting E. coli transformants cultured under darkness, 9,9'-di-cis-ζ-carotene was accumulated predominantly as Z-ISO in Arabidopsis. This indicates that the Z-ISO genes were involved in the isomerization of 9,15,9'-tri-cis-ζ-carotene to 9,9'-di-cis-ζ-carotene in darkness. This is the first functional analysis of Z-ISO as a ζ-carotene isomerase in cyanobacteria and eukaryotic microalgae. Green sulfur bacteria and Chloracidobacterium also use CrtP, CrtQ and CrtH for lycopene synthesis as cyanobacteria, but their genomes did not comprise Z-ISO genes. Consequently, Z-ISO is needed in oxygenic phototrophs, whereas it is not found in anoxygenic species.
Collapse
Affiliation(s)
- Kenjiro Sugiyama
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Hachioji, Tokyo, 192-0015 Japan
| | - Koh Takahashi
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Hachioji, Tokyo, 192-0015 Japan
| | - Keisuke Nakazawa
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Hachioji, Tokyo, 192-0015 Japan
| | - Masaharu Yamada
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Hachioji, Tokyo, 192-0015 Japan
| | - Shota Kato
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551 Japan
| | - Tomoko Shinomura
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551 Japan
| | | | - Hideyuki Suzuki
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812 Japan
| | - Takeshi Ara
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011 Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011 Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502 Japan
| |
Collapse
|