1
|
Menard BS, Benidickson KH, Raytek LM, Snedden WA, Plaxton WC. Heterologous expression and purification of glutamate decarboxylase-1 from the model plant Arabidopsis thaliana: Characterization of the enzyme's in vitro truncation by thiol endopeptidase activity. Protein Expr Purif 2024; 226:106612. [PMID: 39343154 DOI: 10.1016/j.pep.2024.106612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Plant glutamate decarboxylase (GAD) is a Ca2+-calmodulin (CaM) activated enzyme that produces γ-aminobutyrate (GABA) as the first committed step of the GABA shunt. Our prior research established that in vivo phosphorylation of AtGAD1 (AT5G17330) occurs at multiple N-terminal serine residues following Pi resupply to Pi-starved cell cultures of the model plant Arabidopsis thaliana. The aim of the current investigation was to purify recombinant AtGAD1 (rAtGAD1) following its expression in Escherichia coli to facilitate studies of the impact of phosphorylation on its kinetic properties. However, in vitro proteolytic truncation of an approximate 5 kDa polypeptide from the C-terminus of 59 kDa rAtGAD1 subunits occurred during purification. Immunoblotting demonstrated that most protease inhibitors or cocktails that we tested were ineffective in suppressing this partial rAtGAD1 proteolysis. Although the thiol modifiers N-ethylmaleimide or 2,2-dipyridyl disulfide negated rAtGAD1 proteolysis, they also abolished its GAD activity. This indicates that an essential -SH group is needed for catalysis, and that rAtGAD1 is susceptible to partial degradation either by an E. coli cysteine endopeptidase, or possibly via autoproteolytic activity. The inclusion of exogenous Ca2+/CaM facilitated the purification of non-proteolyzed rAtGAD1 to a specific activity of 27 (μmol GABA produced/mg) at optimal pH 5.8, while exhibiting an approximate 3-fold activation by Ca2+/CaM at pH 7.3. By contrast, the purified partially proteolyzed rAtGAD1 was >40 % less active at both pH values, and only activated 2-fold by Ca2+/CaM at pH 7.3. These results emphasize the need to diagnose and prevent partial proteolysis before conducting kinetic studies of purified regulatory enzymes.
Collapse
Affiliation(s)
| | | | - Lee Marie Raytek
- Dept. of Plant Sciences, McGill Univ., Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Wayne A Snedden
- Dept. of Biology, Queen's Univ., Kingston, Ontario, K7L 3N6, Canada
| | - William C Plaxton
- Dept. of Biology, Queen's Univ., Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
2
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
3
|
S A, Das A, Kalita PJ, Patil RI, Pandey N, Bhattacharjee M, Sharma BK, Das D, Acharjee S. Improved methods for total and chloroplast protein extraction from Cajanus species for two-dimensional gel electrophoresis and mass spectrometry. PLoS One 2024; 19:e0308909. [PMID: 39146296 PMCID: PMC11326652 DOI: 10.1371/journal.pone.0308909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
The recent advances in pigeon pea genomics, including high-quality whole genome and chloroplast genome sequence information helped develop improved varieties. However, a comprehensive Cajanus proteome, including the organelle proteome, is yet to be fully mapped. The spatial delineation of pigeon pea proteins at sub-cellular levels and inter-organelle communication could offer valuable insights into its defense mechanism against various stresses. However, the major bottleneck in the proteomic study is the lack of a suitable method of protein extraction and sample preparation compatible with two-dimensional gel electrophoresis (2D-PAGE), liquid chromatography-mass spectrometry (LCMS), or matrix-assisted laser desorption ionization-time of flight (MALDi-ToF). Our study introduces two efficient methods, one for isolating total proteins and another for organelle (chloroplast) proteins from various Cajanus spp. For total protein extraction, we have optimized a protocol using phenol in combination with a reducing agent (DTT) and protease inhibitor cocktail, also washing (6-7 times) with ice-cold acetone after overnight protein precipitation of total proteins. Our modified extraction method using phenol for total leaf protein yielded approximately 2-fold more proteins than the previously reported protocols from C. cajan (3.18 ± 0.11 mg/gm) and C. scarabaeoides (2.06 ± 0.08 mg/gm). We have also optimized a protocol for plastid protein extraction, which yielded 1.33 ± 0.25 mg/10 gm plastid proteins from C. cajan and 0.88 ± 0.19 mg/10 gm plastid proteins from C. scarabaeoides. The 2D-PAGE analysis revealed 678 ± 08 reproducible total protein spots from C. cajan and 597 ± 22 protein spots from C. scarabaeoides. Similarly, we found 566 ± 10 and 486 ± 14 reproducible chloroplast protein spots in C. cajan and C. scarabaeoides, respectively. We confirmed the plastid protein fractions through immunoblot analysis using antibodies against LHCb1/LHCⅡ type Ⅰ protein. We found both methods suitable for 2D-PAGE and mass spectrometry (MS). This is the first report on developing protocols for total and chloroplastic protein extraction of Cajanus spp. suitable for advanced proteomics research.
Collapse
Affiliation(s)
- Arunima S
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Alakesh Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Prakash Jyoti Kalita
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Rahul Ishwar Patil
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Neha Pandey
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Mamta Bhattacharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sharma
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
4
|
Hau B, Symonds K, Teresinski H, Janssen A, Duff L, Smith M, Benidickson K, Plaxton W, Snedden WA. Arabidopsis Calmodulin-like Proteins CML13 and CML14 Interact with Calmodulin-Binding Transcriptional Activators and Function in Salinity Stress Response. PLANT & CELL PHYSIOLOGY 2024; 65:282-300. [PMID: 38036467 DOI: 10.1093/pcp/pcad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Eukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied. We recently demonstrated that Arabidopsis CML13 and CML14 interact with proteins containing isoleucine/glutamine (IQ) domains, including CaM-binding transcriptional activators (CAMTAs). Here, we show that CaM, CML13 and CML14 bind all six members of the Arabidopsis CAMTA family. Using a combination of in planta and in vitro protein-interaction assays, we tested 11 members of the CaM/CML family and demonstrated that only CaM, CML13 and CML14 bind to CAMTA IQ domains. CaM, CML13 and CML14 showed Ca2+-independent binding to the IQ region of CAMTA6 and CAMTA3, and CAMTA6 in vitro exhibited some specificity toward individual IQ domains within CAMTA6 in split-luciferase in planta assays. We show that cml13 mutants exhibited enhanced salinity tolerance during germination compared to wild-type plants, a phenotype similar to camta6 mutants. In contrast, plants overexpressing CML13-GFP or CML14-GFP in the wild-type background showed increased NaCl sensitivity. Under mannitol stress, cml13 mutants were more susceptible than camta6 mutants or wild-type plants. The phenotype of cml13 mutants could be rescued with the wild-type CML13 gene. Several salinity-marker genes under CAMTA6 control were similarly misregulated in both camta6 and cml13 mutants, further supporting a role for CML13 in CAMTA6 function. Collectively, our data suggest that CML13 and CML14 participate in abiotic stress signaling as CAMTA effectors.
Collapse
Affiliation(s)
- Bryan Hau
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Kyle Symonds
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Howard Teresinski
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Abby Janssen
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Liam Duff
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Milena Smith
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | | | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| |
Collapse
|
5
|
Miranda J, Lefin N, Beltran JF, Belén LH, Tsipa A, Farias JG, Zamorano M. Enzyme Engineering Strategies for the Bioenhancement of L-Asparaginase Used as a Biopharmaceutical. BioDrugs 2023; 37:793-811. [PMID: 37698749 DOI: 10.1007/s40259-023-00622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Over the past few years, there has been a surge in the industrial production of recombinant enzymes from microorganisms due to their catalytic characteristics being highly efficient, selective, and biocompatible. L-asparaginase (L-ASNase) is an enzyme belonging to the class of amidohydrolases that catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. It has been widely investigated as a biologic agent for its antineoplastic properties in treating acute lymphoblastic leukemia. The demand for L-ASNase is mainly met by the production of recombinant type II L-ASNase from Escherichia coli and Erwinia chrysanthemi. However, the presence of immunogenic proteins in L-ASNase sourced from prokaryotes has been known to result in adverse reactions in patients undergoing treatment. As a result, efforts are being made to explore strategies that can help mitigate the immunogenicity of the drug. This review gives an overview of recent biotechnological breakthroughs in enzyme engineering techniques and technologies used to improve anti-leukemic L-ASNase, taking into account the pharmacological importance of L-ASNase.
Collapse
Affiliation(s)
- Javiera Miranda
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Nicolás Lefin
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Jorge F Beltran
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Argyro Tsipa
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
| | - Jorge G Farias
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Mauricio Zamorano
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile.
| |
Collapse
|
6
|
Noone J, Wallace RG, Rochfort KD. Immunoprecipitation: Variations, Considerations, and Applications. Methods Mol Biol 2023; 2699:271-303. [PMID: 37647004 DOI: 10.1007/978-1-0716-3362-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Immunoprecipitation (IP) refers to methods of affinity chromatography that enrich and/or purify a specific protein from a complex mixture using a specific antibody immobilized on a solid support. Several operations and processes that are dependent on the isolation, concentration, and modification of proteins have seen improvement in their selectivity and separation based on the integration of IP-specific reactions into their workflows. This relatively simple principle has contributed significantly to our understanding of proteins and their behaviors and has become increasingly fundamental to most protein characterization studies today. In this chapter, we review the basic principles of IP and the several factors that influence each stage, and subsequently the success, of an IP experiment. Moreover, variations in application of the IP principle are discussed, and the adaptability of the techniques based on such is highlighted in the provision of two IP workflows to purify a particular protein from an entire cellular proteosome. These workflows cover the preparation and fractionation of crude cellular lysate into individual subcellular fractions, through to both "batch" and "column"-based extractions of the target protein of interest. Protocols for determining the validity of the workflows, and the presence/abundance of the protein of interest, are also briefly described.
Collapse
Affiliation(s)
- John Noone
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- AdventHealth, Translational Research Institute, Orlando, Florida, United States of America
| | - Robert G Wallace
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
7
|
Patel PG, Panseriya HZ, Vala AK, Dave BP, Gosai HB. Exploring current scenario and developments in the field of microbial L-asparaginase production and applications: A review. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Bojórquez-Velázquez E, Elizalde-Contreras JM, Zamora-Briseño JA, Ruiz-May E. Efficient Protein Extraction Protocols for NanoLC-MS/MS Proteomics Analysis of Plant Tissues with High Proteolytic Activity: A Case Study with Pineapple Pulp. Methods Mol Biol 2022; 2512:281-290. [PMID: 35818012 DOI: 10.1007/978-1-0716-2429-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteomics is an essential tool to uncover the regulatory processes of fruit biology. In fruits with high proteolytic activity, the inhibition of endogenous proteases is key for successful protein extraction. In this chapter, we describe an efficient protocol for total protein extraction to deal with this inconvenience using pineapple pulp as an example. We corroborated the efficacy of our protein extraction protocols by carrying out nano LC-MS/MS analyses using a highly sensitive hybrid mass spectrometer. In doing so, we were able to identify over 3000 proteins in pineapple pulp. Our contribution paves the way for massive comparative proteomics scrutiny in pineapple fruits, as well as others plant tissues with high protease activity such as papaya, fig, and kiwi fruits.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, Mexico
| | - José M Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, Mexico.
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, Mexico.
| |
Collapse
|
9
|
Gandullo J, Álvarez R, Feria AB, Monreal JA, Díaz I, Vidal J, Echevarría C. A conserved C-terminal peptide of sorghum phosphoenolpyruvate carboxylase promotes its proteolysis, which is prevented by Glc-6P or the phosphorylation state of the enzyme. PLANTA 2021; 254:43. [PMID: 34355288 PMCID: PMC8342391 DOI: 10.1007/s00425-021-03692-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION A synthetic peptide from the C-terminal end of C4-phosphoenolpyruvate carboxylase is implicated in the proteolysis of the enzyme, and Glc-6P or phosphorylation of the enzyme modulate this effect. Phosphoenolpyruvate carboxylase (PEPC) is a cytosolic, homotetrameric enzyme that performs a variety of functions in plants. Among them, it is primarily responsible for CO2 fixation in the C4 photosynthesis pathway (C4-PEPC). Here we show that proteolysis of C4-PEPC by cathepsin proteases present in a semi-purified PEPC fraction was enhanced by the presence of a synthetic peptide containing the last 19 amino acids from the C-terminal end of the PEPC subunit (pC19). Threonine (Thr)944 and Thr948 in the peptide are important requirements for the pC19 effect. C4-PEPC proteolysis in the presence of pC19 was prevented by the PEPC allosteric effector glucose 6-phosphate (Glc-6P) and by phosphorylation of the enzyme. The role of these elements in the regulation of PEPC proteolysis is discussed in relation to the physiological context.
Collapse
Affiliation(s)
- Jacinto Gandullo
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Rosario Álvarez
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Ana-Belén Feria
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - José-Antonio Monreal
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Autovía M40 (km 38), Pozuelo de Alarcón, 28034, Madrid, Spain
| | - Jean Vidal
- Institut de Biotechnologie des Plantes, UMR8618, Bâtiment 630, Université de Paris-Sud 11, 91405, Orsay, Cedex, France
| | - Cristina Echevarría
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain.
| |
Collapse
|
10
|
Rojas BE, Hartman MD, Figueroa CM, Iglesias AA. Proteolytic cleavage of Arabidopsis thaliana phosphoenolpyruvate carboxykinase-1 modifies its allosteric regulation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2514-2524. [PMID: 33315117 DOI: 10.1093/jxb/eraa583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis. In this work, we analyze the proteolysis of Arabidopsis thaliana PEPCK1 (AthPEPCK1) in germinating seedlings. We found that the amount of AthPEPCK1 protein peaks at 24-48 h post-imbibition. Concomitantly, we observed shorter versions of AthPEPCK1, putatively generated by metacaspase-9 (AthMC9). To study the impact of AthMC9 cleavage on the kinetic and regulatory properties of AthPEPCK1, we produced truncated mutants based on the reported AthMC9 cleavage sites. The Δ19 and Δ101 truncated mutants of AthPEPCK1 showed similar kinetic parameters and the same quaternary structure as the wild type. However, activation by malate and inhibition by glucose 6-phosphate were abolished in the Δ101 mutant. We propose that proteolysis of AthPEPCK1 in germinating seedlings operates as a mechanism to adapt the sensitivity to allosteric regulation during the sink-to-source transition.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
11
|
Puchol Tarazona AA, Maresch D, Grill A, Bakalarz J, Torres Acosta JA, Castilho A, Steinkellner H, Mach L. Identification of two subtilisin-like serine proteases engaged in the degradation of recombinant proteins in Nicotiana benthamiana. FEBS Lett 2021; 595:379-388. [PMID: 33263189 PMCID: PMC8221030 DOI: 10.1002/1873-3468.14014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
The tobacco variant Nicotiana benthamiana has recently emerged as a versatile host for the manufacturing of protein therapeutics, but the fidelity of many recombinant proteins generated in this system is compromised by inadvertent proteolysis. Previous studies have revealed that the anti-HIV-1 antibodies 2F5 and PG9 as well as the protease inhibitor α1 -antitrypsin (A1AT) are particularly susceptible to N. benthamiana proteases. Here, we identify two subtilisin-like serine proteases (NbSBT1 and NbSBT2) whose combined action is sufficient to account for all major cleavage events observed upon expression of 2F5, PG9 and A1AT in N. benthamiana. We propose that downregulation of NbSBT1 and NbSBT2 activities could constitute a powerful means to optimize the performance of this promising platform for the production of biopharmaceuticals. DATABASES: NbSBT sequence data are available in the DDBJ/EMBL/GenBank databases under the accession numbers MN534996 to MN535005.
Collapse
Affiliation(s)
| | - Daniel Maresch
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Annette Grill
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Janet Bakalarz
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Juan A. Torres Acosta
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Lukas Mach
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
12
|
Recent Advancements of UF-Based Separation for Selective Enrichment of Proteins and Bioactive Peptides—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteins are one of the primary building blocks that have significant functional properties to be applied in food and pharmaceutical industries. Proteins could be beneficial in their concentrated products or isolates, of which membrane-based filtration methods such as ultrafiltration (UF) encompass application in broad spectra of protein sources. More importantly, selective enrichment by UF is of immense interest due to the presence of antinutrients that may dominate their perspicuous bioactivities. UF process is primarily obstructed by concentration polarization and fouling; in turn, a trade-off between productivity and selectivity emerges, especially when pure isolates are an ultimate goal. Several factors such as operating conditions and membrane equipment could leverage those pervasive contributions; therefore, UF protocols should be optimized for each unique protein mixture and mode of configuration. For instance, employing charged UF membranes or combining UF membranes with electrodialysis enables efficient separation of proteins with a similar molecular weight, which is hard to achieve by the conventional UF membrane. Meanwhile, some proposed strategies, such as utilizing ultrasonic waves, tuning operating conditions, and modifying membrane surfaces, can effectively mitigate fouling issues. A plethora of advancements in UF, from their membrane material modification to the arrangement of new configurations, contribute to the quest to actualize promising potentials of protein separation by UF, and they are reviewed in this paper.
Collapse
|
13
|
Exploring the Milk-Clotting and Proteolytic Activities in Different Tissues of Vallesia glabra: a New Source of Plant Proteolytic Enzymes. Appl Biochem Biotechnol 2020; 193:389-404. [PMID: 33009584 DOI: 10.1007/s12010-020-03432-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
Proteolytic enzymes are widely distributed in nature, playing essential roles in important biological functions. Recently, the use of plant proteases at the industrial level has mainly increased in the food industry (e.g., cheesemaking, meat tenderizing, and protein hydrolysate production). Current technological and scientific advances in the detection and characterization of proteolytic enzymes have encouraged the search for new natural sources. Thus, this work aimed to explore the milk-clotting and proteolytic properties of different tissues of Vallesia glabra. Aqueous extracts from the leaves, fruits, and seeds of V. glabra presented different protein profiles, proteolytic activity, and milk-clotting activity. The milk-clotting activity increased with temperature (30-65 °C), but this activity was higher in leaf (0.20 MCU/mL) compared with that in fruit and seed extracts (0.12 and 0.11 MCU/mL, respectively) at 50 °C. Proteolytic activity in the extracts assayed at different pH (2.5-12.0) suggested the presence of different types of active proteases, with maximum activity at acidic conditions (4.0-4.5). Inhibitory studies indicated that major activity in V. glabra extracts is related to cysteine proteases; however, the presence of serine, aspartic, and metalloproteases was also evident. The hydrolytic profile of caseins indicated that V. glabra leaves could be used as a rennet substitute in cheesemaking, representing a new and promising source of proteolytic enzymes.
Collapse
|
14
|
Suzuki-Hatano S, Tsai AC, Daugherty A, Pacak CA. TMT Sample Preparation for Proteomics Facility Submission and Subsequent Data Analysis. J Vis Exp 2020. [PMID: 32568242 DOI: 10.3791/60970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Proteomic technologies are powerful methodologies that can aid our understanding of mechanisms of action in biological systems by providing a global view of the impact of a disease, treatment, or other condition on the proteome as a whole. This report provides a detailed protocol for the extraction, quantification, precipitation, digestion, labeling, and subsequent data analysis of protein samples. Our optimized TMT labeling protocol requires a lower tag-label concentration and achieves consistently reliable data. We have used this protocol to evaluate protein expression profiles in a variety of mouse tissues (i.e., heart, skeletal muscle, and brain) as well as cells cultured in vitro. In addition, we demonstrate how to evaluate thousands of proteins from the resulting dataset.
Collapse
|
15
|
Schiermeyer A. Optimizing product quality in molecular farming. Curr Opin Biotechnol 2019; 61:15-20. [PMID: 31593785 DOI: 10.1016/j.copbio.2019.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
The production of biopharmaceuticals in plant-based systems had faced several challenges that hampered broader adoption of this technology. In recent years, various plant production hosts have been improved by genetic engineering approaches to overcome obstacles with regard to post-translational modifications and integrity of target proteins. Together with optimized extraction and purification processes, those advances have put plant molecular farming in a more competitive position compared to established production systems. Certain biopharmaceuticals can be derived from plant systems with unique desired properties, qualifying them as biobetters.
Collapse
Affiliation(s)
- Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany.
| |
Collapse
|