1
|
Abstract
In contrast to traditional breeding, which relies on the identification of mutants, metabolic engineering provides a new platform to modify the oil composition in oil crops for improved nutrition. By altering endogenous genes involved in the biosynthesis pathways, it is possible to modify edible plant oils to increase the content of desired components or reduce the content of undesirable components. However, introduction of novel nutritional components such as omega-3 long-chain polyunsaturated fatty acids needs transgenic expression of novel genes in crops. Despite formidable challenges, significant progress in engineering nutritionally improved edible plant oils has recently been achieved, with some commercial products now on the market.
Collapse
Affiliation(s)
| | - Qing Liu
- CSIRO Agriculture & Food, Canberra, Australia;
| | | |
Collapse
|
4
|
Petrie JR, Zhou XR, Leonforte A, McAllister J, Shrestha P, Kennedy Y, Belide S, Buzza G, Gororo N, Gao W, Lester G, Mansour MP, Mulder RJ, Liu Q, Tian L, Silva C, Cogan NOI, Nichols PD, Green AG, de Feyter R, Devine MD, Singh SP. Development of a Brassica napus (Canola) Crop Containing Fish Oil-Like Levels of DHA in the Seed Oil. FRONTIERS IN PLANT SCIENCE 2020; 11:727. [PMID: 32595662 PMCID: PMC7303301 DOI: 10.3389/fpls.2020.00727] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/06/2020] [Indexed: 05/07/2023]
Abstract
Plant seeds have long been promoted as a production platform for novel fatty acids such as the ω3 long-chain (≥ C20) polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) commonly found in fish oil. In this article we describe the creation of a canola (Brassica napus) variety producing fish oil-like levels of DHA in the seed. This was achieved by the introduction of a microalgal/yeast transgenic pathway of seven consecutive enzymatic steps which converted the native substrate oleic acid to α-linolenic acid and, subsequently, to EPA, docosapentaenoic acid (DPA) and DHA. This paper describes construct design and evaluation, plant transformation, event selection, field testing in a wide range of environments, and oil profile stability of the transgenic seed. The stable, high-performing event NS-B50027-4 produced fish oil-like levels of DHA (9-11%) in open field trials of T3 to T7 generation plants in several locations in Australia and Canada. This study also describes the highest seed DHA levels reported thus far and is one of the first examples of a deregulated genetically modified crop with clear health benefits to the consumer.
Collapse
Affiliation(s)
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | | | - Yoko Kennedy
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | - Greg Buzza
- Nuseed Pty Ltd., Horsham, VIC, Australia
| | | | - Wenxiang Gao
- Nuseed Americas Inc., Woodland, CA, United States
| | | | | | | | - Qing Liu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Lijun Tian
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhu XG, Ort DR, Parry MAJ, von Caemmerer S. A wish list for synthetic biology in photosynthesis research. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2219-2225. [PMID: 32060550 PMCID: PMC7134917 DOI: 10.1093/jxb/eraa075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
This perspective summarizes the presentations and discussions at the ' International Symposium on Synthetic Biology in Photosynthesis Research', which was held in Shanghai in 2018. Leveraging the current advanced understanding of photosynthetic systems, the symposium brain-stormed about the redesign and engineering of photosynthetic systems for translational goals and evaluated available new technologies/tools for synthetic biology as well as technological obstacles and new tools that would be needed to overcome them. Four major research areas for redesigning photosynthesis were identified: (i) mining natural variations of photosynthesis; (ii) coordinating photosynthesis with pathways utilizing photosynthate; (iii) reconstruction of highly efficient photosynthetic systems in non-host species; and (iv) development of new photosynthetic systems that do not exist in nature. To expedite photosynthesis synthetic biology research, an array of new technologies and community resources need to be developed, which include expanded modelling capacities, molecular engineering toolboxes, model species, and phenotyping tools.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- Institute of Plant Physiology and Ecology and Center for Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Donald R Ort
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Susanne von Caemmerer
- Research School of Biological Sciences, Australian National University, Acton, Australia
| |
Collapse
|
6
|
Li-Beisson Y, Wada H. Plant and Algal Lipids Set Sail for New Horizons. PLANT & CELL PHYSIOLOGY 2019; 60:1161-1163. [PMID: 31093675 DOI: 10.1093/pcp/pcz092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille University, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez-Durance F, France
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, Japan
| |
Collapse
|