1
|
Wang Z, Wei X. Complete Sequence and Characterization of Mitochondrial and Chloroplast Genome of Navicula incerta CACC 0356. Life (Basel) 2025; 15:102. [PMID: 39860042 PMCID: PMC11767216 DOI: 10.3390/life15010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Navicula incerta, a marine benthic diatom, holds promise for human nutrition and health as well as for aquaculture applications. However, the scarcity of organelle genome data within the Navicula clade has impeded a comprehensive understanding and utilization of this group. Our research presents a pioneering exploration into the complete mitochondrial and chloroplast genome sequences of N. incerta CACC 0356, shedding light on its phylogeny and evolutionary history. The mitochondrial genome (mtDNA) spans 61,320 bp with a GC content of 29.87%, comprising one circular DNA molecule that encodes for 34 protein-coding genes, 24 tRNAs, and 34 rRNAs. Whereas, the chloroplast genome (cpDNA) is larger at 129,090 bp, encompassing 127 protein-coding genes, 30 tRNAs, and 7 rRNAs. Notably, the cpDNA of N. incerta is approximately 2.1 times the size of its mtDNA. Our annotation identified four genes that are partially situated in the homologous regions between the mitogenome and chloroplast genome, totaling 372 bp, which represents 0.61% of the entire mitogenome. Comparative analyses revealed that N. incerta CACC 0356 is closely affiliated with Fistulifera saprophila and Fistulifera solaris, both members of the Naviculaceae order. This study significantly expands the mitochondrial and chloroplast genomic resources for algae and lays a foundation for the development of genetic diversity analyses in algae.
Collapse
Affiliation(s)
| | - Xiaoyu Wei
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| |
Collapse
|
2
|
Hu F, Yin W, Huang T, Hu H. Isolation of High-Quality Plastids from the Diatom Phaeodactylum tricornutum. Methods Mol Biol 2024; 2776:177-183. [PMID: 38502504 DOI: 10.1007/978-1-0716-3726-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Phaeodactylum tricornutum, a model pennate diatom, carries a secondary plastid surrounded by four membranes. Its biological function remains mysterious, supposed to combine features of the primary chloroplast and the endomembrane system. Isolation of high-quality plastid from the diatom enables a more conclusive understanding of the special structure and metabolic pathways in the plastid. Due to the direct continuity between the chloroplast endoplasmic reticulum membrane (cERM) and the outer nuclear envelope together with the integration of cERM into the cellular endoplasmic reticulum (ER) system, the plastid isolation is still challenging. In this study, highly purified P. tricornutum plastids with the four-layered membrane are obtained by Percoll density gradient centrifugation. The isolated plastids are unlikely to contain any residue of nuclear and coatomer compartments, and they might contain a relatively small contamination of mitochondrion and ER debris.
Collapse
Affiliation(s)
- Fan Hu
- School of Foreign Languages, China University of Geosciences, Wuhan, China
| | - Wenxiu Yin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Teng Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
3
|
Huang T, Pan Y, Maréchal E, Hu H. Proteomes reveal the lipid metabolic network in the complex plastid of Phaeodactylum tricornutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:385-403. [PMID: 37733835 DOI: 10.1111/tpj.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Phaeodactylum tricornutum plastid is surrounded by four membranes, and its protein composition and function remain mysterious. In this study, the P. tricornutum plastid-enriched fraction was obtained and 2850 proteins were identified, including 92 plastid-encoded proteins, through label-free quantitative proteomic technology. Among them, 839 nuclear-encoded proteins were further determined to be plastidial proteins based on the BLAST alignments within Plant Proteome DataBase and subcellular localization prediction, in spite of the strong contamination by mitochondria-encoded proteins and putative plasma membrane proteins. According to our proteomic data, we reconstructed the metabolic pathways and highlighted the hybrid nature of this diatom plastid. Triacylglycerol (TAG) hydrolysis and glycolysis, as well as photosynthesis, glycan metabolism, and tocopherol and triterpene biosynthesis, occur in the plastid. In addition, the synthesis of long-chain acyl-CoAs, elongation, and desaturation of fatty acids (FAs), and synthesis of lipids including TAG are confined in the four-layered-membrane plastid based on the proteomic and GFP-fusion localization data. The whole process of generation of docosahexaenoic acid (22:6) from palmitic acid (16:0), via elongation and desaturation of FAs, occurs in the chloroplast endoplasmic reticulum membrane, the outermost membrane of the plastid. Desaturation that generates 16:4 from 16:0 occurs in the plastid stroma and outer envelope membrane. Quantitative analysis of glycerolipids between whole cells and isolated plastids shows similar composition, and the FA profile of TAG was not different. This study shows that the diatom plastid combines functions usually separated in photosynthetic eukaryotes, and differs from green alga and plant chloroplasts by undertaking the whole process of lipid biosynthesis.
Collapse
Affiliation(s)
- Teng Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CEA, CNRS, INRA, IRIG-LPCV, 38054, Grenoble Cedex 9, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Gomes KM, Nunn BL, Chappell PD, Jenkins BD. Subcellular proteomics for determining iron-limited remodeling of plastids in the model diatom Thalassiosira pseudonana (Bacillariophyta). JOURNAL OF PHYCOLOGY 2023; 59:1085-1099. [PMID: 37615442 DOI: 10.1111/jpy.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low-Fe stress-induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low-Fe stress, diatoms alter plastid-specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid-localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well-studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid-enriched fractions from Thalassiosira pseudonana to gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry-based peptide identification and quantification, we analyzed T. pseudonana grown under Fe-replete and -limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light-harvesting proteins. In silico localization predictions of proteins identified in this plastid-enriched proteome allowed for an in-depth comparison of theoretical versus observed plastid-localization, providing evidence for the potential of additional protein import pathways into the diatom plastid.
Collapse
Affiliation(s)
- Kristofer M Gomes
- Department of Biological Sciences, University of Rhode Island, Rhode Island, Kingston, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Washington, Seattle, USA
| | - P Dreux Chappell
- College of Marine Science, University of South Florida, Florida, St. Petersburg, USA
| | - Bethany D Jenkins
- Department of Cell and Molecular Biology, University of Rhode Island, Rhode Island, Kingston, USA
- Graduate School of Oceanography, University of Rhode Island, Rhode Island, Narragansett, USA
| |
Collapse
|
5
|
He S, Crans VL, Jonikas MC. The pyrenoid: the eukaryotic CO2-concentrating organelle. THE PLANT CELL 2023; 35:3236-3259. [PMID: 37279536 PMCID: PMC10473226 DOI: 10.1093/plcell/koad157] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The pyrenoid is a phase-separated organelle that enhances photosynthetic carbon assimilation in most eukaryotic algae and the land plant hornwort lineage. Pyrenoids mediate approximately one-third of global CO2 fixation, and engineering a pyrenoid into C3 crops is predicted to boost CO2 uptake and increase yields. Pyrenoids enhance the activity of the CO2-fixing enzyme Rubisco by supplying it with concentrated CO2. All pyrenoids have a dense matrix of Rubisco associated with photosynthetic thylakoid membranes that are thought to supply concentrated CO2. Many pyrenoids are also surrounded by polysaccharide structures that may slow CO2 leakage. Phylogenetic analysis and pyrenoid morphological diversity support a convergent evolutionary origin for pyrenoids. Most of the molecular understanding of pyrenoids comes from the model green alga Chlamydomonas (Chlamydomonas reinhardtii). The Chlamydomonas pyrenoid exhibits multiple liquid-like behaviors, including internal mixing, division by fission, and dissolution and condensation in response to environmental cues and during the cell cycle. Pyrenoid assembly and function are induced by CO2 availability and light, and although transcriptional regulators have been identified, posttranslational regulation remains to be characterized. Here, we summarize the current knowledge of pyrenoid function, structure, components, and dynamic regulation in Chlamydomonas and extrapolate to pyrenoids in other species.
Collapse
Affiliation(s)
- Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| | - Victoria L Crans
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
6
|
Chen XH, Yang MK, Li YY, Xie ZX, Zhang SF, Töpel M, Amin SA, Lin L, Ge F, Wang DZ. Improving the genome and proteome annotations of the marine model diatom Thalassiosira pseudonana using a proteogenomics strategy. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:102-115. [PMID: 37073328 PMCID: PMC10077189 DOI: 10.1007/s42995-022-00161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 12/17/2022] [Indexed: 05/03/2023]
Abstract
Diatoms are unicellular eukaryotic phytoplankton that account for approximately 20% of global carbon fixation and 40% of marine primary productivity; thus, they are essential for global carbon biogeochemical cycling and climate. The availability of ten diatom genome sequences has facilitated evolutionary, biological and ecological research over the past decade; however, a complimentary map of the diatom proteome with direct measurements of proteins and peptides is still lacking. Here, we present a proteome map of the model marine diatom Thalassiosira pseudonana using high-resolution mass spectrometry combined with a proteogenomic strategy. In-depth proteomic profiling of three different growth phases and three nutrient-deficient samples identified 9526 proteins, accounting for ~ 81% of the predicted protein-coding genes. Proteogenomic analysis identified 1235 novel genes, 975 revised genes, 104 splice variants and 234 single amino acid variants. Furthermore, our quantitative proteomic analysis experimentally demonstrated that a considerable number of novel genes were differentially translated under different nutrient conditions. These findings substantially improve the genome annotation of T. pseudonana and provide insights into new biological functions of diatoms. This relatively comprehensive diatom proteome catalog will complement available diatom genome and transcriptome data to advance biological and ecological research of marine diatoms. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00161-y.
Collapse
Affiliation(s)
- Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000 China
| | - Ming-Kun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Mats Töpel
- Department of Marine Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
- IVL-Swedish Environmental Research Institute, Box 53021, 40014 Gothenburg, Sweden
| | - Shady A. Amin
- New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| |
Collapse
|
7
|
Liu S, Storti M, Finazzi G, Bowler C, Dorrell RG. A metabolic, phylogenomic and environmental atlas of diatom plastid transporters from the model species Phaeodactylum. FRONTIERS IN PLANT SCIENCE 2022; 13:950467. [PMID: 36212359 PMCID: PMC9546453 DOI: 10.3389/fpls.2022.950467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Diatoms are an important group of algae, contributing nearly 40% of total marine photosynthetic activity. However, the specific molecular agents and transporters underpinning the metabolic efficiency of the diatom plastid remain to be revealed. We performed in silico analyses of 70 predicted plastid transporters identified by genome-wide searches of Phaeodactylum tricornutum. We considered similarity with Arabidopsis thaliana plastid transporters, transcriptional co-regulation with genes encoding core plastid metabolic pathways and with genes encoded in the mitochondrial genomes, inferred evolutionary histories using single-gene phylogeny, and environmental expression trends using Tara Oceans meta-transcriptomics and meta-genomes data. Our data reveal diatoms conserve some of the ion, nucleotide and sugar plastid transporters associated with plants, such as non-specific triose phosphate transporters implicated in the transport of phosphorylated sugars, NTP/NDP and cation exchange transporters. However, our data also highlight the presence of diatom-specific transporter functions, such as carbon and amino acid transporters implicated in intricate plastid-mitochondria crosstalk events. These confirm previous observations that substrate non-specific triose phosphate transporters (TPT) may exist as principal transporters of phosphorylated sugars into and out of the diatom plastid, alongside suggesting probable agents of NTP exchange. Carbon and amino acid transport may be related to intricate metabolic plastid-mitochondria crosstalk. We additionally provide evidence from environmental meta-transcriptomic/meta- genomic data that plastid transporters may underpin diatom sensitivity to ocean warming, and identify a diatom plastid transporter (J43171) whose expression may be positively correlated with temperature.
Collapse
Affiliation(s)
- Shun Liu
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| | - Mattia Storti
- Univ. Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique Energies Alternatives (CEA), Institut National Recherche Agriculture Alimentation Environnement (INRAE), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique Energies Alternatives (CEA), Institut National Recherche Agriculture Alimentation Environnement (INRAE), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| | - Richard G. Dorrell
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| |
Collapse
|
8
|
Dunker S, Boyd M, Durka W, Erler S, Harpole WS, Henning S, Herzschuh U, Hornick T, Knight T, Lips S, Mäder P, Švara EM, Mozarowski S, Rakosy D, Römermann C, Schmitt‐Jansen M, Stoof‐Leichsenring K, Stratmann F, Treudler R, Virtanen R, Wendt‐Potthoff K, Wilhelm C. The potential of multispectral imaging flow cytometry for environmental monitoring. Cytometry A 2022; 101:782-799. [DOI: 10.1002/cyto.a.24658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Susanne Dunker
- Department of Physiological Diversity Helmholtz‐Centre for Environmental Research (UFZ) Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Matthew Boyd
- Department of Anthropology Lakehead University Thunder Bay Canada
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Community Ecology Helmholtz‐Centre for Environmental Research (UFZ) Halle Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI)‐Federal Research Centre for Cultivated Plants Braunschweig Germany
| | - W. Stanley Harpole
- Department of Physiological Diversity Helmholtz‐Centre for Environmental Research (UFZ) Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology, Martin Luther University Halle‐Wittenberg Halle Germany
| | - Silvia Henning
- Department of Experimental Aerosol and Cloud Microphysics Leibniz Institute for Tropospheric Research (TROPOS) Leipzig Germany
| | - Ulrike Herzschuh
- Alfred‐Wegner‐Institute Helmholtz Centre of Polar and Marine Research Polar Terrestrial Environmental Systems Potsdam Germany
- Institute of Environmental Sciences and Geography University of Potsdam Potsdam Germany
- Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
| | - Thomas Hornick
- Department of Physiological Diversity Helmholtz‐Centre for Environmental Research (UFZ) Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Tiffany Knight
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Community Ecology Helmholtz‐Centre for Environmental Research (UFZ) Halle Germany
- Institute of Biology, Martin Luther University Halle‐Wittenberg Halle Germany
| | - Stefan Lips
- Department of Bioanalytical Ecotoxicology Helmholtz‐Centre for Environmental Research – UFZ Leipzig Germany
| | - Patrick Mäder
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Computer Science and Automation Technische Universität Ilmenau Ilmenau Germany
- Faculty of Biological Sciences Friedrich‐Schiller‐University Jena Jena Germany
| | - Elena Motivans Švara
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Community Ecology Helmholtz‐Centre for Environmental Research (UFZ) Halle Germany
- Institute of Biology, Martin Luther University Halle‐Wittenberg Halle Germany
| | | | - Demetra Rakosy
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Community Ecology Helmholtz‐Centre for Environmental Research (UFZ) Halle Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Ecology and Evolution Friedrich‐Schiller‐University Jena Jena Germany
| | - Mechthild Schmitt‐Jansen
- Department of Bioanalytical Ecotoxicology Helmholtz‐Centre for Environmental Research – UFZ Leipzig Germany
| | - Kathleen Stoof‐Leichsenring
- Alfred‐Wegner‐Institute Helmholtz Centre of Polar and Marine Research Polar Terrestrial Environmental Systems Potsdam Germany
| | - Frank Stratmann
- Department of Experimental Aerosol and Cloud Microphysics Leibniz Institute for Tropospheric Research (TROPOS) Leipzig Germany
| | - Regina Treudler
- Department of Dermatology, Venerology and Allergology University of Leipzig Medical Center Leipzig Germany
| | | | - Katrin Wendt‐Potthoff
- Department of Lake Research Helmholtz‐Centre for Environmental Research – UFZ Magdeburg Germany
| | - Christian Wilhelm
- Faculty of Life Sciences, Institute of Biology University of Leipzig Leipzig Germany
| |
Collapse
|
9
|
Hammond M, Dorrell RG, Speijer D, Lukeš J. Eukaryotic cellular intricacies shape mitochondrial proteomic complexity. Bioessays 2022; 44:e2100258. [PMID: 35318703 DOI: 10.1002/bies.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Abstract
Mitochondria have been fundamental to the eco-physiological success of eukaryotes since the last eukaryotic common ancestor (LECA). They contribute essential functions to eukaryotic cells, above and beyond classical respiration. Mitochondria interact with, and complement, metabolic pathways occurring in other organelles, notably diversifying the chloroplast metabolism of photosynthetic organisms. Here, we integrate existing literature to investigate how mitochondrial metabolism varies across the landscape of eukaryotic evolution. We illustrate the mitochondrial remodelling and proteomic changes undergone in conjunction with major evolutionary transitions. We explore how the mitochondrial complexity of the LECA has been remodelled in specific groups to support subsequent evolutionary transitions, such as the acquisition of chloroplasts in photosynthetic species and the emergence of multicellularity. We highlight the versatile and crucial roles played by mitochondria during eukaryotic evolution, extending from its huge contribution to the development of the LECA itself to the dynamic evolution of individual eukaryote groups, reflecting both their current ecologies and evolutionary histories.
Collapse
Affiliation(s)
- Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Richard G Dorrell
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Dave Speijer
- Medical Biochemistry, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
10
|
Hippmann AA, Schuback N, Moon K, McCrow JP, Allen AE, Foster LF, Green BR, Maldonado MT. Proteomic analysis of metabolic pathways supports chloroplast-mitochondria cross-talk in a Cu-limited diatom. PLANT DIRECT 2022; 6:e376. [PMID: 35079683 PMCID: PMC8777261 DOI: 10.1002/pld3.376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 05/19/2023]
Abstract
Diatoms are one of the most successful phytoplankton groups in our oceans, being responsible for over 20% of the Earth's photosynthetic productivity. Their chimeric genomes have genes derived from red algae, green algae, bacteria, and heterotrophs, resulting in multiple isoenzymes targeted to different cellular compartments with the potential for differential regulation under nutrient limitation. The resulting interactions between metabolic pathways are not yet fully understood. We previously showed how acclimation to Cu limitation enhanced susceptibility to overreduction of the photosynthetic electron transport chain and its reorganization to favor photoprotection over light harvesting in the oceanic diatom Thalassiosira oceanica (Hippmann et al., 2017, 10.1371/journal.pone.0181753). In order to gain a better understanding of the overall metabolic changes that help alleviate the stress of Cu limitation, we have further analyzed the comprehensive proteomic datasets generated in that study to identify differentially expressed proteins involved in carbon, nitrogen, and oxidative stress-related metabolic pathways. Metabolic pathway analysis showed integrated responses to Cu limitation. The upregulation of ferredoxin (Fdx) was correlated with upregulation of plastidial Fdx-dependent isoenzymes involved in nitrogen assimilation as well as enzymes involved in glutathione synthesis, thus suggesting an integration of nitrogen uptake and metabolism with photosynthesis and oxidative stress resistance. The differential expression of glycolytic isoenzymes located in the chloroplast and mitochondria may enable them to channel both excess electrons and/or ATP between these compartments. An additional support for chloroplast-mitochondrial cross-talk is the increased expression of chloroplast and mitochondrial proteins involved in the proposed malate shunt under Cu limitation.
Collapse
Affiliation(s)
- Anna A. Hippmann
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Nina Schuback
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kyung‐Mee Moon
- Biochemistry and Molecular BiologyMichael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - John P. McCrow
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCAUSA
| | - Andrew E. Allen
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCAUSA
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCAUSA
| | - Leonard F. Foster
- Biochemistry and Molecular BiologyMichael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - Beverley R. Green
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Maria T. Maldonado
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
11
|
Arshad R, Calvaruso C, Boekema EJ, Büchel C, Kouřil R. Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana. PLANT PHYSIOLOGY 2021; 186:2124-2136. [PMID: 33944951 PMCID: PMC8331139 DOI: 10.1093/plphys/kiab208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Diatoms are a large group of marine algae that are responsible for about one-quarter of global carbon fixation. Light-harvesting complexes of diatoms are formed by the fucoxanthin chlorophyll a/c proteins and their overall organization around core complexes of photosystems (PSs) I and II is unique in the plant kingdom. Using cryo-electron tomography, we have elucidated the structural organization of PSII and PSI supercomplexes and their spatial segregation in the thylakoid membrane of the model diatom species Thalassiosira pseudonana. 3D sub-volume averaging revealed that the PSII supercomplex of T. pseudonana incorporates a trimeric form of light-harvesting antenna, which differs from the tetrameric antenna observed previously in another diatom, Chaetoceros gracilis. Surprisingly, the organization of the PSI supercomplex is conserved in both diatom species. These results strongly suggest that different diatom classes have various architectures of PSII as an adaptation strategy, whilst a convergent evolution occurred concerning PSI and the overall plastid structure.
Collapse
Affiliation(s)
- Rameez Arshad
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc 78371, Czech Republic
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Claudio Calvaruso
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Claudia Büchel
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| | - Roman Kouřil
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc 78371, Czech Republic
- Author for communication:
| |
Collapse
|
12
|
Bhattacharjya R, Tiwari A, Marella TK, Bansal H, Srivastava S. New paradigm in diatom omics and genetic manipulation. BIORESOURCE TECHNOLOGY 2021; 325:124708. [PMID: 33487514 DOI: 10.1016/j.biortech.2021.124708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Diatoms are one of the most heterogeneous eukaryotic plankton known for regulating earth's biogeochemical cycles and maintaining the marine ecosystems ever since the late Eocene epoch. The advent of multidisciplinary omics approach has both epitomized and revolutionized the nature of their chimeric genetic toolkit, ecophysiology, and metabolic adaptability as well as their interaction with other communities. In addition, advanced functional annotation of transcriptomic and proteomic data using cutting edge bioinformatics tools together with high-resolution genome-scale mathematical modeling has effectively proven as the catapult in solving genetic bottlenecks in microbial as well as diatom exploration. In this review, a corroborative summation of the robust work done in manipulating, engineering, and sequencing of the diatom genomes besides underpinning the holistic application of omics in transcription and translation has been discussed in order to shrewd their multifarious novel potential in the field of biotechnology and provide an insight into their dynamic evolutionary relevance.
Collapse
Affiliation(s)
- Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India.
| | - Thomas Kiran Marella
- Algae Biomass Energy System Development Research Center (ABES), Tennodai, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hina Bansal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | | |
Collapse
|
13
|
Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. PLoS One 2021; 16:e0241960. [PMID: 33760840 PMCID: PMC7990286 DOI: 10.1371/journal.pone.0241960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Diatoms are unicellular photosynthetic algae known to secrete organic matter that fuels secondary production in the ocean, though our knowledge of how their physiology impacts the composition of dissolved organic matter remains limited. Like all photosynthetic organisms, their use of light for energy and reducing power creates the challenge of avoiding cellular damage. To better understand the interplay between redox balance and organic matter secretion, we reconstructed a genome-scale metabolic model of Thalassiosira pseudonana strain CCMP 1335, a model for diatom molecular biology and physiology, with a 60-year history of studies. The model simulates the metabolic activities of 1,432 genes via a network of 2,792 metabolites produced through 6,079 reactions distributed across six subcellular compartments. Growth was simulated under different steady-state light conditions (5–200 μmol photons m-2 s-1) and in a batch culture progressing from exponential growth to nitrate-limitation and nitrogen-starvation. We used the model to examine the dissipation of reductants generated through light-dependent processes and found that when available, nitrate assimilation is an important means of dissipating reductants in the plastid; under nitrate-limiting conditions, sulfate assimilation plays a similar role. The use of either nitrate or sulfate uptake to balance redox reactions leads to the secretion of distinct organic nitrogen and sulfur compounds. Such compounds can be accessed by bacteria in the surface ocean. The model of the diatom Thalassiosira pseudonana provides a mechanistic explanation for the production of ecologically and climatologically relevant compounds that may serve as the basis for intricate, cross-kingdom microbial networks. Diatom metabolism has an important influence on global biogeochemistry; metabolic models of marine microorganisms link genes to ecosystems and may be key to integrating molecular data with models of ocean biogeochemistry.
Collapse
|
14
|
Annunziata R, Balestra C, Marotta P, Ruggiero A, Manfellotto F, Benvenuto G, Biffali E, Ferrante MI. An optimised method for intact nuclei isolation from diatoms. Sci Rep 2021; 11:1681. [PMID: 33462289 PMCID: PMC7813820 DOI: 10.1038/s41598-021-81238-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
Due to their abundance in the oceans, their extraordinary biodiversity and the increasing use for biotech applications, the study of diatom biology is receiving more and more attention in the recent years. One of the limitations in developing molecular tools for diatoms lies in the peculiar nature of their cell wall, that is made of silica and organic molecules and that hinders the application of standard methods for cell lysis required, for example, to extract organelles. In this study we present a protocol for intact nuclei isolation from diatoms that was successfully applied to three different species: two pennates, Pseudo-nitzschia multistriata and Phaeodactylum tricornutum, and one centric diatom species, Chaetoceros diadema. Intact nuclei were extracted by treatment with acidified NH4F solution combined to low intensity sonication pulses and separated from cell debris via FAC-sorting upon incubation with SYBR Green. Microscopy observations confirmed the integrity of isolated nuclei and high sensitivity DNA electrophoresis showed that genomic DNA extracted from isolated nuclei has low degree of fragmentation. This protocol has proved to be a flexible and versatile method to obtain intact nuclei preparations from different diatom species and it has the potential to speed up applications such as epigenetic explorations as well as single cell ("single nuclei") genomics, transcriptomics and proteomics in different diatom species.
Collapse
Affiliation(s)
| | | | - Pina Marotta
- Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | | | | | | | - Elio Biffali
- Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | | |
Collapse
|
15
|
Cochrane RR, Brumwell SL, Shrestha A, Giguere DJ, Hamadache S, Gloor GB, Edgell DR, Karas BJ. Cloning of Thalassiosira pseudonana's Mitochondrial Genome in Saccharomyces cerevisiae and Escherichia coli. BIOLOGY 2020; 9:E358. [PMID: 33114477 PMCID: PMC7693118 DOI: 10.3390/biology9110358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/30/2023]
Abstract
Algae are attractive organisms for biotechnology applications such as the production of biofuels, medicines, and other high-value compounds due to their genetic diversity, varied physical characteristics, and metabolic processes. As new species are being domesticated, rapid nuclear and organelle genome engineering methods need to be developed or optimized. To that end, we have previously demonstrated that the mitochondrial genome of microalgae Phaeodactylum tricornutum can be cloned and engineered in Saccharomyces cerevisiae and Escherichia coli. Here, we show that the same approach can be used to clone mitochondrial genomes of another microalga, Thalassiosira pseudonana. We have demonstrated that these genomes can be cloned in S. cerevisiae as easily as those of P. tricornutum, but they are less stable when propagated in E. coli. Specifically, after approximately 60 generations of propagation in E. coli, 17% of cloned T. pseudonana mitochondrial genomes contained deletions compared to 0% of previously cloned P. tricornutum mitochondrial genomes. This genome instability is potentially due to the lower G+C DNA content of T. pseudonana (30%) compared to P. tricornutum (35%). Consequently, the previously established method can be applied to clone T. pseudonana's mitochondrial genome, however, more frequent analyses of genome integrity will be required following propagation in E. coli prior to use in downstream applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada; (R.R.C.); (S.L.B.); (A.S.); (D.J.G.); (S.H.); (G.B.G.); (D.R.E.)
| |
Collapse
|
16
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
17
|
Calvaruso C, Rokka A, Aro EM, Büchel C. Specific Lhc Proteins Are Bound to PSI or PSII Supercomplexes in the Diatom Thalassiosira pseudonana. PLANT PHYSIOLOGY 2020; 183:67-79. [PMID: 32198308 PMCID: PMC7210636 DOI: 10.1104/pp.20.00042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/11/2020] [Indexed: 05/03/2023]
Abstract
Despite the ecological relevance of diatoms, many aspects of their photosynthetic machinery remain poorly understood. Diatoms differ from the green lineage of oxygenic organisms by their photosynthetic pigments and light-harvesting complex (Lhc) proteins, the latter of which are also called fucoxanthin-chlorophyll proteins (FCP). These are composed of three groups of proteins: Lhcf as the main group, Lhcr that are PSI associated, and Lhcx that are involved in photoprotection. The FCP complexes are assembled in trimers and higher oligomers. Several studies have investigated the biochemical properties of purified FCP complexes, but limited knowledge is available about their interaction with the photosystem cores. In this study, isolation of stable supercomplexes from the centric diatom Thalassiosira pseudonana was achieved. To preserve in vivo structure, the separation of thylakoid complexes was performed by native PAGE and sucrose density centrifugation. Different subpopulations of PSI and PSII supercomplexes were isolated and their subunits identified. Analysis of Lhc antenna composition identified Lhc(s) specific for either PSI (Lhcr 1, 3, 4, 7, 10-14, and Lhcf10) or PSII (Lhcf 1-7, 11, and Lhcr2). Lhcx6_1 was reproducibly found in PSII supercomplexes, whereas its association with PSI was unclear. No evidence was found for the interaction between photosystems and higher oligomeric FCPs, comprising Lhcf8 as the main component. Although the subunit composition of the PSII supercomplexes in comparison with that of the trimeric FCP complexes indicated a close mutual association, the higher oligomeric pool is only weakly associated with the photosystems, albeit its abundance in the thylakoid membrane.
Collapse
Affiliation(s)
- Claudio Calvaruso
- Institute for Molecular Biosciences, Goethe University of Frankfurt, 60438 Frankfurt, Germany
| | - Anne Rokka
- Turku Bioscience, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland
| | - Claudia Büchel
- Institute for Molecular Biosciences, Goethe University of Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
18
|
Yuan XL, Cao M, Shen GM, Zhang HB, Du YM, Zhang ZF, Li Q, Gao JM, Xue L, Wang ZP, Zhang P. Characterization of Nuclear and Mitochondrial Genomes of Two Tobacco Endophytic Fungi Leptosphaerulina chartarum and Curvularia trifolii and Their Contributions to Phylogenetic Implications in the Pleosporales. Int J Mol Sci 2020; 21:E2461. [PMID: 32252284 PMCID: PMC7177214 DOI: 10.3390/ijms21072461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
The symbiont endophytic fungi in tobacco are highly diverse and difficult to classify. Here, we sequenced the genomes of Curvularia trifolii and Leptosphaerulina chartarum isolated from tobacco plants. Finally, 41.68 Mb and 37.95 Mb nuclear genomes were sequenced for C. trifolii and L. chartarum with the scaffold N50, accounting for 638.94 Kb and 284.12 Kb, respectively. Meanwhile, we obtained 68,926 bp and 59,100 bp for their mitochondrial genomes. To more accurately classify C. trifolii and L. chartarum, we extracted seven nuclear genes and 12 mitochondrial genes from these two genomes and their closely related species. The genes were then used for calculation of evolutionary rates and for phylogenetic analysis. Results showed that it was difficult to achieve consistent results using a single gene due to their different evolutionary rates, while the phylogenetic trees obtained by combining datasets showed stable topologies. It is, therefore, more accurate to construct phylogenetic relationships for endophytic fungi based on multi-gene datasets. This study provides new insights into the distribution and characteristics of endophytic fungi in tobacco.
Collapse
Affiliation(s)
- Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China
| | - Min Cao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Ming Shen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China
| | - Huai-Bao Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China
| | - Yong-Mei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China
| | - Qian Li
- Nanyang Tobacco Group Co., Ltd., Nanyang 473000, China
| | - Jia-Ming Gao
- Hubei Provincial Tobacco Company of China National Tobacco Corporation, Wuhan 430000, China
| | - Lin Xue
- Wannan Tobacco Group Co., Ltd., Xuancheng 242000, China
| | - Zhi-Peng Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China
| |
Collapse
|
19
|
Ait-Mohamed O, Novák Vanclová AMG, Joli N, Liang Y, Zhao X, Genovesio A, Tirichine L, Bowler C, Dorrell RG. PhaeoNet: A Holistic RNAseq-Based Portrait of Transcriptional Coordination in the Model Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2020; 11:590949. [PMID: 33178253 PMCID: PMC7596299 DOI: 10.3389/fpls.2020.590949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 05/04/2023]
Abstract
Transcriptional coordination is a fundamental component of prokaryotic and eukaryotic cell biology, underpinning the cell cycle, physiological transitions, and facilitating holistic responses to environmental stress, but its overall dynamics in eukaryotic algae remain poorly understood. Better understanding of transcriptional partitioning may provide key insights into the primary metabolism pathways of eukaryotic algae, which frequently depend on intricate metabolic associations between the chloroplasts and mitochondria that are not found in plants. Here, we exploit 187 publically available RNAseq datasets generated under varying nitrogen, iron and phosphate growth conditions to understand the co-regulatory principles underpinning transcription in the model diatom Phaeodactylum tricornutum. Using WGCNA (Weighted Gene Correlation Network Analysis), we identify 28 merged modules of co-expressed genes in the P. tricornutum genome, which show high connectivity and correlate well with previous microarray-based surveys of gene co-regulation in this species. We use combined functional, subcellular localization and evolutionary annotations to reveal the fundamental principles underpinning the transcriptional co-regulation of genes implicated in P. tricornutum chloroplast and mitochondrial metabolism, as well as the functions of diverse transcription factors underpinning this co-regulation. The resource is publically available as PhaeoNet, an advanced tool to understand diatom gene co-regulation.
Collapse
Affiliation(s)
- Ouardia Ait-Mohamed
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Anna M. G. Novák Vanclová
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Nathalie Joli
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Yue Liang
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Xue Zhao
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Nantes, CNRS, UFIP, UMR 6286, Nantes, France
| | - Auguste Genovesio
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Leila Tirichine
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Nantes, CNRS, UFIP, UMR 6286, Nantes, France
- *Correspondence: Leila Tirichine,
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Chris Bowler,
| | - Richard G. Dorrell
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
20
|
Gruber A, Haferkamp I. Nucleotide Transport and Metabolism in Diatoms. Biomolecules 2019; 9:E761. [PMID: 31766535 PMCID: PMC6995639 DOI: 10.3390/biom9120761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Plastids, organelles that evolved from cyanobacteria via endosymbiosis in eukaryotes, provide carbohydrates for the formation of biomass and for mitochondrial energy production to the cell. They generate their own energy in the form of the nucleotide adenosine triphosphate (ATP). However, plastids of non-photosynthetic tissues, or during the dark, depend on external supply of ATP. A dedicated antiporter that exchanges ATP against adenosine diphosphate (ADP) plus inorganic phosphate (Pi) takes over this function in most photosynthetic eukaryotes. Additional forms of such nucleotide transporters (NTTs), with deviating activities, are found in intracellular bacteria, and, surprisingly, also in diatoms, a group of algae that acquired their plastids from other eukaryotes via one (or even several) additional endosymbioses compared to algae with primary plastids and higher plants. In this review, we summarize what is known about the nucleotide synthesis and transport pathways in diatom cells, and discuss the evolutionary implications of the presence of the additional NTTs in diatoms, as well as their applications in biotechnology.
Collapse
Affiliation(s)
- Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
21
|
Sharaf A, Füssy Z, Tomčala A, Richtová J, Oborník M. Isolation of plastids and mitochondria from Chromera velia. PLANTA 2019; 250:1731-1741. [PMID: 31422509 DOI: 10.1007/s00425-019-03259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
We present an easy and effective procedure to purify plastids and mitochondria from Chromera velia. Our method enables downstream analyses of protein and metabolite content of the organelles. Chromerids are alveolate algae that are the closest known phototrophic relatives to apicomplexan parasites such as Plasmodium or Toxoplasma. While genomic and transcriptomic resources for chromerids are in place, tools and experimental conditions for proteomic studies have not been developed yet. Here we describe a rapid and efficient protocol for simultaneous isolation of plastids and mitochondria from the chromerid alga Chromera velia. This procedure involves enzymatic treatment and breakage of cells, followed by differential centrifugation. While plastids sediment in the first centrifugation step, mitochondria remain in the supernatant. Subsequently, plastids can be purified from the crude pellet by centrifugation on a discontinuous 60%/70% sucrose density gradient, while mitochondria can be obtained by centrifugation on a discontinuous 33%/80% Percoll density gradient. Isolated plastids are autofluorescent, and their multi-membrane structure was confirmed by transmission electron microscopy. Fluorescent optical microscopy was used to identify isolated mitochondria stained with MitoTrackerTM green, while their intactness and membrane potential were confirmed by staining with MitoTrackerTM orange CMTMRos. Total proteins were extracted from isolated organellar fractions, and the purity of isolated organelles was confirmed using immunoblotting. Antibodies against the beta subunit of the mitochondrial ATP synthase and the plastid protochlorophyllide oxidoreductase did not cross-react on immunoblots, suggesting that each organellar fraction is free of the residues of the other. The presented protocol represents an essential step for further proteomic, organellar, and cell biological studies of C. velia and can be employed, with minor optimizations, in other thick-walled unicellular algae.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic.
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Aleš Tomčala
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|