1
|
Sano N, Lounifi I, Cueff G, Collet B, Clément G, Balzergue S, Huguet S, Valot B, Galland M, Rajjou L. Multi-Omics Approaches Unravel Specific Features of Embryo and Endosperm in Rice Seed Germination. FRONTIERS IN PLANT SCIENCE 2022; 13:867263. [PMID: 35755645 PMCID: PMC9225960 DOI: 10.3389/fpls.2022.867263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Seed germination and subsequent seedling growth affect the final yield and quality of the crop. Seed germination is defined as a series of processes that begins with water uptake by a quiescent dry seed and ends with the elongation of embryonic axis. Rice is an important cereal crop species, and during seed germination, two tissues function in a different manner; the embryo grows into a seedling as the next generation and the endosperm is responsible for nutritional supply. Toward understanding the integrated roles of each tissue at the transcriptional, translational, and metabolic production levels during germination, an exhaustive "multi-omics" analysis was performed by combining transcriptomics, label-free shotgun proteomics, and metabolomics on rice germinating embryo and endosperm, independently. Time-course analyses of the transcriptome and metabolome in germinating seeds revealed a major turning point in the early phase of germination in both embryo and endosperm, suggesting that dramatic changes begin immediately after water imbibition in the rice germination program at least at the mRNA and metabolite levels. In endosperm, protein profiles mostly showed abundant decreases corresponding to 90% of the differentially accumulated proteins. An ontological classification revealed the shift from the maturation to the germination process where over-represented classes belonged to embryonic development and cellular amino acid biosynthetic processes. In the embryo, 19% of the detected proteins are differentially accumulated during germination. Stress response, carbohydrate, fatty acid metabolism, and transport are the main functional classes representing embryo proteome change. Moreover, proteins specific to the germinated state were detected by both transcriptomic and proteomic approaches and a major change in the network operating during rice germination was uncovered. In particular, concomitant changes of hormonal metabolism-related proteins (GID1L2 and CNX1) implicated in GAs and ABA metabolism, signaling proteins, and protein turnover events emphasized the importance of such biological networks in rice seeds. Using metabolomics, we highlighted the importance of an energetic supply in rice seeds during germination. In both embryo and endosperm, starch degradation, glycolysis, and subsequent pathways related to these cascades, such as the aspartate-family pathway, are activated during germination. A relevant number of accumulated proteins and metabolites, especially in embryos, testifies the pivotal role of energetic supply in the preparation of plant growth. This article summarizes the key genetic pathways in embryo and endosperm during rice seed germination at the transcriptional, translational, and metabolite levels and thereby, emphasizes the value of combined multi-omics approaches to uncover the specific feature of tissues during germination.
Collapse
Affiliation(s)
- Naoto Sano
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Imen Lounifi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- MBCC Group, Master Builders Construction Chemical, Singapore, Singapore
| | - Gwendal Cueff
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Boris Collet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sandrine Balzergue
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Benoît Valot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, Plateforme d'Analyse de Proteomique Paris-Sud-Ouest, Gif-sur-Yvette, France
- Chrono-Environnement Research Team UMR/CNRS-6249, Bourgogne-Franche-Comté University, Besançon, France
| | - Marc Galland
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
2
|
Matilla AJ. Exploring Breakthroughs in Three Traits Belonging to Seed Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040490. [PMID: 35214823 PMCID: PMC8875957 DOI: 10.3390/plants11040490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Based on prior knowledge and with the support of new methodology, solid progress in the understanding of seed life has taken place over the few last years. This update reflects recent advances in three key traits of seed life (i.e., preharvest sprouting, genomic imprinting, and stored-mRNA). The first breakthrough refers to cloning of the mitogen-activated protein kinase-kinase 3 (MKK3) gene in barley and wheat. MKK3, in cooperation with ABA signaling, controls seed dormancy. This advance has been determinant in producing improved varieties that are resistant to preharvest sprouting. The second advance concerns to uniparental gene expression (i.e., imprinting). Genomic imprinting primarily occurs in the endosperm. Although great advances have taken place in the last decade, there is still a long way to go to complete the puzzle regarding the role of genomic imprinting in seed development. This trait is probably one of the most important epigenetic facets of developing endosperm. An example of imprinting regulation is polycomb repressive complex 2 (PRC2). The mechanism of PRC2 recruitment to target endosperm with specific genes is, at present, robustly studied. Further progress in the knowledge of recruitment of PRC2 epigenetic machinery is considered in this review. The third breakthrough referred to in this update involves stored mRNA. The role of the population of this mRNA in germination is far from known. Its relations to seed aging, processing bodies (P bodies), and RNA binding proteins (RBPs), and how the stored mRNA is targeted to monosomes, are aspects considered here. Perhaps this third trait is the one that will require greater experimental dedication in the future. In order to make progress, herein are included some questions that are needed to be answered.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
The Seed and the Metabolism Regulation. BIOLOGY 2022; 11:biology11020168. [PMID: 35205035 PMCID: PMC8869448 DOI: 10.3390/biology11020168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
Abstract
Simple Summary Seeds are the reproductive units of higher plants. They have a significant place in agriculture and plant diversity maintenance. Because they are dehydrated, they can remain viable in the environment for centuries. This review explores the dry seed as a metabolically inactive organism, but well organized to protect its components and enter intensive repair to restore metabolic activities upon imbibition for the completion of germination. Metabolism regulation is also critical for the most important seed traits, dormancy, and ageing recovery capacity. Abstract The seed represents a critical stage in the life cycle of flowering plants. It corresponds to a dry structure carrying the plant embryo in dormant or quiescent state. Orthodox seeds possess a very low water content, preventing biochemical reactions, especially respiration. If the desiccation of living organisms leads to a loss of homeostasis, structure, and metabolism, the seeds go through it successfully thanks to their structure, cellular organization, and growth regulation. Seeds set up a certain number of sophisticated molecules to protect valuable macromolecules or organelles from dehydration/rehydration cycles. Moreover, dormancy takes place in a coordinated process with environmental cues in order to ensure embryo development at the most appropriate conditions for the establishment of the new plant. Moreover, repair processes are programmed to be ready to operate to maximize germination success and seed longevity. This review focuses on the physiology of the seed as related to hydration forces, respiration, and biochemical reactions in the transition from thermodynamically undefined dry state to self-sustained living system. Such processes are of importance for basic knowledge of the regulation of metabolism of living organisms, but also for the control of germination in the context of climate change due to global warming.
Collapse
|
4
|
Characterization of the Heat-Stable Proteome during Seed Germination in Arabidopsis with Special Focus on LEA Proteins. Int J Mol Sci 2021; 22:ijms22158172. [PMID: 34360938 PMCID: PMC8347141 DOI: 10.3390/ijms22158172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
During seed germination, desiccation tolerance is lost in the radicle with progressing radicle protrusion and seedling establishment. This process is accompanied by comprehensive changes in the metabolome and proteome. Germination of Arabidopsis seeds was investigated over 72 h with special focus on the heat-stable proteome including late embryogenesis abundant (LEA) proteins together with changes in primary metabolites. Six metabolites in dry seeds known to be important for seed longevity decreased during germination and seedling establishment, while all other metabolites increased simultaneously with activation of growth and development. Thermo-stable proteins were associated with a multitude of biological processes. In the heat-stable proteome, a relatively similar proportion of fully ordered and fully intrinsically disordered proteins (IDP) was discovered. Highly disordered proteins were found to be associated with functional categories development, protein, RNA and stress. As expected, the majority of LEA proteins decreased during germination and seedling establishment. However, four germination-specific dehydrins were identified, not present in dry seeds. A network analysis of proteins, metabolites and amino acids generated during the course of germination revealed a highly connected LEA protein network.
Collapse
|
5
|
Saighani K, Kondo D, Sano N, Murata K, Yamada T, Kanekatsu M. Correlation between seed longevity and RNA integrity in the embryos of rice seeds. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:277-283. [PMID: 34393607 PMCID: PMC8329264 DOI: 10.5511/plantbiotechnology.21.0422a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/22/2021] [Indexed: 05/10/2023]
Abstract
The mature embryos of rice seeds contain translatable mRNAs required for the initial phase of germination. To clarify the relationship between seed longevity and RNA integrity in embryos, germinability and stability of embryonic RNAs were analyzed using the seeds of japonica rice cultivars subjected to controlled deterioration treatment (CDT) or long periods of storage. Degradation of RNA from embryos of a japonica rice cultivar "Nipponbare" was induced by CDT before the decline of the germination rate and we observed a positive relationship between seed germinability and integrity of embryonic RNAs. Moreover, this relationship was confirmed in the experiments using aged seeds from the "Nipponbare", "Sasanishiki" and "Koshihikari" rice cultivars. In addition, the RNA integrity number (RIN) values, calculated using electrophoresis data and Agilent Bioanalyzer software, had a positive correlation with germinability (R2=0.75). Therefore, the stability of embryonic RNAs required for germination is involved in maintaining seed longevity over time and RIN values can serve as a quantitative indicator to evaluate germinability in rice.
Collapse
Affiliation(s)
- Kalimullah Saighani
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Daiki Kondo
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Naoto Sano
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Kazumasa Murata
- Toyama Prefectural Agricultural, Forestry & Fisheries Research Center, Toyama 939-8153, Japan
| | - Tetsuya Yamada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Motoki Kanekatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- E-mail: Tel & Fax: +81-42-367-5733
| |
Collapse
|
6
|
Srivastava AK, Suresh Kumar J, Suprasanna P. Seed 'primeomics': plants memorize their germination under stress. Biol Rev Camb Philos Soc 2021; 96:1723-1743. [PMID: 33961327 DOI: 10.1111/brv.12722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Seed priming is a pre-germination treatment administered through various chemical, physical and biological agents, which induce mild stress during the early phases of germination. Priming facilitates synchronized seed germination, better seedling establishment, improved plant growth and enhanced yield, especially in stressful environments. In parallel, the phenomenon of 'stress memory' in which exposure to a sub-lethal stress leads to better responses to future or recurring lethal stresses has gained widespread attention in recent years. The versatility and realistic yield gains associated with seed priming and its connection with stress memory make a critical examination useful for the design of robust approaches for maximizing future yield gains. Herein, a literature review identified selenium, salicylic acid, poly-ethylene glycol, CaCl2 and thiourea as the seed priming agents (SPRs) for which the most studies have been carried out. The average priming duration for SPRs generally ranged from 2 to 48 h, i.e. during phase I/II of germination. The major signalling events for regulating early seed germination, including the DOG1 (delay of germination 1)-abscisic acid (ABA)-heme regulatory module, ABA-gibberellic acid antagonism and nucleus-organelle communication are detailed. We propose that both seed priming and stress memory invoke a 'bet-hedging' strategy in plants, wherein their growth under optimal conditions is compromised in exchange for better growth under stressful conditions. The molecular basis of stress memory is explained at the level of chromatin reorganization, alternative transcript splicing, metabolite accumulation and autophagy. This provides a useful framework to study similar mechanisms operating during seed priming. In addition, we highlight the potential for merging findings on seed priming with those of stress memory, with the dual benefit of advancing fundamental research and boosting crop productivity. Finally, a roadmap for future work, entailing identification of SPR-responsive varieties and the development of dual/multiple-benefit SPRs, is proposed for enhancing SPR-mediated agricultural productivity worldwide.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Jisha Suresh Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
7
|
Longo C, Holness S, De Angelis V, Lepri A, Occhigrossi S, Ruta V, Vittorioso P. From the Outside to the Inside: New Insights on the Main Factors That Guide Seed Dormancy and Germination. Genes (Basel) 2020; 12:genes12010052. [PMID: 33396410 PMCID: PMC7824603 DOI: 10.3390/genes12010052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The transition from a dormant to a germinating seed represents a crucial developmental switch in the life cycle of a plant. Subsequent transition from a germinating seed to an autotrophic organism also requires a robust and multi-layered control. Seed germination and seedling growth are multistep processes, involving both internal and external signals, which lead to a fine-tuning control network. In recent years, numerous studies have contributed to elucidate the molecular mechanisms underlying these processes: from light signaling and light-hormone crosstalk to the effects of abiotic stresses, from epigenetic regulation to translational control. However, there are still many open questions and molecular elements to be identified. This review will focus on the different aspects of the molecular control of seed dormancy and germination, pointing out new molecular elements and how these integrate in the signaling pathways already known.
Collapse
|
8
|
Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. PLANTS 2020; 9:plants9030347. [PMID: 32164149 PMCID: PMC7154877 DOI: 10.3390/plants9030347] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that allows them to accumulate more than 10,000 mRNAs during seed maturation and use them as templates to synthesize proteins during germination. Some of these stored mRNAs are also referred to as long-lived mRNAs because they remain translatable even after seeds have been exposed to long-term stressful conditions. Mature seeds can germinate even in the presence of transcriptional inhibitors, and this ability is acquired in mid-seed development. The type of mRNA that accumulates in seeds is affected by the plant hormone abscisic acid and environmental factors, and most of them accumulate in seeds in the form of monosomes. Release of seed dormancy during after-ripening involves the selective oxidation of stored mRNAs and this prevents translation of proteins that function in the suppression of germination after imbibition. Non-selective oxidation and degradation of stored mRNAs occurs during long-term storage of seeds so that the quality of stored RNAs is linked to the degree of seed deterioration. After seed imbibition, a population of stored mRNAs are selectively loaded into polysomes and the mRNAs, involved in processes such as redox, glycolysis, and protein synthesis, are actively translated for germination.
Collapse
|
9
|
He D, Li M, Damaris RN, Bu C, Xue J, Yang P. Quantitative ubiquitylomics approach for characterizing the dynamic change and extensive modulation of ubiquitylation in rice seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1430-1447. [PMID: 31677306 DOI: 10.1111/tpj.14593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 05/22/2023]
Abstract
During seed germination, cells embark on extensive post-transcriptional and post-translational modifications (PTM), providing a perfect platform to study these events in embryo rebooting from relative quiescenct to highly active state. PR-619, a deubiquitylase inhibitor, delayed the rice seed germination and resulted in the accumulation of ubiquitylated proteins, which indicated the protein ubiquitylation is involved in this process. Using the K-Ɛ-GG antibody enrichment method integrated with high-resolution mass spectrometry, a list of 2576 lysine ubiquitylated (Kub) sites in 1171 proteins was compiled for rice embryos at 0, 12 and 24 h after imbibition (HAI). Of these, the abundance of 1419 Kub sites in 777 proteins changed significantly. Most of them substantially increased within the first 12 HAI, which is similar to the dynamic state previously observed for protein phosphorylation, implying that the first 12 HAI are essential for subsequent switch during rice seed germination. We also quantitatively analyzed the embryo proteome in these samples. Generally, a specific protein's abundance in the ubiquitylome was uncorrelated to that in the proteome. The differentially ubiquitinated proteins were greatly enriched in the categories of protein processing, DNA and RNA processing/regulation related, signaling, and transport. The DiGly footprint of the Kub sites was significantly reduced on K48, a linkage typically associated with proteasome-mediated degradation. These observations suggest ubiquitylation may modulate the protein function more than providing 26S degradation signals in the early stage of rice seed germination. Revealing this comprehensive ubiquitylome greatly increases our understanding of this critical PTM during seed germination.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Rebecca N Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chen Bu
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Jianyou Xue
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|