1
|
Chua ST, Smith A, Murthy S, Murace M, Yang H, Schertel L, Kühl M, Cicuta P, Smith AG, Wangpraseurt D, Vignolini S. Light management by algal aggregates in living photosynthetic hydrogels. Proc Natl Acad Sci U S A 2024; 121:e2316206121. [PMID: 38805271 PMCID: PMC11161743 DOI: 10.1073/pnas.2316206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Rapid progress in algal biotechnology has triggered a growing interest in hydrogel-encapsulated microalgal cultivation, especially for the engineering of functional photosynthetic materials and biomass production. An overlooked characteristic of gel-encapsulated cultures is the emergence of cell aggregates, which are the result of the mechanical confinement of the cells. Such aggregates have a dramatic effect on the light management of gel-encapsulated photobioreactors and hence strongly affect the photosynthetic outcome. To evaluate such an effect, we experimentally studied the optical response of hydrogels containing algal aggregates and developed optical simulations to study the resultant light intensity profiles. The simulations are validated experimentally via transmittance measurements using an integrating sphere and aggregate volume analysis with confocal microscopy. Specifically, the heterogeneous distribution of cell aggregates in a hydrogel matrix can increase light penetration while alleviating photoinhibition more effectively than in a flat biofilm. Finally, we demonstrate that light harvesting efficiency can be further enhanced with the introduction of scattering particles within the hydrogel matrix, leading to a fourfold increase in biomass growth. Our study, therefore, highlights a strategy for the design of spatially efficient photosynthetic living materials that have important implications for the engineering of future algal cultivation systems.
Collapse
Affiliation(s)
- Sing Teng Chua
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Alyssa Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Swathi Murthy
- Marine Biology Section, Department of Biology, University of Copenhagen, HelsingørDK-3000, Denmark
| | - Maria Murace
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Han Yang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing100040, China
| | | | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, HelsingørDK-3000, Denmark
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, CambridgeCB2 3EA, United Kingdom
| | - Daniel Wangpraseurt
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093-0205
- Department of Nanoengineering, University of California San Diego, La Jolla, CA92093-0205
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| |
Collapse
|
2
|
Oh JJ, Ammu S, Vriend VD, Kieffer R, Kleiner FH, Balasubramanian S, Karana E, Masania K, Aubin-Tam ME. Growth, Distribution, and Photosynthesis of Chlamydomonas Reinhardtii in 3D Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305505. [PMID: 37851509 DOI: 10.1002/adma.202305505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Engineered living materials (ELMs) are a novel class of functional materials that typically feature spatial confinement of living components within an inert polymer matrix to recreate biological functions. Understanding the growth and spatial configuration of cellular populations within a matrix is crucial to predicting and improving their responsive potential and functionality. Here, this work investigates the growth, spatial distribution, and photosynthetic productivity of eukaryotic microalga Chlamydomonas reinhardtii (C. reinhardtii) in three-dimensionally shaped hydrogels in dependence of geometry and size. The embedded C. reinhardtii cells photosynthesize and form confined cell clusters, which grow faster when located close to the ELM periphery due to favorable gas exchange and light conditions. Taking advantage of location-specific growth patterns, this work successfully designs and prints photosynthetic ELMs with increased CO2 capturing rate, featuring high surface to volume ratio. This strategy to control cell growth for higher productivity of ELMs resembles the already established adaptations found in multicellular plant leaves.
Collapse
Affiliation(s)
- Jeong-Joo Oh
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Satya Ammu
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Vivian Dorine Vriend
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Roland Kieffer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Friedrich Hans Kleiner
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Srikkanth Balasubramanian
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Elvin Karana
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Kunal Masania
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
3
|
Kholssi R, Lougraimzi H, Moreno-Garrido I. Effects of global environmental change on microalgal photosynthesis, growth and their distribution. MARINE ENVIRONMENTAL RESEARCH 2023; 184:105877. [PMID: 36640723 DOI: 10.1016/j.marenvres.2023.105877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Global climate change (GCC) constitutes a complex challenge posing a serious threat to biodiversity and ecosystems in the next decades. There are several recent studies dealing with the potential effect of increased temperature, decrease of pH or shifts in salinity, as well as cascading events of GCC and their impact on human-environment systems. Microalgae as primary producers are a sensitive compartment of the marine ecosystems to all those changes. However, the potential consequences of these changes for marine microalgae have received relatively little attention and they are still not well understood. Thus, there is an urgent need to explore and understand the effects generated by multiple climatic changes on marine microalgae growth and biodiversity. Therefore, this review aimed to compare and contrast mechanisms that marine microalgae exhibit to directly respond to harsh conditions associated with GCC and the potential consequences of those changes in marine microalgal populations. Literature shows that microalgae responses to environmental stressors such as temperature were affected differently. A stress caused by salinity might slow down cell division, reduces size, ceases motility, and triggers palmelloid formation in microalgae community, but some of these changes are strongly species-specific. UV irradiance can potentially lead to an oxidative stress in microalgae, promoting the production of reactive oxygen species (ROS) or induce direct physical damage on microalgae, then inhibiting the growth of microalgae. Moreover, pH could impact many groups of microalgae being more tolerant of certain pH shifts, while others were sensitive to changes of just small units (such as coccolithophorids) and subsequently affect the species at a higher trophic level, but also total vertical carbon transport in oceans. Overall, this review highlights the importance of examining effects of multiple stressors, considering multiple responses to understand the complexity behind stressor interactions.
Collapse
Affiliation(s)
- Rajaa Kholssi
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain; Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Hanane Lougraimzi
- Laboratory of Plant, Animal and Agro-Industry Productions, Faculty of Sciences, Ibn Tofail University, BP: 242, 14000, Kenitra, Morocco
| | - Ignacio Moreno-Garrido
- Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
4
|
Murbach TS, Glávits R, Jayasena S, Moghadam Maragheh N, Endres JR, Hirka G, Goodman RE, Vértesi A, Béres E, Pasics Szakonyiné I. Toxicology and digestibility of Chlamydomonas debaryana green algal biomass. J Appl Toxicol 2023. [PMID: 36680512 DOI: 10.1002/jat.4438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
There is an economic interest, both for food security and for the non-meat-eating population, in the development of novel, sustainable sources of high-quality protein. The green algae Chlamydomonas reinhardtii has already been developed for this purpose, and the closely related species, Chlamydomonas debaryana, is a complementary source that also presents some additional advantages, such as reduced production cost. To determine whether C. debaryana may have a similar safety profile to that of C. reinhardtii, a wild type strain was obtained, designated TS04 after confirmation of its identity, and subjected to a battery of preclinical studies. Genetic toxicity was evaluated using a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and an in vivo mammalian micronucleus test in a mouse model. No genotoxic potential (e.g., mutagenicity and clastogenicity) was observed in these tests under the employed conditions up to maximum recommended concentrations or doses. To assess general toxicity, a 90-day repeated-dose oral toxicity study was conducted in rats. No mortality or adverse effects were observed, and no target organs were identified up to the maximum feasible dose, due to solubility, of 4,000 mg/kg bw/day. The no-observed-adverse-effect level was determined as the highest dose tested. A digestibility study in simulated gastric fluid was conducted and determined that TS04 has low allergenic potential, exhibiting rapid digestion of proteins. Due to the negative results of our evaluation, it is reasonable to proceed with further development and additional investigations to contribute towards a safety assessment of the proposed use in food for human consumption.
Collapse
Affiliation(s)
| | | | - Shyamali Jayasena
- Food Allergy Research and Resource Program (FARRP), Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | - Niloofar Moghadam Maragheh
- Food Allergy Research and Resource Program (FARRP), Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | | | - Gábor Hirka
- Toxi-Coop Zrt., Budapest, Hungary.,Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Richard E Goodman
- Food Allergy Research and Resource Program (FARRP), Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | - Adél Vértesi
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | - Erzsébet Béres
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary
| | | |
Collapse
|
5
|
Yoshitomi T, Karita H, Mori-Moriyama N, Sato N, Yoshimoto K. Reduced cytotoxicity of polyethyleneimine by covalent modification of antioxidant and its application to microalgal transformation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:864-874. [PMID: 34658670 PMCID: PMC8519552 DOI: 10.1080/14686996.2021.1978273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The conversion of carbon dioxide into valuable chemicals is an effective strategy for combating augmented concentrations of carbon dioxide in the environment. Microalgae photosynthetically produce valuable chemicals that are used as biofuels, sources for industrial materials, medicinal leads, and food additives. Thus, improvements in microalgal technology via genetic engineering may prove to be promising for the tailored production of novel metabolites. For the transformation of microalgae, nucleic acids such as plasmid DNA (pDNA) are delivered into the cells using physical and mechanical techniques, such as electroporation, bombardment with DNA-coated microprojectiles, and vortexing with glass beads. However, owing to the electrostatic repulsion between negatively charged cell walls and nucleic acids, the delivery of nucleic acids into the microalgal cells is challenging. To solve this issue, in this study, we investigated microalgal transformation via electroporation using polyplexes with linear polyethyleneimine (LPEI) and pDNA. However, the high toxicity of LPEI decreased the transformation efficiency in Chlamydomonas reinhardtii cells. We revealed that the toxicity of LPEI was due to oxidative stress resulting from the cellular uptake of LPEI. To suppress the toxicity of LPEI, an antioxidant, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was covalently conjugated with LPEI; the conjugate was named as TEMPO-LPEI. Interestingly, with a cellular uptake tendency similar to that of LPEI, TEMPO-LPEI dramatically decreased oxidative stress and cytotoxicity. Electroporation using polyplexes of TEMPO-LPEI and pDNA enhanced the transformation efficiency, compared to those treated with bare pDNA and polyplexes of LPEI/pDNA. This result indicates that polycations conjugated with antioxidants could be useful in facilitating microalgal transformation.
Collapse
Affiliation(s)
- Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| | - Haruka Karita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Mori-Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Sato N, Toyoshima M. Dynamism of Metabolic Carbon Flow of Starch and Lipids in Chlamydomonas debaryana. FRONTIERS IN PLANT SCIENCE 2021; 12:646498. [PMID: 33868347 PMCID: PMC8047662 DOI: 10.3389/fpls.2021.646498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/08/2021] [Indexed: 06/01/2023]
Abstract
Microalgae have the potential to recycle CO2 as starch and triacylglycerol (TAG), which provide alternative source of biofuel and high added-value chemicals. Starch accumulates in the chloroplast, whereas TAG accumulates in the cytoplasmic lipid droplets (LD). Preferential accumulation of starch or TAG may be achieved by switching intracellular metabolic carbon flow, but our knowledge on this control remains limited. Are these two products mutually exclusive? Or, does starch act as a precursor to TAG synthesis, or vice versa? To answer these questions, we analyzed carbon flow in starch and lipids using a stable isotope 13C in Chlamydomonas debaryana NIES-2212, which accumulates, without nutrient limitation, starch in the exponential growth phase and TAG in the stationary phase. Pulse labeling experiments as well as pulse labeling and chase experiments were conducted, and then, gas chromatography-mass spectrometry (GC-MS) analysis was performed on starch-derived glucose and lipid-bound fatty acids. We exploited the previously developed method of isotopomer analysis to estimate the proportion of various pools with different isotopic abundance. Starch turned over rapidly to provide carbon for the synthesis of fatty acids in the exponential phase cells. Most fatty acids showed rapid and slow components of metabolism, whereas oleic acid decayed according to a single exponential curve. Highly labeled population of fatty acids that accumulated during the initial labeling decreased rapidly, and replaced by low abundance population during the chase time, indicating that highly labeled fatty acids were degraded and the resulting carbons were re-used in the re-synthesis with about 9-fold unlabeled, newly fixed carbons. Elongation of C16-C18 acids in vivo was indicated by partially labeled C18 acids. The accumulation of TAG in the stationary growth phase was accounted for by both de novo synthesis and remodeling of membrane lipids. These results suggest that de novo synthesis of starch and TAG was rapid and transient, and also almost independent to each other, but there is a pool of starch quickly turning over for the synthesis of fatty acids. Fatty acids were also subject to re-synthesis. Evidence was also provided for remodeling of lipids, namely, re-use of acyl groups in polar lipids for TAG synthesis.
Collapse
|
7
|
Doppler P, Kornpointner C, Halbwirth H, Remias D, Spadiut O. Tetraedron minimum, First Reported Member of Hydrodictyaceae to Accumulate Secondary Carotenoids. Life (Basel) 2021; 11:107. [PMID: 33573287 PMCID: PMC7911234 DOI: 10.3390/life11020107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 01/23/2023] Open
Abstract
We isolated a novel strain of the microalga Tetraedron minimum in Iceland from a terrestrial habitat. During long-term cultivation, a dish culture turned orange, indicating the presence of secondary pigments. Thus, we characterized T. minimum for growth and possible carotenoid production in different inorganic media. In a lab-scale photobioreactor, we confirmed that nitrogen starvation in combination with salt stress triggered a secondary carotenoid accumulation. The development of the pigment composition and the antioxidant capacity of the extracts was analyzed throughout the cultivations. The final secondary carotenoid composition was, on average, 61.1% astaxanthin and 38.9% adonixanthin. Moreover, the cells accumulated approx. 83.1% unsaturated fatty acids. This work presents the first report of the formation of secondary carotenoids within the family Hydrodictyaceae (Sphaeropleales, Chlorophyta).
Collapse
Affiliation(s)
- Philipp Doppler
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria;
| | - Christoph Kornpointner
- Research Division Phytochemistry and Plant Biochemistry, Institute of Chemical, Environmental, and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; (C.K.); (H.H.)
| | - Heidi Halbwirth
- Research Division Phytochemistry and Plant Biochemistry, Institute of Chemical, Environmental, and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; (C.K.); (H.H.)
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria;
| |
Collapse
|
8
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
9
|
Sato N, Yoshitomi T, Mori-Moriyama N. Characterization and Biosynthesis of Lipids in Paulinella micropora MYN1: Evidence for Efficient Integration of Chromatophores into Cellular Lipid Metabolism. PLANT & CELL PHYSIOLOGY 2020; 61:869-881. [PMID: 32044983 DOI: 10.1093/pcp/pcaa011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The chromatophores found in the cells of photosynthetic Paulinella species, once believed to be endosymbiotic cyanobacteria, are photosynthetic organelles that are distinct from chloroplasts. The chromatophore genome is similar to the genomes of α-cyanobacteria and encodes about 1,000 genes. Therefore, the chromatophore is an intriguing model of organelle formation. In this study, we analyzed the lipids of Paulinella micropora MYN1 to verify that this organism is a composite of cyanobacterial descendants and a heterotrophic protist. We detected glycolipids and phospholipids, as well as a betaine lipid diacylglyceryl-3-O-carboxyhydroxymethylcholine, previously detected in many marine algae. Cholesterol was the only sterol component detected, suggesting that the host cell is similar to animal cells. The glycolipids, presumably present in the chromatophores, contained mainly C16 fatty acids, whereas other classes of lipids, presumably present in the other compartments, were abundant in C20 and C22 polyunsaturated fatty acids. This suggests that chromatophores are metabolically distinct from the rest of the cell. Metabolic studies using isotopically labeled substrates showed that different fatty acids are synthesized in the chromatophore and the cytosol, which is consistent with the presence of both type I and type II fatty acid synthases, supposedly present in the cytosol and the chromatophore, respectively. Nevertheless, rapid labeling of the fatty acids in triacylglycerol and phosphatidylcholine by photosynthetically fixed carbon suggested that the chromatophores efficiently provide metabolites to the host. The metabolic and ultrastructural evidence suggests that chromatophores are tightly integrated into the whole cellular metabolism.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Natsumi Mori-Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| |
Collapse
|