1
|
Whole-Genome Sequencing and Virulome Analysis of Escherichia coli Isolated from New Zealand Environments of Contrasting Observed Land Use. Appl Environ Microbiol 2022; 88:e0027722. [PMID: 35442082 PMCID: PMC9088250 DOI: 10.1128/aem.00277-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Generic Escherichia coli is commonly used as an indicator of fecal contamination to assess water quality and human health risk. Where measured E. coli exceedances occur, the presence of other pathogenic microorganisms, such as Shiga toxin-producing E. coli (STEC), is assumed, but confirmatory data are lacking. Putative E. coli isolates (n = 709) were isolated from water, sediment, soil, periphyton, and feces samples (n = 189) from five sites representing native forest and agricultural environments. Ten E. coli isolates (1.41%) were stx2 positive, 19 (2.7%) were eae positive, and stx1-positive isolates were absent. At the sample level, stx2-positive E. coli (5 of 189, 2.6%) and eae-positive isolates (16 of 189, 8.5%) were rare. Using real-time PCR, these STEC-associated virulence factors were determined to be more prevalent in sample enrichments (stx1, 23.9%; stx2, 31.4%; eae, 53.7%) and positively correlated with generic E. coli isolate numbers (P < 0.05) determined using culture-based methods. Whole-genome sequencing (WGS) was undertaken on a subset of 238 isolates with assemblies representing seven E. coli phylogroups (A, B1, B2, C, D, E, and F), 22 Escherichia marmotae isolates, and 1 Escherichia ruysiae isolate. Virulence factors, including those from extraintestinal pathogenic E. coli, were extremely diverse in isolates from the different locations and were more common in phylogroup B2. Analysis of the virulome from WGS data permitted the identification of gene repertoires that may be involved in environmental fitness and broadly align with phylogroup. Although recovery of STEC isolates was low, our molecular data indicate that they are likely to be widely present in environmental samples containing diverse E. coli phylogroups. IMPORTANCE This study takes a systematic sampling approach to assess the public health risk of Escherichia coli recovered from freshwater sites within forest and farmland. The New Zealand landscape is dominated by livestock farming, and previous work has demonstrated that "recreational exposure to water" is a risk factor for human infection by Shiga toxin-producing Escherichia coli (STEC). Though STEC isolates were rarely isolated from water samples, STEC-associated virulence factors were identified more commonly from water sample culture enrichments and were associated with increased generic E. coli concentrations. Whole-genome sequencing data from both E. coli and newly described Escherichia spp. demonstrated the presence of virulence factors from E. coli pathotypes, including extraintestinal pathogenic E. coli. This has significance for understanding and interpreting the potential health risk from E. coli where water quality is poor and suggests a role of virulence factors in survival and persistence of E. coli and Escherichia spp.
Collapse
|
2
|
Weller D, Belias A, Green H, Roof S, Wiedmann M. Landscape, Water Quality, and Weather Factors Associated With an Increased Likelihood of Foodborne Pathogen Contamination of New York Streams Used to Source Water for Produce Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020; 3:124. [PMID: 32440656 PMCID: PMC7241490 DOI: 10.3389/fsufs.2019.00124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a need for science-based tools to (i) help manage microbial produce safety hazards associated with preharvest surface water use, and (ii) facilitate comanagement of agroecosystems for competing stakeholder aims. To develop these tools an improved understanding of foodborne pathogen ecology in freshwater systems is needed. The purpose of this study was to identify (i) sources of potential food safety hazards, and (ii) combinations of factors associated with an increased likelihood of pathogen contamination of agricultural water Sixty-eight streams were sampled between April and October 2018 (196 samples). At each sampling event separate 10-L grab samples (GS) were collected and tested for Listeria, Salmonella, and the stx and eaeA genes. A 1-L GS was also collected and used for Escherichia coli enumeration and detection of four host-associated fecal source-tracking markers (FST). Regression analysis was used to identify individual factors that were significantly associated with pathogen detection. We found that eaeA-stx codetection [Odds Ratio (OR) = 4.2; 95% Confidence Interval (CI) = 1.3, 13.4] and Salmonella isolation (OR = 1.8; CI = 0.9, 3.5) were strongly associated with detection of ruminant and human FST markers, respectively, while Listeria spp. (excluding Listeria monocytogenes) was negatively associated with log10 E. coli levels (OR = 0.50; CI = 0.26, 0.96). L. monocytogenes isolation was not associated with the detection of any fecal indicators. This observation supports the current understanding that, unlike enteric pathogens, Listeria is not fecally-associated and instead originates from other environmental sources. Separately, conditional inference trees were used to identify scenarios associated with an elevated or reduced risk of pathogen contamination. Interestingly, while the likelihood of isolating L. monocytogenes appears to be driven by complex interactions between environmental factors, the likelihood of Salmonella isolation and eaeA-stx codetection were driven by physicochemical water quality (e.g., dissolved oxygen) and temperature, respectively. Overall, these models identify environmental conditions associated with an enhanced risk of pathogen presence in agricultural water (e.g., rain events were associated with L. monocytogenes isolation from samples collected downstream of dairy farms; P = 0.002). The information presented here will enable growers to comanage their operations to mitigate the produce safety risks associated with preharvest surface water use.
Collapse
Affiliation(s)
- Daniel Weller
- Department of Food Science, Cornell University, Ithaca, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Hyatt Green
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Sherry Roof
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
3
|
Titilawo Y, Obi L, Okoh A. Occurrence of virulence gene signatures associated with diarrhoeagenic and non-diarrhoeagenic pathovars of Escherichia coli isolates from some selected rivers in South-Western Nigeria. BMC Microbiol 2015; 15:204. [PMID: 26449767 PMCID: PMC4599032 DOI: 10.1186/s12866-015-0540-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diarrhoeal diseases are attributable to unsafe water stemming from improper sanitation and hygiene and are reportedly responsible for extensive morbidity and mortality particularly among children in developed and developing countries. METHODS Water samples from selected rivers in Osun State, South-Western Nigeria were collected and analyzed using standard procedures. Escherichia coli isolates (n=300) were screened for 10 virulence genes using polymerase chain reaction for pathotyping. RESULTS While the virulence gene (VG) lt for enterotoxigenic E. coli had the highest prevalence of 45%, the enteropathogenic E. coli genes eae and bfp were detected in 6 and 4% of the isolates respectively. The VGs stx1 and stx2 specific for the enterohemorrhagic E. coli pathotypes were detected in 7 and 1% of the isolates respectively. Also, the VG eagg harboured by enteroaggregative pathotype and diffusely-adherent E. coli VG daaE were detected in 2 and 4% of the isolates respectively and enteroinvasive E. coli VG ipaH was not detected. In addition, the VGs papC for uropathogenic and ibeA for neonatal meningitis were frequently detected in 19 and 3% of isolates respectively. CONCLUSIONS These findings reveal the presence of diarrhoeagenic and non-diarrhoeagenic E. coli in the selected rivers and a potential public health risk as the rivers are important resources for domestic, recreational and livelihood usage by their host communities.
Collapse
Affiliation(s)
- Yinka Titilawo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa. .,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Larry Obi
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa. .,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa. .,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| |
Collapse
|
4
|
DeLorenzo ME, Thompson B, Cooper E, Moore J, Fulton MH. A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:343-59. [PMID: 21409361 DOI: 10.1007/s10661-011-1972-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/23/2011] [Indexed: 05/24/2023]
Abstract
Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to water-quality problems including nutrient enrichment, chemical contamination, and bacterial contamination. This study presents 5 years of monitoring data assessing water quality of a residential subdivision pond and adjacent tidal creek in coastal South Carolina, USA. The stormwater pond is eutrophic, as described by elevated concentrations of chlorophyll and phosphorus, and experiences periodic cyanobacterial blooms. A maximum monthly average chlorophyll concentration of 318.75 μg/L was measured in the stormwater pond and 227.63 μg/L in the tidal creek. Fecal coliform bacteria (FCB) levels were measured in both the pond and the tidal creek that exceeded health and safety standards for safe recreational use. A maximum monthly average FCB level of 1,247 CFU/100 mL was measured in the stormwater pond and 12,850 CFU/100 mL in the tidal creek. In addition, the presence of antibiotic resistant bacteria and pathogenic bacteria were detected. Low concentrations of herbicides (atrazine and 2,4-D: ), a fungicide (chlorothalonil), and insecticides (pyrethroids and imidacloprid) were measured. Seasonal trends were identified, with the winter months having the lowest concentrations of chlorophyll and FCB. Statistical differences between the stormwater pond and the tidal creek were also noted within seasons. The tidal creek had higher FCB levels than the stormwater pond in the spring and summer, whereas the stormwater pond had higher chlorophyll levels than the tidal creek in the summer and fall seasons. Chlorophyll and FCB levels in the stormwater pond were significantly correlated with monthly average temperature and total rainfall. Pesticide concentrations were also significantly correlated with temperature and rainfall. Pesticide concentrations in the stormwater pond were significantly correlated with pesticide concentrations in the adjacent tidal creek. Chlorophyll and FCB levels in the tidal creek, however, were not significantly correlated with levels in the pond. While stormwater ponds are beneficial in controlling flooding, they may pose environmental and human health risks due to biological and chemical contamination. Management to reduce residential runoff may improve water quality in coastal stormwater ponds and their adjacent estuarine ecosystems.
Collapse
Affiliation(s)
- Marie E DeLorenzo
- U.S. Department of Commerce, NOAA, National Ocean Service, 219 Fort Johnson Road, Charleston, SC 29412-9110, USA.
| | | | | | | | | |
Collapse
|
5
|
Huang SW, Hsu BM, Su YJ, Ji DD, Lin WC, Chen JL, Shih FC, Kao PM, Chiu YC. Occurrence of diarrheagenic Escherichia coli genes in raw water of water treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2776-2783. [PMID: 22327641 DOI: 10.1007/s11356-012-0777-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/20/2012] [Indexed: 05/31/2023]
Abstract
PURPOSE The high incidences of waterborne diseases are frequently associated with diarrheagenic Escherichia coli (DEC). DEC may pose a health risk to people who contact surface water for recreation or domestic use. However, there is no published report on the monitoring of DEC in drinking water sources in Taiwan. In this study, the occurrence of DEC genes in raw water for water treatment plants in Taiwan was investigated. METHOD Raw water samples were taken from water treatment plants adjacent to the Kaoping River in southern Taiwan. Each water sample was treated with membrane filtration followed by DNA extraction from the concentrate and concentrate enrichment, respectively. The target genes for various DEC strains of genes were identified, including enteroaggregative E. coli (EAEC), enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). RESULTS Among 55 water samples analyzed, DEC genes were detected in 16 (29.1%) samples. Strain-specific genes for EAEC, EHEC, EIEC, and EPEC were found in the percentages of 3.6%, 10.9%, 9.1%, and 9.1%, respectively. The specific gene for ETEC is not detected in the study. By looking at the presence/absence of specific genes and water sample characteristics, water temperature was found to differ significantly between samples with and without EHEC gene. In addition, pH levels differed significantly for EHEC and EPEC presence/absence genes, and turbidity was significantly different for water with and without EPEC genes. CONCLUSION DEC genes were detected in 29.1% of the raw water samples in the study location. The potential health threat may be increased if the treatment efficiencies are not properly maintained. Routine monitoring of DEC in drinking water sources should be considered.
Collapse
Affiliation(s)
- Shih-Wei Huang
- Center for General Education, Cheng-Shiu University, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shiga toxin: expression, distribution, and its role in the environment. Toxins (Basel) 2011; 3:608-25. [PMID: 22069728 PMCID: PMC3202840 DOI: 10.3390/toxins3060608] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 11/17/2022] Open
Abstract
In this review, we highlight recent work that has increased our understanding of the production and distribution of Shiga toxin in the environment. Specifically, we review studies that offer an expanded view of environmental reservoirs for Shiga toxin producing microbes in terrestrial and aquatic ecosystems. We then relate the abundance of Shiga toxin in the environment to work that demonstrates that the genetic mechanisms underlying the production of Shiga toxin genes are modified and embellished beyond the classical microbial gene regulatory paradigms in a manner that apparently "fine tunes" the trigger to modulate the amount of toxin produced. Last, we highlight several recent studies examining microbe/protist interactions that postulate an answer to the outstanding question of why microbes might harbor and express Shiga toxin genes in the environment.
Collapse
|
7
|
Chern EC, Tsai YL, Olson BH. Occurrence of genes associated with enterotoxigenic and enterohemorrhagic Escherichia coli in agricultural waste lagoons. Appl Environ Microbiol 2004; 70:356-62. [PMID: 14711663 PMCID: PMC321254 DOI: 10.1128/aem.70.1.356-362.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 10/07/2003] [Indexed: 11/20/2022] Open
Abstract
The prevalence among all Escherichia coli bacteria of the LTIIa toxin gene and STII toxin gene, both associated with enterotoxigenic E. coli, and of three genes (stxI, stxII, and eaeA) associated with enterohemorrhagic E. coli was determined in farm waste disposal systems seasonally for 1 year. Single- and nested-PCR results for the number of E. coli isolates carrying each toxin gene trait were compared with a five-replicate most-probable-number (MPN) method. The STII and LTIIa toxin genes were present continuously at all farms and downstream waters that were tested. Nested-MPN-PCR manifested sensitivity increased over that of single-MPN-PCR by a factor of 32 for LTIIa, 10 for STII, and 2 for the stxI, stxII, and eaeA genes. The geometric mean prevalence of each toxin gene within the E. coli community in waste disposal site waters after nested MPN-PCR was 1:8.5 E. coli isolates (1:8.5 E. coli) for the LTIIa toxin gene and 1:4 E. coli for the STII toxin gene. The geometric mean prevalence for the simultaneous occurrence of toxin genes stxI, stxII, and eaeA, was 1:182 E. coli. These findings based on total population analysis suggest that prevalence rates for these genes are higher than previously reported in studies based on surveys of single isolates. With a population-based approach, the frequency of each toxin gene at the corresponding disposal sites and the endemic nature of diseases on farms can be easily assessed, allowing farmers and public health officials to evaluate the risk of infection to animals or humans.
Collapse
Affiliation(s)
- Eunice C Chern
- Department of Environmental Analysis and Design, University of California, Irvine, Irvine, California 92697, USA
| | | | | |
Collapse
|
8
|
Rice DH, Sheng HQ, Wynia SA, Hovde CJ. Rectoanal mucosal swab culture is more sensitive than fecal culture and distinguishes Escherichia coli O157:H7-colonized cattle and those transiently shedding the same organism. J Clin Microbiol 2003; 41:4924-9. [PMID: 14605119 PMCID: PMC262505 DOI: 10.1128/jcm.41.11.4924-4929.2003] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2003] [Revised: 07/02/2003] [Accepted: 08/08/2003] [Indexed: 11/20/2022] Open
Abstract
Enrichment and direct (nonenrichment) rectoanal mucosal swab (RAMS) culture techniques were developed and compared to traditional fecal culture for the detection of Escherichia coli O157:H7 in experimentally infected and naturally infected cattle. Holstein steers (n = 16) orally dosed with E. coli O157:H7 were sampled after bacterial colonization starting 15 days postinoculation. Enrichment RAMS cultures (70.31% positive) were more sensitive than enrichment fecal cultures with 10 g of feces (46.88% positive) at detecting E. coli O157:H7 (P < 0.01). Holstein bull calves (n = 15) were experimentally exposed to E. coli O157:H7 by penning them with E. coli O157:H7-positive calves. Prior to bacterial colonization (1 to 14 days postexposure), enriched fecal cultures were more sensitive at detecting E. coli O157:H7 than enriched RAMS cultures (P < 0.01). However, after colonization (40 or more days postexposure), the opposite was true and RAMS culture was more sensitive than fecal culture (P < 0.05). Among naturally infected heifers, enriched RAMS or fecal cultures were equally sensitive (P = 0.5), but direct RAMS cultures were more sensitive than either direct or enriched fecal cultures at detecting E. coli O157:H7 (P < 0.01), with 25 of 144, 4 of 144, and 10 of 108 samples, respectively, being culture positive. For both experimentally and naturally infected cattle, RAMS culture predicted the duration of infection. Cattle transiently shedding E. coli O157:H7 for <1 week were positive by fecal culture only and not by RAMS culture, whereas colonized animals (which were culture positive for an average of 26 days) were positive early on by RAMS culture. RAMS culture more directly measured the relationship between cattle and E. coli O157:H7 infection than fecal culture.
Collapse
Affiliation(s)
- Daniel H Rice
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | |
Collapse
|