1
|
Moss BL. AuxSynBio: synthetic biology tools to understand and engineer auxin. Curr Opin Biotechnol 2024; 90:103194. [PMID: 39255527 DOI: 10.1016/j.copbio.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The plant hormone auxin is a crucial coordinator of nearly all plant growth and development processes. Because of its centrality to plant physiology and the modular nature of the signaling pathway, auxin has played a critical role at the forefront of plant synthetic biology. This review will highlight how auxin is both a subject and an object of synthetic biology. Engineering biology approaches are deepening our understanding of how auxin pathways are wired and tuned, particularly through the creative use of signaling pathway recapitulation in yeast and engineered orthogonal auxin-receptor pairs. Auxin biology has also been mined for parts by synthetic biologists, with components being used for inducible protein degradation systems (auxin-inducible degron), auxin biosensors, synthetic cell-cell communication, and plant engineering.
Collapse
Affiliation(s)
- Britney L Moss
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA.
| |
Collapse
|
2
|
Moore S, Jervis G, Topping JF, Chen C, Liu J, Lindsey K. A predictive model for ethylene-mediated auxin and cytokinin patterning in the Arabidopsis root. PLANT COMMUNICATIONS 2024; 5:100886. [PMID: 38504522 PMCID: PMC11287175 DOI: 10.1016/j.xplc.2024.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
The interaction between auxin and cytokinin is important in many aspects of plant development. Experimental measurements of both auxin and cytokinin concentration and reporter gene expression clearly show the coexistence of auxin and cytokinin concentration patterning in Arabidopsis root development. However, in the context of crosstalk among auxin, cytokinin, and ethylene, little is known about how auxin and cytokinin concentration patterns simultaneously emerge and how they regulate each other in the Arabidopsis root. This work utilizes a wide range of experimental observations to propose a mechanism for simultaneous patterning of auxin and cytokinin concentrations. In addition to revealing the regulatory relationships between auxin and cytokinin, this mechanism shows that ethylene signaling is an important factor in achieving simultaneous auxin and cytokinin patterning, while also predicting other experimental observations. Combining the mechanism with a realistic in silico root model reproduces experimental observations of both auxin and cytokinin patterning. Predictions made by the mechanism can be compared with a variety of experimental observations, including those obtained by our group and other independent experiments reported by other groups. Examples of these predictions include patterning of auxin biosynthesis rate, changes in PIN1 and PIN2 patterns in pin3,4,7 mutants, changes in cytokinin patterning in the pls mutant, PLS patterning, and various trends in different mutants. This research reveals a plausible mechanism for simultaneous patterning of auxin and cytokinin concentrations in Arabidopsis root development and suggests a key role for ethylene pattern integration.
Collapse
Affiliation(s)
- Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - George Jervis
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Jennifer F Topping
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chunli Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
3
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
4
|
Ye YY, Liu DD, Tang RJ, Gong Y, Zhang CY, Mei P, Ma CL, Chen JD. Bulked Segregant RNA-Seq Reveals Different Gene Expression Patterns and Mutant Genes Associated with the Zigzag Pattern of Tea Plants ( Camellia sinensis). Int J Mol Sci 2024; 25:4549. [PMID: 38674133 PMCID: PMC11049935 DOI: 10.3390/ijms25084549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chun-Lei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.-Y.Y.); (D.-D.L.); (R.-J.T.); (Y.G.); (C.-Y.Z.); (P.M.)
| | - Jie-Dan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.-Y.Y.); (D.-D.L.); (R.-J.T.); (Y.G.); (C.-Y.Z.); (P.M.)
| |
Collapse
|
5
|
Sowders JM, Tanaka K. A histochemical reporter system to study extracellular ATP response in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1183335. [PMID: 37332691 PMCID: PMC10272726 DOI: 10.3389/fpls.2023.1183335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
When cells experience acute mechanical distress, they release ATP from their cellular compartment into the surrounding microenvironment. This extracellular ATP (eATP) can then act as a danger signal-signaling cellular damage. In plants, cells adjacent to damage detect rising eATP concentrations through the cell-surface receptor kinase, P2K1. Following eATP perception, P2K1 initiates a signaling cascade mobilizing plant defense. Recent transcriptome analysis revealed a profile of eATP-induced genes sharing pathogen- and wound-response hallmarks-consistent with a working model for eATP as a defense-mobilizing danger signal. To build on the transcriptional footprint and broaden our understanding of dynamic eATP signaling responses in plants, we aimed to i) generate a visual toolkit for eATP-inducible marker genes using a β-glucuronidase (GUS) reporter system and ii) evaluate the spatiotemporal response of these genes to eATP in plant tissues. Here, we demonstrate that the promoter activities of five genes, ATPR1, ATPR2, TAT3, WRKY46, and CNGC19, were highly sensitive to eATP in the primary root meristem and elongation zones with maximal responses at 2 h after treatment. These results suggest the primary root tip as a hub to study eATP-signaling activity and provide a proof-of-concept toward using these reporters to further dissect eATP and damage signaling in plants.
Collapse
Affiliation(s)
- Joel M. Sowders
- Department of Plant Pathology, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
| | - Kiwamu Tanaka
- Department of Plant Pathology, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Jedličková V, Hejret V, Demko M, Jedlička P, Štefková M, Robert HS. Transcriptome analysis of thermomorphogenesis in ovules and during early seed development in Brassica napus. BMC Genomics 2023; 24:236. [PMID: 37142980 PMCID: PMC10158150 DOI: 10.1186/s12864-023-09316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Plant sexual reproduction is highly sensitive to elevated ambient temperatures, impacting seed development and production. We previously phenotyped this effect on three rapeseed cultivars (DH12075, Topas DH4079, and Westar). This work describes the transcriptional response associated with the phenotypic changes induced by heat stress during early seed development in Brassica napus. RESULTS We compared the differential transcriptional response in unfertilized ovules and seeds bearing embryos at 8-cell and globular developmental stages of the three cultivars exposed to high temperatures. We identified that all tissues and cultivars shared a common transcriptional response with the upregulation of genes linked to heat stress, protein folding and binding to heat shock proteins, and the downregulation of cell metabolism. The comparative analysis identified an enrichment for a response to reactive oxygen species (ROS) in the heat-tolerant cultivar Topas, correlating with the phenotypic changes. The highest heat-induced transcriptional response in Topas seeds was detected for genes encoding various peroxidases, temperature-induced lipocalin (TIL1), or protein SAG21/LEA5. On the contrary, the transcriptional response in the two heat-sensitive cultivars, DH12075 and Westar, was characterized by heat-induced cellular damages with the upregulation of genes involved in the photosynthesis and plant hormone signaling pathways. Particularly, the TIFY/JAZ genes involved in jasmonate signaling were induced by stress, specifically in ovules of heat-sensitive cultivars. Using a weighted gene co-expression network analysis (WGCNA), we identified key modules and hub genes involved in the heat stress response in studied tissues of either heat-tolerant or sensitive cultivars. CONCLUSIONS Our transcriptional analysis complements a previous phenotyping analysis by characterizing the growth response to elevated temperatures during early seed development and reveals the molecular mechanisms underlying the phenotypic response. The results demonstrated that response to ROS, seed photosynthesis, and hormonal regulation might be the critical factors for stress tolerance in oilseed rape.
Collapse
Affiliation(s)
- Veronika Jedličková
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Václav Hejret
- Bioinformatics Core Facility, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Demko
- Bioinformatics Core Facility, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Marie Štefková
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
7
|
Kuan C, Strader LC, Morffy N. ARF19 Condensation in the Arabidopsis Stomatal Lineage. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000708. [PMID: 36814574 PMCID: PMC9939949 DOI: 10.17912/micropub.biology.000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
The phytohormone auxin regulates nearly every aspect of plant development. Transcriptional responses to auxin are driven by the activities of the AUXIN RESPONSE FACTOR family of transcription factors. ARF19 (AT1G19220) is critical in the auxin signaling pathway and has previously been shown to undergo protein condensation to tune auxin responses in the root. However, ARF19 condensation dynamics in other organs has not yet been described. In the Arabidopsis stomatal lineage, we found that ARF19 cytoplasmic condensates are enriched in guard cells and pavement cells, terminally differentiated cells in the leaf epidermis. This result is consistent with previous studies showing ARF19 condensation in mature root tissues. Our data reveal that the sequestration of ARF19 into cytoplasmic condensation in differentiated leaf epidermal cells is similar to root-specific condensation patterns.
Collapse
Affiliation(s)
- Chi Kuan
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Lucia C. Strader
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Nicholas Morffy
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|