1
|
Argirò L, Laffont C, Moreau C, Moreau C, Su Y, Pervent M, Parrinello H, Blein T, Kohlen W, Lepetit M, Frugier F. The Compact Root Architecture 2 systemic pathway is required for the repression of cytokinins and miR399 accumulation in Medicago truncatula N-limited plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5667-5680. [PMID: 38941269 DOI: 10.1093/jxb/erae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024]
Abstract
Legume plants can acquire mineral nitrogen (N) either through their roots or via a symbiotic interaction with N-fixing rhizobia bacteria housed in root nodules. To identify shoot-to-root systemic signals acting in Medicago truncatula plants at N deficit or N satiety, plants were grown in a split-root experimental design in which either high or low N was provided to half of the root system, allowing the analysis of systemic pathways independently of any local N response. Among the plant hormone families analyzed, the cytokinin trans-zeatin accumulated in plants at N satiety. Cytokinin application by petiole feeding led to inhibition of both root growth and nodulation. In addition, an exhaustive analysis of miRNAs revealed that miR2111 accumulates systemically under N deficit in both shoots and non-treated distant roots, whereas a miRNA related to inorganic phosphate (Pi) acquisition, miR399, accumulates in plants grown under N satiety. These two accumulation patterns are dependent on Compact Root Architecture 2 (CRA2), a receptor required for C-terminally Encoded Peptide (CEP) signaling. Constitutive ectopic expression of miR399 reduced nodule numbers and root biomass depending on Pi availability, suggesting that the miR399-dependent Pi-acquisition regulatory module controlled by N availability affects the development of the whole legume plant root system.
Collapse
Affiliation(s)
- Luca Argirò
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Carole Laffont
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Corentin Moreau
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Carol Moreau
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Yangyang Su
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Marjorie Pervent
- Plant Health Institute of Montpellier (PHIM), INRAE, SupAgro, University of Montpellier, CIRAD, IRD, Campus de Baillarguet, 34398 Montpellier, France
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, 34398 Montpellier, France
| | - Thomas Blein
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Marc Lepetit
- Institute of Sophia Agrobiotech (ISA), INRAE, Université Côte d'Azur, CNRS, 06903 Sophia-Antipolis, France
| | - Florian Frugier
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Fu M, Yao X, Li X, Liu J, Bai M, Fang Z, Gong J, Guan Y, Xie F. GmNLP1 and GmNLP4 activate nitrate-induced CLE peptides NIC1a/b to mediate nitrate-regulated root nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:783-795. [PMID: 38701020 DOI: 10.1111/tpj.16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Symbiotic nitrogen fixation is an energy-intensive process, to maintain the balance between growth and nitrogen fixation, high concentrations of nitrate inhibit root nodulation. However, the precise mechanism underlying the nitrate inhibition of nodulation in soybean remains elusive. In this study, CRISPR-Cas9-mediated knockout of GmNLP1 and GmNLP4 unveiled a notable nitrate-tolerant nodulation phenotype. GmNLP1b and GmNLP4a play a significant role in the nitrate-triggered inhibition of nodulation, as the expression of nitrate-responsive genes was largely suppressed in Gmnlp1b and Gmnlp4a mutants. Furthermore, we demonstrated that GmNLP1b and GmNLP4a can bind to the promoters of GmNIC1a and GmNIC1b and activate their expression. Manipulations targeting GmNIC1a and GmNIC1b through knockdown or overexpression strategies resulted in either increased or decreased nodule number in response to nitrate. Additionally, transgenic roots that constitutively express GmNIC1a or GmNIC1b rely on both NARK and hydroxyproline O-arabinosyltransferase RDN1 to prevent the inhibitory effects imposed by nitrate on nodulation. In conclusion, this study highlights the crucial role of the GmNLP1/4-GmNIC1a/b module in mediating high nitrate-induced inhibition of nodulation.
Collapse
Affiliation(s)
- Mengdi Fu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Yao
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Li
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China
| | - Jing Liu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China
| | - Mengyan Bai
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Zijun Fang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiming Gong
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Fang Xie
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China
| |
Collapse
|
3
|
Sámano ML, Nanjareddy K, Arthikala MK. NIN-like proteins (NLPs) as crucial nitrate sensors: an overview of their roles in nitrogen signaling, symbiosis, abiotic stress, and beyond. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1209-1223. [PMID: 39100871 PMCID: PMC11291829 DOI: 10.1007/s12298-024-01485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/22/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Nitrogen is an essential macronutrient critical for plant growth and productivity. Plants have the capacity to uptake inorganic nitrate and ammonium, with nitrate playing a crucial role as a signaling molecule in various cellular processes. The availability of nitrate and the signaling pathways involved finely tune the processes of nitrate uptake and assimilation. NIN-like proteins (NLPs), a group of transcription factors belonging to the RWP-RK gene family, act as major nitrate sensors and are implicated in the primary nitrate response (PNR) within the nucleus of both non-leguminous and leguminous plants through their RWP-RK domains. In leguminous plants, NLPs are indispensable for the initiation and development of nitrogen-fixing nodules in symbiosis with rhizobia. Moreover, NLPs play pivotal roles in plant responses to abiotic stresses, including drought and cold. Recent studies have identified NLP homologs in oomycete pathogens, suggesting their potential involvement in pathogenesis and virulence. This review article delves into the conservation of RWP-RK genes, examining their significance and implications across different plant species. The focus lies on the role of NLPs as nitrate sensors, investigating their involvement in various processes, including rhizobial symbiosis in both leguminous and non-leguminous plants. Additionally, the multifaceted functions of NLPs in abiotic stress responses, developmental processes, and interactions with plant pathogens are explored. By comprehensively analyzing the role of NLPs in nitrate signaling and their broader implications for plant growth and development, this review sheds light on the intricate mechanisms underlying nitrogen sensing and signaling in various plant lineages.
Collapse
Affiliation(s)
- Mariana López Sámano
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), 37689 León, Mexico
| | - Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), 37689 León, Mexico
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), 37689 León, Mexico
| |
Collapse
|
4
|
Zhao B, Jia X, Yu N, Murray JD, Yi K, Wang E. Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants. THE NEW PHYTOLOGIST 2024; 242:1507-1522. [PMID: 37715479 DOI: 10.1111/nph.19263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Nitrogen (N) and phosphorus (P) are the most important macronutrients required for plant growth and development. To cope with the limited and uneven distribution of N and P in complicated soil environments, plants have evolved intricate molecular strategies to improve nutrient acquisition that involve adaptive root development, production of root exudates, and the assistance of microbes. Recently, great advances have been made in understanding the regulation of N and P uptake and utilization and how plants balance the direct uptake of nutrients from the soil with the nutrient acquisition from beneficial microbes such as arbuscular mycorrhiza. Here, we summarize the major advances in these areas and highlight plant responses to changes in nutrient availability in the external environment through local and systemic signals.
Collapse
Affiliation(s)
- Boyu Zhao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
| |
Collapse
|
5
|
Ren G, Zhang Y, Chen Z, Xue X, Fan H. Research Progress of Small Plant Peptides on the Regulation of Plant Growth, Development, and Abiotic Stress. Int J Mol Sci 2024; 25:4114. [PMID: 38612923 PMCID: PMC11012589 DOI: 10.3390/ijms25074114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Small peptides in plants are typically characterized as being shorter than 120 amino acids, with their biologically active variants comprising fewer than 20 amino acids. These peptides are instrumental in regulating plant growth, development, and physiological processes, even at minimal concentrations. They play a critical role in long-distance signal transduction within plants and act as primary responders to a range of stress conditions, including salinity, alkalinity, drought, high temperatures, and cold. This review highlights the crucial roles of various small peptides in plant growth and development, plant resistance to abiotic stress, and their involvement in long-distance transport. Furthermore, it elaborates their roles in the regulation of plant hormone biosynthesis. Special emphasis is given to the functions and mechanisms of small peptides in plants responding to abiotic stress conditions, aiming to provide valuable insights for researchers working on the comprehensive study and practical application of small peptides.
Collapse
Affiliation(s)
- Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Xin Xue
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| |
Collapse
|
6
|
Ke X, Xiao H, Peng Y, Xia X, Wang X. Nitrogen deficiency modulates carbon allocation to promote nodule nitrogen fixation capacity in soybean. EXPLORATION (BEIJING, CHINA) 2024; 4:20230104. [PMID: 38855619 PMCID: PMC11022614 DOI: 10.1002/exp.20230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/02/2023] [Indexed: 06/11/2024]
Abstract
Previously, the effect of soil mineral N deficiency on nodule nitrogen fixation capacity (NFC) is unclear. In this study, we found that N deficiency would enhance sucrose allocation to nodules and PEP allocation to bacteroid to promote nodule NFC. Our findings provide new insights into the design of leguminous crops with improved adaptation to fluctuating N levels in the soil.
Collapse
Affiliation(s)
- Xiaolong Ke
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityZhengzhouChina
- The Academy for Advanced Interdisciplinary StudiesHenan UniversityZhengzhouHenanChina
- Sanya Institute of Henan UniversitySanyaHainanChina
| | - Han Xiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityZhengzhouChina
- The Academy for Advanced Interdisciplinary StudiesHenan UniversityZhengzhouHenanChina
- Sanya Institute of Henan UniversitySanyaHainanChina
| | - Yaqi Peng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityZhengzhouChina
- The Academy for Advanced Interdisciplinary StudiesHenan UniversityZhengzhouHenanChina
- Sanya Institute of Henan UniversitySanyaHainanChina
| | - Xue Xia
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityZhengzhouChina
- The Academy for Advanced Interdisciplinary StudiesHenan UniversityZhengzhouHenanChina
- Sanya Institute of Henan UniversitySanyaHainanChina
| |
Collapse
|
7
|
Ito M, Tajima Y, Ogawa-Ohnishi M, Nishida H, Nosaki S, Noda M, Sotta N, Kawade K, Kamiya T, Fujiwara T, Matsubayashi Y, Suzaki T. IMA peptides regulate root nodulation and nitrogen homeostasis by providing iron according to internal nitrogen status. Nat Commun 2024; 15:733. [PMID: 38286991 PMCID: PMC10825120 DOI: 10.1038/s41467-024-44865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/06/2024] [Indexed: 01/31/2024] Open
Abstract
Legumes control root nodule symbiosis (RNS) in response to environmental nitrogen availability. Despite the recent understanding of the molecular basis of external nitrate-mediated control of RNS, it remains mostly elusive how plants regulate physiological processes depending on internal nitrogen status. In addition, iron (Fe) acts as an essential element that enables symbiotic nitrogen fixation; however, the mechanism of Fe accumulation in nodules is poorly understood. Here, we focus on the transcriptome in response to internal nitrogen status during RNS in Lotus japonicus and identify that IRON MAN (IMA) peptide genes are expressed during symbiotic nitrogen fixation. We show that LjIMA1 and LjIMA2 expressed in the shoot and root play systemic and local roles in concentrating internal Fe to the nodule. Furthermore, IMA peptides have conserved roles in regulating nitrogen homeostasis by adjusting nitrogen-Fe balance in L. japonicus and Arabidopsis thaliana. These findings indicate that IMA-mediated Fe provision plays an essential role in regulating nitrogen-related physiological processes.
Collapse
Affiliation(s)
- Momoyo Ito
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuri Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Rhelixa Inc., Tokyo, Japan
| | - Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Hanna Nishida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Shohei Nosaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Momona Noda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensuke Kawade
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama-city, Saitama, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Morère-Le Paven MC, Clochard T, Limami AM. NPF and NRT2 from Pisum sativum Potentially Involved in Nodule Functioning: Lessons from Medicago truncatula and Lotus japonicus. PLANTS (BASEL, SWITZERLAND) 2024; 13:322. [PMID: 38276779 PMCID: PMC10820289 DOI: 10.3390/plants13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
In addition to absorbing nitrogen from the soil, legumes have the ability to use atmospheric N2 through symbiotic nitrogen fixation. Therefore, legumes have developed mechanisms regulating nodulation in response to the amount of nitrate in the soil; in the presence of high nitrate concentrations, nodulation is inhibited, while low nitrate concentrations stimulate nodulation and nitrogen fixation. This allows the legumes to switch from soil nitrogen acquisition to symbiotic nitrogen fixation. Recently, particular interest has been given to the nitrate transporters, such as Nitrate Transporter1/Peptide transporter Family (NPF) and Nitrate Transporter 2 (NRT2), having a role in the functioning of nodules. Nitrate transporters of the two model plants, Lotus japonicus and Medicago truncatula, shown to have a positive and/or a negative role in nodule functioning depending on nitrate concentration, are presented in this article. In particular, the following transporters were thoroughly studied: (i) members of NPF transporters family, such as LjNPF8.6 and LjNPF3.1 in L. japonicus and MtNPF1.7 and MtNPF7.6 in M. truncatula, and (ii) members of NRT2 transporters family, such as LjNRT2.4 and LjNRT2.1 in L. japonicus and MtNRT2.1 in M. truncatula. Also, by exploiting available genomic and transcriptomic data in the literature, we have identified the complete PsNPF family in Pisum sativum (69 sequences previously described and 21 new that we have annotated) and putative nitrate transporters candidate for playing a role in nodule functioning in P. sativum.
Collapse
|
9
|
Taleski M, Jin M, Chapman K, Taylor K, Winning C, Frank M, Imin N, Djordjevic MA. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:538-552. [PMID: 37946363 PMCID: PMC10773996 DOI: 10.1093/jxb/erad444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
A growing understanding is emerging of the roles of peptide hormones in local and long-distance signalling that coordinates plant growth and development as well as responses to the environment. C-TERMINALLY ENCODED PEPTIDE (CEP) signalling triggered by its interaction with CEP RECEPTOR 1 (CEPR1) is known to play roles in systemic nitrogen (N) demand signalling, legume nodulation, and root system architecture. Recent research provides further insight into how CEP signalling operates, which involves diverse downstream targets and interactions with other hormone pathways. Additionally, there is emerging evidence of CEP signalling playing roles in N allocation, root responses to carbon levels, the uptake of other soil nutrients such as phosphorus and sulfur, root responses to arbuscular mycorrhizal fungi, plant immunity, and reproductive development. These findings suggest that CEP signalling more broadly coordinates growth across the whole plant in response to diverse environmental cues. Moreover, CEP signalling and function appear to be conserved in angiosperms. We review recent advances in CEP biology with a focus on soil nutrient uptake, root system architecture and organogenesis, and roles in plant-microbe interactions. Furthermore, we address knowledge gaps and future directions in this research field.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Marvin Jin
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Katia Taylor
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Courtney Winning
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nijat Imin
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| |
Collapse
|
10
|
Li C, Hu Q, Luo Z, Wang X, Tang W, Lu H, Ma C, Kong X. C-terminally encoded peptides act as signals to increase cotton root nitrate uptake under nonuniform salinity. PLANT PHYSIOLOGY 2023; 194:530-545. [PMID: 37757884 DOI: 10.1093/plphys/kiad513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Soil salinity is often heterogeneous in saline fields. Nonuniform root salinity increases nitrate uptake into cotton (Gossypium hirsutum) root portions exposed to low salinity, which may be regulated by root portions exposed to high salinity through a systemic long-distance signaling mechanism. However, the signals transmitted between shoots and roots and their precise molecular mechanisms for regulating nitrate uptake remain unknown. Here, we showed that nonuniform root salinity treatment using split-root systems increases the expression of C-TERMINALLY ENCODED PEPTIDE (GhCEP) genes in high-saline-treated root portions. GhCEP peptides originating in high-saline-treated root portions act as ascending long-distance mobile signals transported to the shoots to promote the expression of CEP DOWNSTREAM (GhCEPD) genes by inducing the expression of CEP receptor (GhCEPR) genes. The shoot-derived GhCEPD polypeptides act as descending mobile signals transported to the roots through the phloem, increasing the expression of nitrate transport genes NITRATE TRANSPORTER 1.1 (GhNRT1.1), GhNRT2.1, and GhNRT1.5 in nonsaline-treated root portions, thereby increasing nitrate uptake in the nonsaline-treated root portions. This study indicates that GhCEP and GhCEPD signals are transported between roots and shoots to increase nitrate uptake in cotton, and the transport from the nonsaline root side is in response to nonuniform root salinity distribution.
Collapse
Affiliation(s)
- Chenyang Li
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Qiuyue Hu
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Zhen Luo
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Xiaowen Wang
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Wei Tang
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Hequan Lu
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Xiangqiang Kong
- Institute of Industrial Crops, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
11
|
Sexauer M, Bhasin H, Schön M, Roitsch E, Wall C, Herzog U, Markmann K. A micro RNA mediates shoot control of root branching. Nat Commun 2023; 14:8083. [PMID: 38057302 DOI: 10.1038/s41467-023-43738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
Plants extract mineral nutrients from the soil, or from interactions with mutualistic soil microbes via their root systems. Adapting root architecture to nutrient availability enables efficient resource utilization, particularly in patchy and dynamic environments. Root growth responses to soil nitrogen levels are shoot-mediated, but the identity of shoot-derived mobile signals regulating root growth responses has remained enigmatic. Here we show that a shoot-derived micro RNA, miR2111, systemically steers lateral root initiation and nitrogen responsiveness through its root target TML (TOO MUCH LOVE) in the legume Lotus japonicus, where miR2111 and TML were previously shown to regulate symbiotic infections with nitrogen fixing bacteria. Intriguingly, systemic control of lateral root initiation by miR2111 and TML/HOLT (HOMOLOGUE OF LEGUME TML) was conserved in the nonsymbiotic ruderal Arabidopsis thaliana, which follows a distinct ecological strategy. Thus, the miR2111-TML/HOLT regulon emerges as an essential, conserved factor in adaptive shoot control of root architecture in dicots.
Collapse
Affiliation(s)
- Moritz Sexauer
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
- Julius-Maximilians-University, Julius-von-Sachs Institute for Biosciences, Würzburg, Germany
| | - Hemal Bhasin
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
- University of Toronto - Scarborough, Department of Biological Sciences, Toronto, ON, Canada
| | - Maria Schön
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
| | - Elena Roitsch
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
- Martin-Luther-University Halle-Wittenberg, Institute for Genetics, Halle/Saale, Germany
| | - Caroline Wall
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
| | - Ulrike Herzog
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
| | - Katharina Markmann
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany.
- Martin-Luther-University Halle-Wittenberg, Institute for Genetics, Halle/Saale, Germany.
- Julius-Maximilians-University, Julius-von-Sachs Institute for Biosciences, Würzburg, Germany.
| |
Collapse
|
12
|
Cui S, Inaba S, Suzaki T, Yoshida S. Developing for nutrient uptake: Induced organogenesis in parasitic plants and root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102473. [PMID: 37826989 DOI: 10.1016/j.pbi.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/26/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Plants have evolved diverse strategies to meet their nutritional needs. Parasitic plants employ haustoria, specialized structures that facilitate invasion of host plants and nutrient acquisition. Legumes have adapted to nitrogen-limited conditions by developing nodules that accommodate nitrogen-fixing rhizobia. The formation of both haustoria and nodules is induced by signals originating from the interacting organisms, namely host plants and rhizobial bacteria, respectively. Emerging studies showed that both organogenesis crucially involves plant hormones such as auxin, cytokinins, and ethylene and also integrate nutrient availability, particularly nitrogen. In this review, we discuss recent advances on hormonal and environmental control of haustoria and nodules development with side-by-side comparison. These underscore the remarkable plasticity of plant organogenesis.
Collapse
Affiliation(s)
- Songkui Cui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shoko Inaba
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Satoko Yoshida
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
13
|
Almeida-Silva F, Pedrosa-Silva F, Venancio TM. The Soybean Expression Atlas v2: A comprehensive database of over 5000 RNA-seq samples. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1041-1051. [PMID: 37681739 DOI: 10.1111/tpj.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Soybean is a crucial crop worldwide, used as a source of food, feed, and industrial products due to its high protein and oil content. Previously, the rapid accumulation of soybean RNA-seq data in public databases and the computational challenges of processing raw RNA-seq data motivated us to develop the Soybean Expression Atlas, a gene expression database of over a thousand RNA-seq samples. Over the past few years, our database has allowed researchers to explore the expression profiles of important gene families, discover genes associated with agronomic traits, and understand the transcriptional dynamics of cellular processes. Here, we present the Soybean Expression Atlas v2, an updated version of our database with a fourfold increase in the number of samples, featuring transcript- and gene-level transcript abundance matrices for 5481 publicly available RNA-seq samples. New features in our database include the availability of transcript-level abundance estimates and equivalence classes to explore differential transcript usage, abundance estimates in bias-corrected counts to increase the accuracy of differential gene expression analyses, a new web interface with improved data visualization and user experience, and a reproducible and scalable pipeline available as an R package. The Soybean Expression Atlas v2 is available at https://soyatlas.venanciogroup.uenf.br/, and it will accelerate soybean research, empowering researchers with high-quality and easily accessible gene expression data.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
14
|
Deng QY, Luo JT, Zheng JM, Tan WF, Pu ZJ, Wang F. Genome-wide systematic characterization of the NRT2 gene family and its expression profile in wheat (Triticum aestivum L.) during plant growth and in response to nitrate deficiency. BMC PLANT BIOLOGY 2023; 23:353. [PMID: 37420192 DOI: 10.1186/s12870-023-04333-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is a major cereal crop that is grown worldwide, and it is highly dependent on sufficient N supply. The molecular mechanisms associated with nitrate uptake and assimilation are still poorly understood in wheat. In plants, NRT2 family proteins play a crucial role in NO3- acquisition and translocation under nitrate limited conditions. However, the biological functions of these genes in wheat are still unclear, especially their roles in NO3- uptake and assimilation. RESULTS In this study, a comprehensive analysis of wheat TaNRT2 genes was conducted using bioinformatics and molecular biology methods, and 49 TaNRT2 genes were identified. A phylogenetic analysis clustered the TaNRT2 genes into three clades. The genes that clustered on the same phylogenetic branch had similar gene structures and nitrate assimilation functions. The identified genes were further mapped onto the 13 wheat chromosomes, and the results showed that a large duplication event had occurred on chromosome 6. To explore the TaNRT2 gene expression profiles in wheat, we performed transcriptome sequencing after low nitrate treatment for three days. Transcriptome analysis revealed the expression levels of all TaNRT2 genes in shoots and roots, and based on the expression profiles, three highly expressed genes (TaNRT2-6A.2, TaNRT2-6A.6, and TaNRT2-6B.4) were selected for qPCR analysis in two different wheat cultivars ('Mianmai367' and 'Nanmai660') under nitrate-limited and normal conditions. All three genes were upregulated under nitrate-limited conditions and highly expressed in the high nitrogen use efficiency (NUE) wheat 'Mianmai367' under low nitrate conditions. CONCLUSION We systematically identified 49 NRT2 genes in wheat and analysed the transcript levels of all TaNRT2s under nitrate deficient conditions and over the whole growth period. The results suggest that these genes play important roles in nitrate absorption, distribution, and accumulation. This study provides valuable information and key candidate genes for further studies on the function of TaNRT2s in wheat.
Collapse
Affiliation(s)
- Qing-Yan Deng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Jiang-Tao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Jian-Min Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Wen-Fang Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
| | - Zong-Jun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China.
| | - Fang Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
| |
Collapse
|
15
|
Rahmat Z, Sohail MN, Perrine-Walker F, Kaiser BN. Balancing nitrate acquisition strategies in symbiotic legumes. PLANTA 2023; 258:12. [PMID: 37296318 PMCID: PMC10256645 DOI: 10.1007/s00425-023-04175-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION Legumes manage both symbiotic (indirect) and non-symbiotic (direct) nitrogen acquisition pathways. Understanding and optimising the direct pathway for nitrate uptake will support greater legume growth and seed yields. Legumes have multiple pathways to acquire reduced nitrogen to grow and set seed. Apart from the symbiotic N2-fixation pathway involving soil-borne rhizobia bacteria, the acquisition of nitrate and ammonia from the soil can also be an important secondary nitrogen source to meet plant N demand. The balance in N delivery between symbiotic N (indirect) and inorganic N uptake (direct) remains less clear over the growing cycle and with the type of legume under cultivation. In fertile, pH balanced agricultural soils, NO3- is often the predominant form of reduced N available to crop plants and will be a major contributor to whole plant N supply if provided at sufficient levels. The transport processes for NO3- uptake into legume root cells and its transport between root and shoot tissues involves both high and low-affinity transport systems called HATS and LATS, respectively. These proteins are regulated by external NO3- availability and by the N status of the cell. Other proteins also play a role in NO3- transport, including the voltage dependent chloride/nitrate channel family (CLC) and the S-type anion channels of the SLAC/SLAH family. CLC's are linked to NO3- transport across the tonoplast of vacuoles and the SLAC/SLAH's with NO3- efflux across the plasma membrane and out of the cell. An important step in managing the N requirements of a plant are the mechanisms involved in root N uptake and the subsequent cellular distribution within the plant. In this review, we will present the current knowledge of these proteins and what is understood on how they function in key model legumes (Lotus japonicus, Medicago truncatula and Glycine sp.). The review will examine their regulation and role in N signalling, discuss how post-translational modification affects NO3- transport in roots and aerial tissues and its translocation to vegetative tissues and storage/remobilization in reproductive tissues. Lastly, we will present how NO3-influences the autoregulation of nodulation and nitrogen fixation and its role in mitigating salt and other abiotic stresses.
Collapse
Affiliation(s)
- Zainab Rahmat
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Muhammad N Sohail
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Francine Perrine-Walker
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| | - Brent N Kaiser
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| |
Collapse
|
16
|
Abstract
Plants associate with nitrogen-fixing bacteria to secure nitrogen, which is generally the most limiting nutrient for plant growth. Endosymbiotic nitrogen-fixing associations are widespread among diverse plant lineages, ranging from microalgae to angiosperms, and are primarily one of three types: cyanobacterial, actinorhizal or rhizobial. The large overlap in the signaling pathways and infection components of arbuscular mycorrhizal, actinorhizal and rhizobial symbioses reflects their evolutionary relatedness. These beneficial associations are influenced by environmental factors and other microorganisms in the rhizosphere. In this review, we summarize the diversity of nitrogen-fixing symbioses, key signal transduction pathways and colonization mechanisms relevant to such interactions, and compare and contrast these interactions with arbuscular mycorrhizal associations from an evolutionary standpoint. Additionally, we highlight recent studies on environmental factors regulating nitrogen-fixing symbioses to provide insights into the adaptation of symbiotic plants to complex environments.
Collapse
Affiliation(s)
- Peng Xu
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen 518054, China.
| |
Collapse
|
17
|
Wang L, Tian T, Liang J, Li R, Xin X, Qi Y, Zhou Y, Fan Q, Ning G, Becana M, Duanmu D. A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence. THE NEW PHYTOLOGIST 2023; 238:2113-2129. [PMID: 36945893 DOI: 10.1111/nph.18896] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
Legumes establish symbioses with rhizobia by forming nitrogen-fixing nodules. Nitrate is a major environmental factor that affects symbiotic functioning. However, the molecular mechanism of nitrate-induced nodule senescence is poorly understood. Comparative transcriptomic analysis reveals an NAC-type transcription factor in Lotus japonicus, LjNAC094, that acts as a positive regulator in nitrate-induced nodule senescence. Stable overexpression and mutant lines of NAC094 were constructed and used for phenotypic characterization. DNA-affinity purification sequencing was performed to identify NAC094 targeting genes and results were confirmed by electrophoretic mobility shift and transactivation assays. Overexpression of NAC094 induces premature nodule senescence. Knocking out NAC094 partially relieves nitrate-induced degradation of leghemoglobins and abolishes nodule expression of senescence-associated genes (SAGs) that contain a conserved binding motif for NAC094. Nitrate-triggered metabolic changes in wild-type nodules are largely affected in nac094 mutant nodules. Induction of NAC094 and its targeting SAGs was almost blocked in the nitrate-insensitive nlp1, nlp4, and nlp1 nlp4 mutants. We conclude that NAC094 functions downstream of NLP1 and NLP4 by regulating nitrate-induced expression of SAGs. Our study fills in a key gap between nitrate and the execution of nodule senescence, and provides a potential strategy to improve nitrogen fixation and stress tolerance of legumes.
Collapse
Affiliation(s)
- Longlong Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianjun Liang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xian Xin
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Yongmei Qi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yumiao Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiuling Fan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Becana
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059, Zaragoza, Spain
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|