1
|
Rehman S, Bahadur S, Xia W, Runan C, Ali M, Maqbool Z. From genes to traits: Trends in RNA-binding proteins and their role in plant trait development: A review. Int J Biol Macromol 2024:136753. [PMID: 39488325 DOI: 10.1016/j.ijbiomac.2024.136753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
RNA-binding proteins (RBPs) are essential for cellular functions by attaching to RNAs, creating dynamic ribonucleoprotein complexes (RNPs) essential for managing RNA throughout its life cycle. These proteins are critical to all post-transcriptional processes, impacting vital cellular functions during development and adaptation to environmental changes. Notably, in plants, RBPs are critical for adjusting to inconsistent environmental conditions, with recent studies revealing that plants possess, more prominent, and both novel and conserved RBP families compared to other eukaryotes. This comprehensive review delves into the varied RBPs covering their structural attributes, domain base function, and their interactions with RNA in metabolism, spotlighting their role in regulating post-transcription and splicing and their reaction to internal and external stimuli. It highlights the complex regulatory roles of RBPs, focusing on plant trait regulation and the unique functions they facilitate, establishing a foundation for appreciating RBPs' significance in plant growth and environmental response strategies.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Science, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Chen Runan
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Maroof Ali
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, China
| | - Zainab Maqbool
- Botany Department, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
2
|
Huang X, Yang Y, Xu C. Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture. THE NEW PHYTOLOGIST 2024. [PMID: 39425452 DOI: 10.1111/nph.20204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
Biomolecular condensation involves the concentration of biomolecules (DNA, RNA, proteins) into compartments to form membraneless organelles or condensates with unique properties and functions. This ubiquitous phenomenon has garnered considerable attention in recent years owing to its multifaceted roles in developmental processes and responses to environmental cues in living systems. Recent studies have revealed that biomolecular condensation plays essential roles in regulating the transition of plants from vegetative to reproductive growth, a programmed process known as floral transition that determines flowering time and inflorescence architecture in flowering plants. In this Tansley insight, we review advances in how biomolecular condensation integrates developmental and environmental signals to program and reprogram the floral transition thus diversifies flowering time and inflorescence architecture.
Collapse
Affiliation(s)
- Xiaozhen Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongfang Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cao Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Chan C, Liao YJ, Chiou SP. Stress induced factor 2 is a dual regulator for defense and seed germination in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112200. [PMID: 39038707 DOI: 10.1016/j.plantsci.2024.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Receptor-like kinases (RLKs) constitute a diverse superfamily of proteins pivotal for various plant physiological processes, including responses to pathogens, hormone perception, growth, and development. Their ability to recognize conserved epitopes for general elicitors and specific pathogens marked significant advancements in plant pathology research. Emerging evidence suggests that RLKs and associated components also act as modulators in hormone signaling and cellular trafficking, showcasing their multifunctional roles in growth and development. Notably, STRESS INDUCED FACTOR 2 (SIF2) stands out as a representative with distinct expression patterns in different Arabidopsis organs. Our prior work highlighted the specific induction of SIF2 expression in guard cells, emphasizing its positive contribution to stomatal immunity. Expanding on these findings, our present study delves into the diverse functions of SIF2 expression in root tissues. Utilizing comprehensive physiology, molecular biology, protein biochemistry, and genetic analyses, we reveal that SIF2 modulates abscisic acid (ABA) signaling in Arabidopsis roots. SIF2 is epistatic with key regulators in the ABA signaling pathway, thereby governing the expression of genes crucial for dormancy release and, consequently, Arabidopsis seed germination. This study sheds light on the intricate roles of SIF2 as a multi-functional RLK, underscoring its organ-specific contributions to plant immunity, hormonal regulation, and seed germination.
Collapse
Affiliation(s)
- Ching Chan
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Yi-Jun Liao
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shian-Peng Chiou
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
4
|
Wu P, Li Y. Prion-like Proteins in Plants: Key Regulators of Development and Environmental Adaptation via Phase Separation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2666. [PMID: 39339640 PMCID: PMC11435361 DOI: 10.3390/plants13182666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Prion-like domains (PrLDs), a unique type of low-complexity domain (LCD) or intrinsically disordered region (IDR), have been shown to mediate protein liquid-liquid phase separation (LLPS). Recent research has increasingly focused on how prion-like proteins (PrLPs) regulate plant growth, development, and stress responses. This review provides a comprehensive overview of plant PrLPs. We analyze the structural features of PrLPs and the mechanisms by which PrLPs undergo LLPS. Through gene ontology (GO) analysis, we highlight the diverse molecular functions of PrLPs and explore how PrLPs influence plant development and stress responses via phase separation. Finally, we address unresolved questions about PrLP regulatory mechanisms, offering prospects for future research.
Collapse
Affiliation(s)
- Peisong Wu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
| | - Yihao Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
- Center for Biological Science and Technology, Guangdong Zhuhai–Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
5
|
Huang Z, Xu Z, Liu X, Chen G, Hu C, Chen M, Liu Y. Exploring the Role of the Processing Body in Plant Abiotic Stress Response. Curr Issues Mol Biol 2024; 46:9844-9855. [PMID: 39329937 PMCID: PMC11430669 DOI: 10.3390/cimb46090585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
The processing body (P-Body) is a membrane-less organelle with stress-resistant functions. Under stress conditions, cells preferentially translate mRNA that favors the stress response, resulting in a large number of transcripts unfavorable to the stress response in the cytoplasm. These non-translating mRNAs aggregate with specific proteins to form P-Bodies, where they are either stored or degraded. The protein composition of P-Bodies varies depending on cell type, developmental stage, and external environmental conditions. This review primarily elucidates the protein composition in plants and the assembly of P-Bodies, and focuses on the mechanisms by which various proteins within the P-Bodies of plants regulate mRNA decapping, degradation, translational repression, and storage at the post-transcriptional level in response to ethylene signaling and abiotic stresses such as drought, high salinity, or extreme temperatures. This overview provides insights into the role of the P-Body in plant abiotic stress responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Huang S, Wang C, Wang L, Li S, Wang T, Tao Z, Zhao Y, Ma J, Zhao M, Zhang X, Wang L, Xie C, Li P. Loss-of-function of LIGULELESS1 activates the jasmonate pathway and promotes maize resistance to corn leaf aphids. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39145425 DOI: 10.1111/pbi.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Corn leaf aphids (Rhopalosiphum maidis) are highly destructive pests of maize (Zea mays) that threaten growth and seed yield, but resources for aphid resistance are scarce. Here, we identified an aphid-resistant maize mutant, resistance to aphids 1 (rta1), which is allelic to LIGULELESS1 (LG1). We confirmed LG1's role in aphid resistance using the independent allele lg1-2, allelism tests and LG1 overexpression lines. LG1 interacts with, and increases the stability of ZINC-FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM (ZIM1), a central component of the jasmonic acid (JA) signalling pathway, by disturbing its interaction with the F-box protein CORONATINE INSENSITIVE 1a (COI1a). Natural variation in the LG1 promoter was associated with aphid resistance among inbred lines. Moreover, a loss-of-function mutant in the LG1-related gene SPL8 in the dicot Arabidopsis thaliana conferred aphid resistance. This study revealed the aphid resistance mechanism of lg1, providing a theoretical basis and germplasm for breeding aphid-resistant crops.
Collapse
Affiliation(s)
- Shijie Huang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Chuanhong Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Ling Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Shuai Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Tengyue Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Zhen Tao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Yibing Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Jing Ma
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Xinqiao Zhang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| | - Chuanxiao Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Peijin Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Legen J, Lenzen B, Kachariya N, Feltgen S, Gao Y, Mergenthal S, Weber W, Klotzsch E, Zoschke R, Sattler M, Schmitz-Linneweber C. A prion-like domain is required for phase separation and chloroplast RNA processing during cold acclimation in Arabidopsis. THE PLANT CELL 2024; 36:2851-2872. [PMID: 38723165 PMCID: PMC11289645 DOI: 10.1093/plcell/koae145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/06/2024] [Indexed: 08/02/2024]
Abstract
Arabidopsis (Arabidopsis thaliana) plants can produce photosynthetic tissue with active chloroplasts at temperatures as low as 4°C, and this process depends on the presence of the nuclear-encoded, chloroplast-localized RNA-binding protein CP29A. In this study, we demonstrate that CP29A undergoes phase separation in vitro and in vivo in a temperature-dependent manner, which is mediated by a prion-like domain (PLD) located between the two RNA recognition motif domains of CP29A. The resulting droplets display liquid-like properties and are found near chloroplast nucleoids. The PLD is required to support chloroplast RNA splicing and translation in cold-treated tissue. Together, our findings suggest that plant chloroplast gene expression is compartmentalized by inducible condensation of CP29A at low temperatures, a mechanism that could play a crucial role in plant cold resistance.
Collapse
Affiliation(s)
- Julia Legen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Benjamin Lenzen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Nitin Kachariya
- Helmholtz Munich, Institute of Structural Biology, Ingolstädter Landstrasse 1, Munich 85764, Germany
- Department of Bioscience, Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Stephanie Feltgen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Simon Mergenthal
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Willi Weber
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Michael Sattler
- Helmholtz Munich, Institute of Structural Biology, Ingolstädter Landstrasse 1, Munich 85764, Germany
- Department of Bioscience, Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | | |
Collapse
|
8
|
Cui S, Song P, Wang C, Chen S, Hao B, Xu Z, Cai L, Chen X, Zhu S, Gan X, Dong H, Hu Y, Zhou L, Hou H, Tian Y, Liu X, Chen L, Liu S, Jiang L, Wang H, Jia G, Zhou S, Wan J. The RNA binding protein EHD6 recruits the m 6A reader YTH07 and sequesters OsCOL4 mRNA into phase-separated ribonucleoprotein condensates to promote rice flowering. MOLECULAR PLANT 2024; 17:935-954. [PMID: 38720462 DOI: 10.1016/j.molp.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/31/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
N6-Methyladenosine (m6A) is one of the most abundant modifications of eukaryotic mRNA, but its comprehensive biological functionality remains further exploration. In this study, we identified and characterized a new flowering-promoting gene, EARLY HEADING DATE6 (EHD6), in rice. EHD6 encodes an RNA recognition motif (RRM)-containing RNA binding protein that is localized in the non-membranous cytoplasm ribonucleoprotein (RNP) granules and can bind both m6A-modified RNA and unmodified RNA indiscriminately. We found that EHD6 can physically interact with YTH07, a YTH (YT521-B homology) domain-containing m6A reader. We showed that their interaction enhances the binding of an m6A-modified RNA and triggers relocation of a portion of YTH07 from the cytoplasm into RNP granules through phase-separated condensation. Within these condensates, the mRNA of a rice flowering repressor, CONSTANS-like 4 (OsCOL4), becomes sequestered, leading to a reduction in its protein abundance and thus accelerated flowering through the Early heading date 1 pathway. Taken together, these results not only shed new light on the molecular mechanism of efficient m6A recognition by the collaboration between an RNA binding protein and YTH family m6A reader, but also uncover the potential for m6A-mediated translation regulation through phase-separated ribonucleoprotein condensation in rice.
Collapse
Affiliation(s)
- Song Cui
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Center of RNA Biology, Peking University, Beijing, China
| | - Chaolong Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Saihua Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Benyuan Hao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Cai
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Center of RNA Biology, Peking University, Beijing, China
| | - Shanshan Zhu
- State Key Laboratory for Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangchao Gan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Hui Dong
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Hu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhou
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Haigang Hou
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangming Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- State Key Laboratory for Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Center of RNA Biology, Peking University, Beijing, China.
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Li X, Wang D, Yin X, Dai M, Staiger CJ, Zhang C. A chemical genetic screen with the EXO70 inhibitor Endosidin2 uncovers potential modulators of exocytosis in Arabidopsis. PLANT DIRECT 2024; 8:e592. [PMID: 38881683 PMCID: PMC11176578 DOI: 10.1002/pld3.592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Exocytosis plays an essential role in delivering proteins, lipids, and cell wall polysaccharides to the plasma membrane and extracellular spaces. Accurate secretion through exocytosis is key to normal plant development as well as responses to biotic and abiotic stresses. During exocytosis, an octameric protein complex named the exocyst facilitates the tethering of secretory vesicles to the plasma membrane. Despite some understanding of molecular and cellular aspects of exocyst function obtained through reverse genetics and direct interaction assays, knowledge about upstream modulators and genetic interactors remains limited. Traditional genetic screens encounter practical issues in exocyst subunit mutant backgrounds, such as lethality of certain knockout mutants and/or potential redundancy of EXO70 homologs. To address these challenges, this study leverages the tunable and reversible nature of chemical genetics, employing Endosidin2 (ES2)-a synthetic inhibitor of EXO70-for a large-scale chemical genetic mutant screen in Arabidopsis. This approach led to the identification of 70 ES2-hypersensitive mutants, named es2s. Through a whole-genome sequencing-based mapping strategy, 14 nonallelic es2s mutants were mapped and the candidate mutations reported here. In addition, T-DNA insertion lines were tested as alternative alleles to identify causal mutations. We found that T-DNA insertion alleles for DCP5, VAS1/ISS1, ArgJ, and MEF11 were hypersensitive to ES2 for root growth inhibition. This research not only offers new genetic resources for systematically identifying molecular players interacting with the exocyst in Arabidopsis but also enhances understanding of the regulation of exocytosis.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Botany and Plant Pathology Purdue University West Lafayette Indiana USA
- Center for Plant Biology Purdue University West Lafayette Indiana USA
| | - Diwen Wang
- Department of Botany and Plant Pathology Purdue University West Lafayette Indiana USA
- Center for Plant Biology Purdue University West Lafayette Indiana USA
| | - Xianglin Yin
- Department of Chemistry Purdue University West Lafayette Indiana USA
| | - Mingji Dai
- Department of Chemistry Purdue University West Lafayette Indiana USA
- Present address: Department of Chemistry Emory University Atlanta Georgia USA
- Present address: Department of Chemistry Emory University Atlanta Georgia USA
| | - Christopher J Staiger
- Department of Botany and Plant Pathology Purdue University West Lafayette Indiana USA
- Center for Plant Biology Purdue University West Lafayette Indiana USA
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Chunhua Zhang
- Department of Botany and Plant Pathology Purdue University West Lafayette Indiana USA
- Center for Plant Biology Purdue University West Lafayette Indiana USA
| |
Collapse
|
10
|
Fan S, Zhang Y, Zhu S, Shen L. Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses. MOLECULAR PLANT 2024; 17:531-551. [PMID: 38419328 DOI: 10.1016/j.molp.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N6-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.
Collapse
Affiliation(s)
- Sheng Fan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Yu Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Shaobo Zhu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
11
|
Qiu C, Wang T, Wang H, Tao Z, Wang C, Ma J, Li S, Zhao Y, Liu J, Li P. SISTER OF FCA physically associates with SKB1 to regulate flowering time in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:188. [PMID: 38486139 PMCID: PMC10941358 DOI: 10.1186/s12870-024-04887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Proper flowering time is important for the growth and development of plants, and both too early and too late flowering impose strong negative influences on plant adaptation and seed yield. Thus, it is vitally important to study the mechanism underlying flowering time control in plants. In a previous study by the authors, genome-wide association analysis was used to screen the candidate gene SISTER OF FCA (SSF) that regulates FLOWERING LOCUS C (FLC), a central gene encoding a flowering suppressor in Arabidopsis thaliana. RESULTS SSF physically interacts with Protein arginine methyltransferase 5 (PRMT5, SKB1). Subcellular co-localization analysis showed that SSF and SKB1 interact in the nucleus. Genetically, SSF and SKB1 exist in the same regulatory pathway that controls FLC expression. Furthermore, RNA-sequencing analysis showed that both SSF and SKB1 regulate certain common pathways. CONCLUSIONS This study shows that PRMT5 interacts with SSF, thus controlling FLC expression and facilitating flowering time control.
Collapse
Affiliation(s)
- Chunhong Qiu
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Tengyue Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Tao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanhong Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Ma
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shuai Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yibing Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jifang Liu
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Peijin Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
12
|
Yan Y, Guo H, Li W. Endoribonuclease DNE1 Promotes Ethylene Response by Modulating EBF1/2 mRNA Processing in Arabidopsis. Int J Mol Sci 2024; 25:2138. [PMID: 38396815 PMCID: PMC10888710 DOI: 10.3390/ijms25042138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The gaseous phytohormone ethylene plays a crucial role in plant growth, development, and stress responses. In the ethylene signal transduction cascade, the F-box proteins EIN3-BINDING F-BOX 1 (EBF1) and EBF2 are identified as key negative regulators governing ethylene sensitivity. The translation and processing of EBF1/2 mRNAs are tightly controlled, and their 3' untranslated regions (UTRs) are critical in these regulations. However, despite their significance, the exact mechanisms modulating the processing of EBF1/2 mRNAs remain poorly understood. In this work, we identified the gene DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1), which encodes an endoribonuclease and is induced by ethylene treatment, as a positive regulator of ethylene response. The loss of function mutant dne1-2 showed mild ethylene insensitivity, highlighting the importance of DNE1 in ethylene signaling. We also found that DNE1 colocalizes with ETHYLENE INSENSITIVE 2 (EIN2), the core factor manipulating the translation of EBF1/2, and targets the P-body in response to ethylene. Further analysis revealed that DNE1 negatively regulates the abundance of EBF1/2 mRNAs by recognizing and cleaving their 3'UTRs, and it also represses their translation. Moreover, the dne1 mutant displays hypersensitivity to 1,4-dithiothreitol (DTT)-induced ER stress and oxidative stress, indicating the function of DNE1 in stress responses. This study sheds light on the essential role of DNE1 as a modulator of ethylene signaling through regulation of EBF1/2 mRNA processing. Our findings contribute to the understanding of the intricate regulatory process of ethylene signaling and provide insights into the significance of ribonuclease in stress responses.
Collapse
Affiliation(s)
- Yan Yan
- Harbin Institute of Technology, Harbin 150001, China;
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenyang Li
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Liu Q, Liu W, Niu Y, Wang T, Dong J. Liquid-liquid phase separation in plants: Advances and perspectives from model species to crops. PLANT COMMUNICATIONS 2024; 5:100663. [PMID: 37496271 PMCID: PMC10811348 DOI: 10.1016/j.xplc.2023.100663] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Membraneless biomolecular condensates play important roles in both normal biological activities and responses to environmental stimuli in living organisms. Liquid‒liquid phase separation (LLPS) is an organizational mechanism that has emerged in recent years to explain the formation of biomolecular condensates. In the past decade, advances in LLPS research have contributed to breakthroughs in disease fields. By contrast, although LLPS research in plants has progressed over the past 5 years, it has been concentrated on the model plant Arabidopsis, which has limited relevance to agricultural production. In this review, we provide an overview of recently reported advances in LLPS in plants, with a particular focus on photomorphogenesis, flowering, and abiotic and biotic stress responses. We propose that many potential LLPS proteins also exist in crops and may affect crop growth, development, and stress resistance. This possibility presents a great challenge as well as an opportunity for rigorous scientific research on the biological functions and applications of LLPS in crops.
Collapse
Affiliation(s)
- Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Gutierrez-Beltran E, Strader L, Bozhkov PV. Focus on biomolecular condensates. THE PLANT CELL 2023; 35:3155-3157. [PMID: 37352160 PMCID: PMC10473217 DOI: 10.1093/plcell/koad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Emilio Gutierrez-Beltran
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, Sevilla 41092, Spain
- Departamento de Bioquimica Vegetal y Biologia Molecular, Facultad de Biologia, Universidad de Sevilla, Sevilla 41012, Spain
- Guest Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
- Senior Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Peter V Bozhkov
- Guest Editor, The Plant Cell, American Society of Plant Biologists, USA
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
15
|
Chan C. Phase separation in flowering control: DCP5 and SSF co-regulate FLC by liquid-liquid phase separation. THE PLANT CELL 2023; 35:3160-3161. [PMID: 37282719 PMCID: PMC10473213 DOI: 10.1093/plcell/koad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Affiliation(s)
- Ching Chan
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, Rockville, MD, USA
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|