1
|
Li Y, Ge S, Liu J, Sun D, Xi Y, Chen P. Nuclear Structure, Size Regulation, and Role in Cell Migration. Cells 2024; 13:2130. [PMID: 39768219 PMCID: PMC11675058 DOI: 10.3390/cells13242130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The nucleus serves as a pivotal regulatory and control hub in the cell, governing numerous aspects of cellular functions, including DNA replication, transcription, and RNA processing. Therefore, any deviations in nuclear morphology, structure, or organization can strongly affect cellular activities. In this review, we provide an updated perspective on the structure and function of nuclear components, focusing on the linker of nucleoskeleton and cytoskeleton complex, the nuclear envelope, the nuclear lamina, and chromatin. Additionally, nuclear size should be considered a fundamental parameter for the cellular state. Its regulation is tightly linked to environmental changes, development, and various diseases, including cancer. Hence, we also provide a concise overview of different mechanisms by which nuclear size is determined, the emerging role of the nucleus as a mechanical sensor, and the implications of altered nuclear morphology on the physiology of diseased cells.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Shanghao Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Jiayi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Deseng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Pan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| |
Collapse
|
2
|
Zhao Y, Zhang J, Fang Y, Zhang P, Chen H. The plant SMC5/6 complex: DNA repair, developmental regulation, and immune responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109267. [PMID: 39515004 DOI: 10.1016/j.plaphy.2024.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex plays a pivotal role in safeguarding the structural integrity and morphology of chromosomes, thereby contributing to genomic stability-a cornerstone for normal growth and development across organisms. Beyond its fundamental role in eukaryotic DNA damage repair, recent research has broadened our understanding of SMC5/6's multifaceted functions. It has emerged as a crucial regulator not only of the cell cycle but also in developmental processes, plant immunity, and meiotic DNA damage repair. In this review, we highlight its novel roles in modulating plant growth, development, and immunity, providing fresh perspectives on how this complex might help combat DNA damage stress and orchestrate growth strategies. Furthermore, we emphasize that SMC5/6 offers a unique window into the intricate mechanisms underlying genomic maintenance, development, and stress responses, with profound implications for crop improvement.
Collapse
Affiliation(s)
- Yan Zhao
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian Zhang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yiru Fang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pingxian Zhang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| | - Hanchen Chen
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Yazhouwan National Laboratory, Sanya, Hainan, 572000, China.
| |
Collapse
|
3
|
Yin C, Wang Y, Wang P, Chen G, Sun A, Fang Y. The N-terminal coiled-coil domain of Arabidopsis CROWDED NUCLEI 1 is required for nuclear morphology maintenance. PLANTA 2024; 260:62. [PMID: 39066892 DOI: 10.1007/s00425-024-04489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
The Arabidopsis CROWDED NUCLEI (CRWN) family proteins form a lamina-like meshwork beneath the nuclear envelope with multiple functions, including maintenance of nuclear morphology, genome organization, DNA damage repair and transcriptional regulation. CRWNs can form homodimers/heterodimers through protein‒protein interactions; however, the exact molecular mechanism of CRWN dimer formation and the diverse functions of different CRWN domains are not clear. In this report, we show that the N-terminal coiled-coil domain of CRWN1 facilitates its homodimerization and heterodimerization with the coiled-coil domains of CRWN2-CRWN4. We further demonstrated that the N-terminus but not the C-terminus of CRWN1 is sufficient to rescue the defect in nuclear morphology of the crwn1 crwn2 mutant to the WT phenotype. Moreover, both the N- and C-terminal fragments of CRWN1 are necessary for its normal function in the regulation of plant development. Collectively, our data shed light on the mechanism of plant lamina network formation and the functions of different domains in plant lamin-like proteins.
Collapse
Affiliation(s)
- Chunmei Yin
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanda Wang
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pan Wang
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangxin Chen
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aiqing Sun
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuda Fang
- Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Choi J, Gehring M. CRWN nuclear lamina components maintain the H3K27me3 landscape and promote successful reproduction in Arabidopsis. THE NEW PHYTOLOGIST 2024; 243:213-228. [PMID: 38715414 PMCID: PMC11162254 DOI: 10.1111/nph.19791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Arabidopsis lamin analogs CROWDED NUCLEIs (CRWNs) are necessary to maintain nuclear structure, genome function, and proper plant growth. However, whether and how CRWNs impact reproduction and genome-wide epigenetic modifications is unknown. Here, we investigate the role of CRWNs during the development of gametophytes, seeds, and endosperm, using genomic and epigenomic profiling methods. We observed defects in crwn mutant seeds including seed abortion and reduced germination rate. Quadruple crwn null genotypes were rarely transmitted through gametophytes. Because defects in seeds often stem from abnormal endosperm development, we focused on crwn1 crwn2 (crwn1/2) endosperm. These mutant seeds exhibited enlarged chalazal endosperm cysts and increased expression of stress-related genes and the MADS-box transcription factor PHERES1 and its targets. Previously, it was shown that PHERES1 expression is regulated by H3K27me3 and that CRWN1 interacts with the PRC2 interactor PWO1. Thus, we tested whether crwn1/2 alters H3K27me3 patterns. We observed a mild loss of H3K27me3 at several hundred loci, which differed between endosperm and leaves. These data indicate that CRWNs are necessary to maintain the H3K27me3 landscape, with tissue-specific chromatin and transcriptional consequences.
Collapse
Affiliation(s)
- Junsik Choi
- Whitehead Institute for Biomedical Research, Cambridge MA 02142
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142
- Dept. of Biology, Massachusetts Institute of Technology, Cambridge MA 02139
| |
Collapse
|
5
|
Tessmer I. Recent Advances in Genome Maintenance Processes. Int J Mol Sci 2024; 25:5131. [PMID: 38791170 PMCID: PMC11121334 DOI: 10.3390/ijms25105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Given life's dependence on genome maintenance, unsurprisingly, investigations of the molecular processes involved in protecting the genome or, failing this, repairing damages to and alterations introduced into genetic material are at the forefront of current research [...].
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
6
|
Herbst J, Li QQ, De Veylder L. Mechanistic insights into DNA damage recognition and checkpoint control in plants. NATURE PLANTS 2024; 10:539-550. [PMID: 38503962 DOI: 10.1038/s41477-024-01652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
The plant DNA damage response (DDR) pathway safeguards genomic integrity by rapid recognition and repair of DNA lesions that, if unrepaired, may cause genome instability. Most frequently, DNA repair goes hand in hand with a transient cell cycle arrest, which allows cells to repair the DNA lesions before engaging in a mitotic event, but consequently also affects plant growth and yield. Through the identification of DDR proteins and cell cycle regulators that react to DNA double-strand breaks or replication defects, it has become clear that these proteins and regulators form highly interconnected networks. These networks operate at both the transcriptional and post-transcriptional levels and include liquid-liquid phase separation and epigenetic mechanisms. Strikingly, whereas the upstream DDR sensors and signalling components are well conserved across eukaryotes, some of the more downstream effectors are diverged in plants, probably to suit unique lifestyle features. Additionally, DDR components display functional diversity across ancient plant species, dicots and monocots. The observed resistance of DDR mutants towards aluminium toxicity, phosphate limitation and seed ageing indicates that gaining knowledge about the plant DDR may offer solutions to combat the effects of climate change and the associated risk for food security.
Collapse
Affiliation(s)
- Josephine Herbst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Qian-Qian Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- Center for Plant Systems Biology, VIB, Gent, Belgium.
| |
Collapse
|
7
|
Gutierrez-Beltran E, Strader L, Bozhkov PV. Focus on biomolecular condensates. THE PLANT CELL 2023; 35:3155-3157. [PMID: 37352160 PMCID: PMC10473217 DOI: 10.1093/plcell/koad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Emilio Gutierrez-Beltran
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, Sevilla 41092, Spain
- Departamento de Bioquimica Vegetal y Biologia Molecular, Facultad de Biologia, Universidad de Sevilla, Sevilla 41012, Spain
- Guest Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
- Senior Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Peter V Bozhkov
- Guest Editor, The Plant Cell, American Society of Plant Biologists, USA
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|