1
|
Cao X, Ding L, Liang J, Zhou Y, Chen X, Li H, Liu T, Yue W, Sui J, Jiang L, Qian Y, Yang D, Wang B, Zhang H, Wu Z, Song X. LzSCL9, a Novel GRAS Transcription Factor in Lanzhou Lily ( Lilium davidii var. unicolor), Participates in Regulation of Trichokonins-Primed Heat Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2330. [PMID: 39204766 PMCID: PMC11359455 DOI: 10.3390/plants13162330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In our previous research, we found that trichokonins' (TKs) employment improved the thermotolerance of the Lanzhou lily, a renowned edible crop species endemic to China that is relatively susceptible to high temperatures (HTs). Here, a novel Lanzhou lily GRAS gene, LzSCL9, was identified to respond to heat stress (HS) and HS+TKs treatment based on transcriptome and RT-qPCR analysis. TKs could improve the upregulation of LzSCL9 during long-term HS. The expression profile of LzSCL9 in response to HS with or without TKs treatment showed a significant positive correlation with LzHsfA2a-1, which was previously identified as a key regulator in TKs' conferred resilience to HT. More importantly, overexpression of LzSCL9 in the lily enhanced its tolerance to HTs and silencing LzSCL9 in the lily reduced heat resistance. Taken together, this study identified the positive role of LzSCL9 in TK-induced thermotolerance, thereby preliminarily establishing a molecular mechanism on TKs regulating the thermostability of the Lanzhou lily and providing a new candidate regulator for plant heat-resistant breeding.
Collapse
Affiliation(s)
- Xing Cao
- College of Architecture, Yantai University, Yantai 264005, China; (X.C.)
| | - Liping Ding
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahui Liang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanrong Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiulan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| | - Haiyan Li
- College of Architecture, Yantai University, Yantai 264005, China; (X.C.)
| | - Tao Liu
- College of Architecture, Yantai University, Yantai 264005, China; (X.C.)
| | - Wenxiu Yue
- College of Architecture, Yantai University, Yantai 264005, China; (X.C.)
| | - Juanjuan Sui
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine, Biology and Food Engineering College, Fuyang Normal University, Fuyang 236037, China
| | - Liangbao Jiang
- College of Architecture, Yantai University, Yantai 264005, China; (X.C.)
| | - Yulian Qian
- College of Architecture, Yantai University, Yantai 264005, China; (X.C.)
| | - Dongdong Yang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Bo Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Hailing Zhang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Pu X, Fu Y, Xu C, Li X, Wang W, De K, Wei X, Yao X. Transcriptomic analyses provide molecular insight into the cold stress response of cold-tolerant alfalfa. BMC PLANT BIOLOGY 2024; 24:741. [PMID: 39095692 PMCID: PMC11297790 DOI: 10.1186/s12870-024-05136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Daye No.3 is a novel cultivar of alfalfa (Medicago sativa L.) that is well suited for cultivation in high-altitude regions such as the Qinghai‒Tibet Plateau owing to its high yield and notable cold resistance. However, the limited availability of transcriptomic information has hindered our investigation into the potential mechanisms of cold tolerance in this cultivar. Consequently, we conducted de novo transcriptome assembly to overcome this limitation. Subsequently, we compared the patterns of gene expression in Daye No. 3 during cold acclimatization and exposure to cold stress at various time points. RESULTS A total of 15 alfalfa samples were included in the transcriptome assembly, resulting in 141.97 Gb of clean bases. A total of 441 DEGs were induced by cold acclimation, while 4525, 5016, and 8056 DEGs were identified at 12 h, 24 h, and 36 h after prolonged cold stress at 4 °C, respectively. The consistency between the RT‒qPCR and transcriptome data confirmed the accuracy and reliability of the transcriptomic data. KEGG enrichment analysis revealed that many genes related to photosynthesis were enriched under cold stress. STEM analysis demonstrated that genes involved in nitrogen metabolism and the TCA cycle were consistently upregulated under cold stress, while genes associated with photosynthesis, particularly antenna protein genes, were downregulated. PPI network analysis revealed that ubiquitination-related ribosomal proteins act as hub genes in response to cold stress. Additionally, the plant hormone signaling pathway was activated under cold stress, suggesting its vital role in the cold stress response of alfalfa. CONCLUSIONS Ubiquitination-related ribosomal proteins induced by cold acclimation play a crucial role in early cold signal transduction. As hub genes, these ubiquitination-related ribosomal proteins regulate a multitude of downstream genes in response to cold stress. The upregulation of genes related to nitrogen metabolism and the TCA cycle and the activation of the plant hormone signaling pathway contribute to the enhanced cold tolerance of alfalfa.
Collapse
Affiliation(s)
- Xiaojian Pu
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China
| | - Yunjie Fu
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China
| | - Chengti Xu
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China.
| | - Xiuzhang Li
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China.
| | - Wei Wang
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China
| | - Kejia De
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China
| | - Xijie Wei
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, No.1 Wei'er Road, Biopark, Chengbei District, Xining, Qinghai, 810016, China
| | - Xixi Yao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, China
| |
Collapse
|
3
|
Xia W, Yang Y, Zhang C, Liu C, Xiao K, Xiao X, Wu J, Shen Y, Zhang L, Su K. Discovery of candidate genes involved in ethylene biosynthesis and signal transduction pathways related to peach bud cold resistance. Front Genet 2024; 15:1438276. [PMID: 39092433 PMCID: PMC11291253 DOI: 10.3389/fgene.2024.1438276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Background: Low temperature pose significant challenges to peach cultivation, causing severe damage to peach buds and restricting production and distribution. Ethylene, an important phytohormone, plays a critical role in enhancing plant cold resistance. Structural genes and transcription factors involved in ethylene biosynthesis and signal transduction pathways are associated with cold resistance. However, no research has specifically addressed their roles in peach cold resistance. Methods: In this study, we aimed for cold-resistance gene discovery in cold-sensitive peach cultivar "21Shiji" (21SJ) and cold-resistance cultivar "Shijizhixing" (SJZX) using RNA-seq and gas chromatography. Results: The findings revealed that under cold stress conditions, ethylene biosynthesis in "SJZX" was significantly induced. Subsequently, a structural gene, PpACO1-1, involved in ethylene biosynthesis in peach buds was significantly upregulated and showed a higher correlation with ethylene release rate. To identify potential transcription factors associated with PpACO1-1 expression and ethylene signal transduction, weighted gene co-expression network analysis was conducted using RNA-seq data. Four transcription factors: PpERF2, PpNAC078, PpWRKY65 and PpbHLH112, were identified. Conclusion: These findings provide valuable theoretical insights for investigating the regulatory mechanisms of peach cold resistance and guiding breeding strategies.
Collapse
Affiliation(s)
- Wenqian Xia
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yupeng Yang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Chenguang Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Chunsheng Liu
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Kun Xiao
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Xiao Xiao
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Junkai Wu
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Yanhong Shen
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Libin Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Su
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
4
|
Zheng L, Li B, Zhang G, Zhou Y, Gao F. Jasmonate enhances cold acclimation in jojoba by promoting flavonol synthesis. HORTICULTURE RESEARCH 2024; 11:uhae125. [PMID: 38966867 PMCID: PMC11220180 DOI: 10.1093/hr/uhae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Jojoba is an industrial oil crop planted in tropical arid areas, and its low-temperature sensitivity prevents its introduction into temperate areas. Studying the molecular mechanisms associated with cold acclimation in jojoba is advantageous for developing breeds with enhanced cold tolerance. In this study, metabolomic analysis revealed that various flavonols accumulate in jojoba during cold acclimation. Time-course transcriptomic analysis and weighted correlation network analysis (WGCNA) demonstrated that flavonol biosynthesis and jasmonates (JAs) signaling pathways played crucial roles in cold acclimation. Combining the biochemical and genetic analyses showed that ScMYB12 directly activated flavonol synthase gene (ScFLS). The interaction between ScMYB12 and transparent testa 8 (ScTT8) promoted the expression of ScFLS, but the negative regulator ScJAZ13 in the JA signaling pathway interacted with ScTT8 to attenuate the transcriptional activity of the ScTT8 and ScMYB12 complex, leading to the downregulation of ScFLS. Cold acclimation stimulated the production of JA in jojoba leaves, promoted the degradation of ScJAZ13, and activated the transcriptional activity of ScTT8 and ScMYB12 complexes, leading to the accumulation of flavonols. Our findings reveal the molecular mechanism of JA-mediated flavonol biosynthesis during cold acclimation in jojoba and highlight the JA pathway as a promising means for enhancing cold tolerance in breeding efforts.
Collapse
Affiliation(s)
- Lamei Zheng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bojing Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Genfa Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
5
|
Hao X, Gong Y, Chen S, Ma C, Duanmu H. Genome-Wide Identification of GRAS Transcription Factors and Their Functional Analysis in Salt Stress Response in Sugar Beet. Int J Mol Sci 2024; 25:7132. [PMID: 39000240 PMCID: PMC11241673 DOI: 10.3390/ijms25137132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GAI-RGA-and-SCR (GRAS) transcription factors can regulate many biological processes such as plant growth and development and stress defense, but there are few related studies in sugar beet. Salt stress can seriously affect the yield and quality of sugar beet (Beta vulgaris). Therefore, this study used bioinformatics methods to identify GRAS transcription factors in sugar beet and analyzed their structural characteristics, evolutionary relationships, regulatory networks and salt stress response patterns. A total of 28 BvGRAS genes were identified in the whole genome of sugar beet, and the sequence composition was relatively conservative. According to the topology of the phylogenetic tree, BvGRAS can be divided into nine subfamilies: LISCL, SHR, PAT1, SCR, SCL3, LAS, SCL4/7, HAM and DELLA. Synteny analysis showed that there were two pairs of fragment replication genes in the BvGRAS gene, indicating that gene replication was not the main source of BvGRAS family members. Regulatory network analysis showed that BvGRAS could participate in the regulation of protein interaction, material transport, redox balance, ion homeostasis, osmotic substance accumulation and plant morphological structure to affect the tolerance of sugar beet to salt stress. Under salt stress, BvGRAS and its target genes showed an up-regulated expression trend. Among them, BvGRAS-15, BvGRAS-19, BvGRAS-20, BvGRAS-21, LOC104892636 and LOC104893770 may be the key genes for sugar beet's salt stress response. In this study, the structural characteristics and biological functions of BvGRAS transcription factors were analyzed, which provided data for the further study of the molecular mechanisms of salt stress and molecular breeding of sugar beet.
Collapse
Affiliation(s)
- Xiaolin Hao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yongyong Gong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Huizi Duanmu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
6
|
Lu H, Xu J, Li G, Zhong T, Chen D, Lv J. Genome-wide identification and expression analysis of GRAS gene family in Eucalyptus grandis. BMC PLANT BIOLOGY 2024; 24:573. [PMID: 38890621 PMCID: PMC11184746 DOI: 10.1186/s12870-024-05288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The GRAS gene family is a class of plant-specific transcription factors with important roles in many biological processes, such as signal transduction, disease resistance and stress tolerance, plant growth and development. So far, no information available describes the functions of the GRAS genes in Eucalyptus grandis. RESULTS A total of 82 GRAS genes were identified with amino acid lengths ranging from 267 to 817 aa, and most EgrGRAS genes had one exon. Members of the GRAS gene family of Eucalyptus grandis are divided into 9 subfamilies with different protein structures, while members of the same subfamily have similar gene structures and conserved motifs. Moreover, these EgrGRAS genes expanded primarily due to segmental duplication. In addition, cis-acting element analysis showed that this family of genes was involved involved in the signal transduction of various plant hormones, growth and development, and stress response. The qRT-PCR data indicated that 18 EgrGRAS genes significantly responded to hormonal and abiotic stresses. Among them, the expression of EgrGRAS13, EgrGRAS68 and EgrGRAS55 genes was significantly up-regulated during the treatment period, and it was hypothesised that members of the EgrGRAS family play an important role in stress tolerance. CONCLUSIONS In this study, the phylogenetic relationship, conserved domains, cis-elements and expression patterns of GRAS gene family of Eucalyptus grandis were analyzed, which filled the gap in the identification of GRAS gene family of Eucalyptus grandis and laid the foundation for analyzing the function of EgrGRAS gene in hormone and stress response.
Collapse
Affiliation(s)
- Haifei Lu
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Jianmin Xu
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Guangyou Li
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Tailin Zhong
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Danwei Chen
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jiabin Lv
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, China.
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Song Z, Li W, Lai X, Chen H, Wang L, Chen W, Li X, Zhu X. MaC2H2-IDD regulates fruit softening and involved in softening disorder induced by cold stress in banana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1937-1954. [PMID: 38491870 DOI: 10.1111/tpj.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Chilling stress causes banana fruit softening disorder and severely impairs fruit quality. Various factors, such as transcription factors, regulate fruit softening. Herein, we identified a novel regulator, MaC2H2-IDD, whose expression is closely associated with fruit ripening and softening disorder. MaC2H2-IDD is a transcriptional activator located in the nucleus. The transient and ectopic overexpression of MaC2H2-IDD promoted "Fenjiao" banana and tomato fruit ripening. However, transient silencing of MaC2H2-IDD repressed "Fenjiao" banana fruit ripening. MaC2H2-IDD modulates fruit softening by activating the promoter activity of starch (MaBAM3, MaBAM6, MaBAM8, MaAMY3, and MaISA2) and cell wall (MaEXP-A2, MaEXP-A8, MaSUR14-like, and MaGLU22-like) degradation genes. DLR, Y1H, EMSA, and ChIP-qPCR assays validated the expression regulation. MaC2H2-IDD interacts with MaEBF1, enhancing the regulation of MaC2H2-IDD to MaAMY3, MaEXP-A2, and MaGLU22-like. Overexpressing/silencing MaC2H2-IDD in banana and tomato fruit altered the transcript levels of the cell wall and starch (CWS) degradation genes. Several differentially expressed genes (DEGs) were authenticated between the overexpression and control fruit. The DEGs mainly enriched biosynthesis of secondary metabolism, amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, starch and sucrose metabolism, and plant hormones signal transduction. Overexpressing MaC2H2-IDD also upregulated protein levels of MaEBF1. MaEBF1 does not ubiquitinate or degrade MaC2H2-IDD. These data indicate that MaC2H2-IDD is a new regulator of CWS degradation in "Fenjiao" banana and cooperates with MaEBF1 to modulate fruit softening, which also involves the cold softening disorder.
Collapse
Affiliation(s)
- Zunyang Song
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenhui Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiuhua Lai
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hangcong Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Lihua Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xueping Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
8
|
Li JW, Zhou P, Hu ZH, Teng RM, Wang YX, Li T, Xiong AS, Li XH, Chen X, Zhuang J. CsPAT1, a GRAS transcription factor, promotes lignin accumulation by antagonistic interacting with CsWRKY13 in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1312-1326. [PMID: 38319894 DOI: 10.1111/tpj.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Lignin is an important component of plant cell walls and plays crucial roles in the essential agronomic traits of tea quality and tenderness. However, the molecular mechanisms underlying the regulation of lignin biosynthesis in tea plants remain unclear. CsWRKY13 acts as a negative regulator of lignin biosynthesis in tea plants. In this study, we identified a GRAS transcription factor, phytochrome A signal transduction 1 (CsPAT1), that interacts with CsWRKY13. Silencing CsPAT1 expression in tea plants and heterologous overexpression in Arabidopsis demonstrated that CsPAT1 positively regulates lignin accumulation. Further investigation revealed that CsWRKY13 directly binds to the promoters of CsPAL and CsC4H and suppresses transcription of CsPAL and CsC4H. CsPAT1 indirectly affects the promoter activities of CsPAL and CsC4H by interacting with CsWRKY13, thereby facilitating lignin biosynthesis in tea plants. Compared with the expression of CsWRKY13 alone, the co-expression of CsPAT1 and CsWRKY13 in Oryza sativa significantly increased lignin biosynthesis. Conversely, compared with the expression of CsPAT1 alone, the co-expression of CsPAT1 and CsWRKY13 in O. sativa significantly reduced lignin accumulation. These results demonstrated the antagonistic regulation of the lignin biosynthesis pathway by CsPAT1 and CsWRKY13. These findings improve our understanding of lignin biosynthesis mechanisms in tea plants and provide insights into the role of the GRAS transcription factor family in lignin accumulation.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ping Zhou
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Li X, Chen L, Liu T, Chen Y, Wang J, Song B. Integrated analysis of ATAC-seq and transcriptomic reveals the ScDof3-ScproC molecular module regulating the cold acclimation capacity of potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108576. [PMID: 38608502 DOI: 10.1016/j.plaphy.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Low temperature severely affects the geographical distribution and production of potato, which may incur cold damage in early spring or winter. Cultivated potatoes, mainly derived from Solanum tuberosum, are sensitive to freezing stress, but wild species of potato such as S. commersonii exhibit both constitutive freezing tolerance and/or cold acclimation tolerance. Hence, such wild species could assist in cold hardiness breeding. Yet the key transcription factors and their downstream functional genes that confer freezing tolerance are far from clear, hindering the breeding process. Here, we used ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) alongside RNA-seq to investigate the variation in chromatin accessibility and patterns of gene expression in freezing-tolerant CMM5 (S. commersonii), before and after its cold treatment. Our results suggest that after exposure to cold, transcription factors including Dof3, ABF2, PIF4, and MYB4 were predicted to further control the genes active in the synthetic/metabolic pathways of plant hormones, namely abscisic acid, polyamine, and reductive glutathione (among others). This suggests these transcription factors could regulate freezing tolerance of CMM5 leaves. In particular, ScDof3 was proven to regulate the expression of ScproC (pyrroline-5-carboxylate reductase, P5CR) according to dual-LUC assays. Overexpressing ScDof3 in Nicotiana benthamiana leaves led to an increase in both the proline content and expression level of NbproC (homolog of ScproC). These results demonstrate the ScDof3-ScproC module regulates the proline content and thus promotes freezing tolerance in potato. Our research provides valuable genetic resources to further study the molecular mechanisms underpinning cold tolerance in potato.
Collapse
Affiliation(s)
- Xin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lin Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Tiantian Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ye Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
10
|
Li B, Zang Y, Song C, Wang X, Wu X, Wang X, Xi Z. VvERF117 positively regulates grape cold tolerance through direct regulation of the antioxidative gene BAS1. Int J Biol Macromol 2024; 268:131804. [PMID: 38670186 DOI: 10.1016/j.ijbiomac.2024.131804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Cold stress significantly threatens grape quality, yield, and geographical distribution. Although ethylene-responsive factors (ERFs) are recognized for their pivotal roles in cold stress, the regulatory mechanisms of many ERFs contributing to tolerance remain unclear. In this study, we identified the cold-responsive gene VvERF117 and elucidated its positive regulatory function in cold tolerance. VvERF117 exhibits transcriptional activity and localizes to the nucleus. VvERF117 overexpression improved cold tolerance in transgenic Arabidopsis, grape calli, and grape leaves, whereas VvERF117 silencing increased cold sensitivity in grape calli and leaves. Furthermore, VvERF117 overexpression remarkably upregulated the expression of several stress-related genes. Importantly, BAS1, encoding a 2-Cys peroxidase (POD), was confirmed as a direct target gene of VvERF117. Meanwhile, compared to the wild-type, POD activity and H2O2 content were remarkably increased and decreased in VvERF117-overexpressing grape calli and leaves, respectively. Conversely, VvERF117 silencing displayed the opposite trend in grape calli and leaves under cold stress. These findings indicate that VvERF117 plays a positive role in cold resistance by, at least in part, enhancing antioxidant capacity through regulating the POD-encoding gene VvBAS1, leading to effective mitigation of reactive oxygen species.
Collapse
Affiliation(s)
- Beibei Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100
| | - Yushuang Zang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100
| | - Changze Song
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100
| | - Xuefei Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100
| | - Xueyan Wu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100
| | - Xianhang Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100.
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100.
| |
Collapse
|
11
|
Wong DCJ, Wang Z, Perkins J, Jin X, Marsh GE, John EG, Peakall R. The road less taken: Dihydroflavonol 4-reductase inactivation and delphinidin anthocyanin loss underpins a natural intraspecific flower colour variation. Mol Ecol 2024:e17334. [PMID: 38651763 DOI: 10.1111/mec.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Visual cues are of critical importance for the attraction of animal pollinators, however, little is known about the molecular mechanisms underpinning intraspecific floral colour variation. Here, we combined comparative spectral analysis, targeted metabolite profiling, multi-tissue transcriptomics, differential gene expression, sequence analysis and functional analysis to investigate a bee-pollinated orchid species, Glossodia major with common purple- and infrequent white-flowered morphs. We found uncommon and previously unreported delphinidin-based anthocyanins responsible for the conspicuous and pollinator-perceivable colour of the purple morph and three genetic changes underpinning the loss of colour in the white morph - (1) a loss-of-function (LOF; frameshift) mutation affecting dihydroflavonol 4-reductase (DFR1) coding sequence due to a unique 4-bp insertion, (2) specific downregulation of functional DFR1 expression and (3) the unexpected discovery of chimeric Gypsy transposable element (TE)-gene (DFR) transcripts with potential consequences to the genomic stability and post-transcriptional or epigenetic regulation of DFR. This is one of few known cases where regulatory changes and LOF mutation in an anthocyanin structural gene, rather than transcription factors, are important. Furthermore, if TEs prove to be a frequent source of mutation, the interplay between environmental stress-induced TE evolution and pollinator-mediated selection for adaptive colour variation may be an overlooked mechanism maintaining floral colour polymorphism in nature.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - James Perkins
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Grace Emma Marsh
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Emma Grace John
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
12
|
Che L, Lu S, Gou H, Li M, Guo L, Yang J, Mao J. VvJAZ13 Positively Regulates Cold Tolerance in Arabidopsis and Grape. Int J Mol Sci 2024; 25:4458. [PMID: 38674041 PMCID: PMC11049880 DOI: 10.3390/ijms25084458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cold stress adversely impacts grape growth, development, and yield. Therefore, improving the cold tolerance of grape is an urgent task of grape breeding. The Jasmonic acid (JA) pathway responsive gene JAZ plays a key role in plant response to cold stress. However, the role of JAZ in response to low temperatures in grape is unclear. In this study, VvJAZ13 was cloned from the 'Pinot Noir' (Vitis vinefera cv. 'Pinot Noir') grape, and the potential interacting protein of VvJAZ13 was screened by yeast two-hybrid (Y2H). The function of VvJAZ13 under low temperature stress was verified by genetic transformation. Subcellular localization showed that the gene was mainly expressed in cytoplasm and the nucleus. Y2H indicated that VvF-box, VvTIFY5A, VvTIFY9, Vvbch1, and VvAGD13 may be potential interacting proteins of VvJAZ13. The results of transient transformation of grape leaves showed that VvJAZ13 improved photosynthetic capacity and reduced cell damage by increasing maximum photosynthetic efficiency of photosystem II (Fv/Fm), reducing relative electrolyte leakage (REL) and malondialdehyde (MDA), and increasing proline content in overexpressed lines (OEs), which played an active role in cold resistance. Through the overexpression of VvJAZ13 in Arabidopsis thaliana and grape calli, the results showed that compared with wild type (WT), transgenic lines had higher antioxidant enzyme activity and proline content, lower REL, MDA, and hydrogen peroxide (H2O2) content, and an improved ability of scavenging reactive oxygen species. In addition, the expression levels of CBF1-2 and ICE1 genes related to cold response were up-regulated in transgenic lines. To sum up, VvJAZ13 is actively involved in the cold tolerance of Arabidopsis and grape, and has the potential to be a candidate gene for improving plant cold tolerance.
Collapse
Affiliation(s)
- Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juanbo Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Hwarari D, Radani Y, Ke Y, Chen J, Yang L. CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks. Funct Integr Genomics 2024; 24:50. [PMID: 38441816 DOI: 10.1007/s10142-024-01314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
The CRISPR/Cas systems have emerged as transformative tools for precisely manipulating plant genomes and enhancement. It has provided unparalleled applications from modifying the plant genomes to resistant enhancement. This review manuscript summarises the mechanism, application, and current challenges in the CRISPR/Cas genome editing technology. It addresses the molecular mechanisms of different Cas genes, elucidating their applications in various plants through crop improvement, disease resistance, and trait improvement. The advent of the CRISPR/Cas systems has enabled researchers to precisely modify plant genomes through gene knockouts, knock-ins, and gene expression modulation. Despite these successes, the CRISPR/Cas technology faces challenges, including off-target effects, Cas toxicity, and efficiency. In this manuscript, we also discuss these challenges and outline ongoing strategies employed to overcome these challenges, including the development of novel CRISPR/Cas variants with improved specificity and specific delivery methods for different plant species. The manuscript will conclude by addressing the future perspectives of the CRISPR/Cas technology in plants. Although this review manuscript is not conclusive, it aims to provide immense insights into the current state and future potential of CRISPR/Cas in sustainable and secure plant production.
Collapse
Affiliation(s)
- Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongchao Ke
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
14
|
Campa M, Miranda S, Licciardello C, Lashbrooke JG, Dalla Costa L, Guan Q, Spök A, Malnoy M. Application of new breeding techniques in fruit trees. PLANT PHYSIOLOGY 2024; 194:1304-1322. [PMID: 37394947 DOI: 10.1093/plphys/kiad374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Climate change and rapid adaption of invasive pathogens pose a constant pressure on the fruit industry to develop improved varieties. Aiming to accelerate the development of better-adapted cultivars, new breeding techniques have emerged as a promising alternative to meet the demand of a growing global population. Accelerated breeding, cisgenesis, and CRISPR/Cas genome editing hold significant potential for crop trait improvement and have proven to be useful in several plant species. This review focuses on the successful application of these technologies in fruit trees to confer pathogen resistance and tolerance to abiotic stress and improve quality traits. In addition, we review the optimization and diversification of CRISPR/Cas genome editing tools applied to fruit trees, such as multiplexing, CRISPR/Cas-mediated base editing and site-specific recombination systems. Advances in protoplast regeneration and delivery techniques, including the use of nanoparticles and viral-derived replicons, are described for the obtention of exogenous DNA-free fruit tree species. The regulatory landscape and broader social acceptability for cisgenesis and CRISPR/Cas genome editing are also discussed. Altogether, this review provides an overview of the versatility of applications for fruit crop improvement, as well as current challenges that deserve attention for further optimization and potential implementation of new breeding techniques.
Collapse
Affiliation(s)
- Manuela Campa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| | - Simón Miranda
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | | | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Armin Spök
- Science, Technology and Society Unit, Graz University of Technology, Graz, Austria
| | - Mickael Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| |
Collapse
|
15
|
Fan Y, Wan X, Zhang X, Zhang J, Zheng C, Yang Q, Yang L, Li X, Feng L, Zou L, Xiang D. GRAS gene family in rye (Secale cereale L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses. BMC PLANT BIOLOGY 2024; 24:46. [PMID: 38216860 PMCID: PMC10787399 DOI: 10.1186/s12870-023-04674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xianqi Wan
- Sichuan Academy of Agricultural Machinery Science, Chengdu, 610011, P.R. China
| | - Xin Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Jieyu Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Chunyu Zheng
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, P.R. China
| | - Qiaohui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Li Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xiaolong Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610000, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| |
Collapse
|
16
|
Zheng Q, Yu Q, Yao W, Lv K, Zhang N, Xu W. Decoding VaCOLD1 Function in Grapevines: A Membrane Protein Enhancing Cold Stress Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19357-19371. [PMID: 38037352 DOI: 10.1021/acs.jafc.3c05101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In globally cultivated grapevines, low-temperature stress poses a persistent challenge. Although COLD1 is recognized as a cold receptor in rice, its function in grapevine cold signaling is unclear. Here, we identified VaCOLD1, a transmembrane protein from the cold-tolerant Vitis amurensis Rupr, which is primarily located on plasma and endoplasmic reticulum membranes. Broadly expressed across multiple tissues, VaCOLD1 responds to various environmental stresses, particularly to cold. Its promoter contains distinct hormone- and stress-responsive elements, with GUS assays confirming widespread expression in Arabidopsis thaliana. Validation of interaction between VaCOLD1 and VaGPA1, together with their combined expression in yeast and grape calli, notably improved cold endurance. Overexpression of VaCOLD1 enhances cold tolerance in Arabidopsis by strengthening the CBF-COR signaling pathway. This is achieved through shielding against osmotic disturbances and modifying the expression of ABA-mediated genes. These findings emphasize the critical role of the VaCOLD1-VaGPA1 complex in mediating the response to cold stress via the CBF-COR pathway.
Collapse
Affiliation(s)
- Qiaoling Zheng
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Qinhan Yu
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Wenkong Yao
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Kai Lv
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Ningbo Zhang
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Weirong Xu
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| |
Collapse
|
17
|
Neves C, Ribeiro B, Amaro R, Expósito J, Grimplet J, Fortes AM. Network of GRAS transcription factors in plant development, fruit ripening and stress responses. HORTICULTURE RESEARCH 2023; 10:uhad220. [PMID: 38077496 PMCID: PMC10699852 DOI: 10.1093/hr/uhad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 06/23/2024]
Abstract
The plant-specific family of GRAS transcription factors has been wide implicated in the regulation of transcriptional reprogramming associated with a diversity of biological functions ranging from plant development processes to stress responses. Functional analyses of GRAS transcription factors supported by in silico structural and comparative analyses are emerging and clarifying the regulatory networks associated with their biological roles. In this review, a detailed analysis of GRAS proteins' structure and biochemical features as revealed by recent discoveries indicated how these characteristics may impact subcellular location, molecular mechanisms, and function. Nomenclature issues associated with GRAS classification into different subfamilies in diverse plant species even in the presence of robust genomic resources are discussed, in particular how it affects assumptions of biological function. Insights into the mechanisms driving evolution of this gene family and how genetic and epigenetic regulation of GRAS contributes to subfunctionalization are provided. Finally, this review debates challenges and future perspectives on the application of this complex but promising gene family for crop improvement to cope with challenges of environmental transition.
Collapse
Affiliation(s)
- Catarina Neves
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Beatriz Ribeiro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rute Amaro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jesús Expósito
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Ana Margarida Fortes
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
18
|
Mao T, Wang X, Gao H, Gong Z, Liu R, Jiang N, Zhang Y, Zhang H, Guo X, Yu C. Ectopic Expression of MADS-Box Transcription Factor VvAGL12 from Grape Promotes Early Flowering, Plant Growth, and Production by Regulating Cell-Wall Architecture in Arabidopsis. Genes (Basel) 2023; 14:2078. [PMID: 38003021 PMCID: PMC10671436 DOI: 10.3390/genes14112078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The MADS-box family, a substantial group of plant transcription factors, crucially regulates plant growth and development. Although the functions of AGL12-like subgroups have been elucidated in Arabidopsis, rice, and walnut, their roles in grapes remain unexplored. In this study, we isolated VvAGL12, a member of the grape MADS-box group, and investigated its impact on plant growth and biomass production. VvAGL12 was found to localize in the nucleus and exhibit expression in both vegetative and reproductive organs. We introduced VvAGL12 into Arabidopsis thaliana ecotype Columbia-0 and an agl12 mutant. The resulting phenotypes in the agl12 mutant, complementary line, and overexpressed line underscored VvAGL12's ability to promote early flowering, augment plant growth, and enhance production. This was evident from the improved fresh weight, root length, plant height, and seed production, as well as the reduced flowering time. Subsequent transcriptome analysis revealed significant alterations in the expression of genes associated with cell-wall modification and flowering in the transgenic plants. In summary, the findings highlight VvAGL12's pivotal role in the regulation of flowering timing, overall plant growth, and development. This study offers valuable insights, serving as a reference for understanding the influence of the VvAGL12 gene in other plant species and addressing yield-related challenges.
Collapse
Affiliation(s)
- Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Xueting Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Hongsheng Gao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Zijian Gong
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Ruichao Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Ning Jiang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Yaru Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai 264001, China
| | - Xiaotong Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| |
Collapse
|
19
|
Mishra S, Chaudhary R, Pandey B, Singh G, Sharma P. Genome-wide identification and expression analysis of the GRAS gene family under abiotic stresses in wheat (Triticum aestivum L.). Sci Rep 2023; 13:18705. [PMID: 37907517 PMCID: PMC10618205 DOI: 10.1038/s41598-023-45051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
The GRAS transcription factors are multifunctional proteins involved in various biological processes, encompassing plant growth, metabolism, and responses to both abiotic and biotic stresses. Wheat is an important cereal crop cultivated worldwide. However, no systematic study of the GRAS gene family and their functions under heat, drought, and salt stress tolerance and molecular dynamics modeling in wheat has been reported. In the present study, we identified the GRAS gene in Triticum aestivum through systematically performing gene structure analysis, chromosomal location, conserved motif, phylogenetic relationship, and expression patterns. A total of 177 GRAS genes were identified within the wheat genome. Based on phylogenetic analysis, these genes were categorically placed into 14 distinct subfamilies. Detailed analysis of the genetic architecture revealed that the majority of TaGRAS genes had no intronic regions. The expansion of the wheat GRAS gene family was proven to be influenced by both segmental and tandem duplication events. The study of collinearity events between TaGRAS and analogous orthologs from other plant species provided valuable insights into the evolution of the GRAS gene family in wheat. It is noteworthy that the promoter regions of TaGRAS genes consistently displayed an array of cis-acting elements that are associated with stress responses and hormone regulation. Additionally, we discovered 14 miRNAs that target key genes involved in three stress-responsive pathways in our study. Moreover, an assessment of RNA-seq data and qRT-PCR results revealed a significant increase in the expression of TaGRAS genes during abiotic stress. These findings highlight the crucial role of TaGRAS genes in mediating responses to different environmental stresses. Our research delved into the molecular dynamics and structural aspects of GRAS domain-DNA interactions, marking the first instance of such information being generated. Overall, the current findings contribute to our understanding of the organization of the GRAS genes in the wheat genome. Furthermore, we identified TaGRAS27 as a candidate gene for functional research, and to improve abiotic stress tolerance in the wheat by molecular breeding.
Collapse
Affiliation(s)
- Shefali Mishra
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India
| | - Reeti Chaudhary
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India
| | - Bharti Pandey
- ICAR-National Dairy Research Institute, Karnal, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India.
| |
Collapse
|
20
|
Lei X, Fang J, Lv J, Li Z, Liu Z, Wang Y, Wang C, Gao C. Overexpression of ThSCL32 confers salt stress tolerance by enhancing ThPHD3 gene expression in Tamarix hispida. TREE PHYSIOLOGY 2023; 43:1444-1453. [PMID: 37104646 DOI: 10.1093/treephys/tpad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
GRAS transcription factors belong to the plant-specific protein family. They are not only involved in plant growth and development but also in plant responses to a variety of abiotic stresses. However, to date, the SCL32(SCARECROW-like 32) gene conferring the desired resistance to salt stresses has not been reported in plants. Here, ThSCL32, a homologous gene of ArabidopsisthalianaAtSCL32, was identified. ThSCL32 was highly induced by salt stress in Tamarix hispida. ThSCL32 overexpression in T. hispida gave rise to improved salt tolerance. ThSCL32-silenced T. hispida plants were more sensitive to salt stress. RNA-seq analysis of transient transgenic T. hispida overexpressing ThSCL32 revealed significantly enhanced ThPHD3 (prolyl-4-hydroxylase domain 3 protein) gene expression. ChIP-PCR further verified that ThSCL32 probably binds to the novel cis-element SBS (ACGTTG) in the promoter of ThPHD3 to activate its expression. In brief, our results suggest that the ThSCL32 transcription factor is involved in salt tolerance in T. hispida by enhancing ThPHD3 expression.
Collapse
Affiliation(s)
- Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Jiaru Fang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - JiaXin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Zhengyang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| |
Collapse
|
21
|
Lei S, Zhao L, Chen Y, Xu G. Identification and promoter analysis of a GA-stimulated transcript 1 gene from Jatropha curcas. PLANT CELL REPORTS 2023:10.1007/s00299-023-03034-5. [PMID: 37355482 DOI: 10.1007/s00299-023-03034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 06/26/2023]
Abstract
KEY MESSAGE Overexpression of JcGAST1 promotes plant growth but inhibits pistil development. The pyrimidine box and CGTCA motif of the JcGAST1 promoter were responsible for the GA and MeJA responses. Members of the gibberellic acid-stimulated Arabidopsis (GASA) gene family play roles in plant growth and development, particularly in flower induction and seed development. However, there is still relatively limited knowledge of GASA genes in Jatropha curcas. Herein, we identified a GASA family gene from Jatropha curcas, namely, JcGAST1, which encodes a protein containing a conserved GASA domain. Sequence alignment showed that the JcGAST1 protein shares 76% sequence identity and 80% sequence similarity with SlGAST1. JcGAST1 had higher expression and protein levels in the female flowers than in the male flowers. Overexpression of JcGAST1 in tobacco promotes plant growth but inhibits pistil development. JcGAST1 expression was upregulated by GA and downregulated by MeJA. Promoter analysis indicated that the pyrimidine box and CGTCA motif were the GA- and MeJA-responsive elements of the JcGAST1 promoter. Using a Y1H screen, six transcription factors were found to interact with the pyrimidine box, and three transcription factors were found to interact with the CGTCA motif. Overall, the results of this study improve our understanding of the JcGAST1 gene and provide useful information for further studies.
Collapse
Affiliation(s)
- Shikang Lei
- School of Traditional Chinese Medicine Resource/ Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Biology and Genetic Breeding, Guangzhou Academy of Agricultural Sciences, Guangzhou, 510000, China
| | | | - Yuqian Chen
- Institute for Forest Resources and Environment of Guizhou/College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Gang Xu
- School of Traditional Chinese Medicine Resource/ Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Shor E, Ravid J, Sharon E, Skaliter O, Masci T, Vainstein A. SCARECROW-like GRAS protein PES positively regulates petunia floral scent production. PLANT PHYSIOLOGY 2023; 192:409-425. [PMID: 36760164 PMCID: PMC10152688 DOI: 10.1093/plphys/kiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Emission of scent volatiles by flowers is important for successful pollination and consequently, reproduction. Petunia (Petunia hybrida) floral scent is formed mainly by volatile products of the phenylpropanoid pathway. We identified and characterized a regulator of petunia scent production: the GRAS protein PHENYLPROPANOID EMISSION-REGULATING SCARECROW-LIKE (PES). Its expression increased in petals during bud development and was highest in open flowers. Overexpression of PES increased the production of floral volatiles, while its suppression resulted in scent reduction. We showed that PES upregulates the expression of genes encoding enzymes of the phenylpropanoid and shikimate pathways in petals, and of the core regulator of volatile biosynthesis ODORANT1 by activating its promoter. PES is an ortholog of Arabidopsis (Arabidopsis thaliana) PHYTOCHROME A SIGNAL TRANSDUCTION 1, involved in physiological responses to far-red (FR) light. Analyses of the effect of nonphotosynthetic irradiation (low-intensity FR light) on petunia floral volatiles revealed FR light as a scent-activating factor. While PHYTOCHROME A regulated scent-related gene expression and floral scent production under FR light, the influence of PES on volatile production was not limited by FR light conditions.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jasmin Ravid
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
23
|
Li C, Dong S, Beckles DM, Liu X, Guan J, Gu X, Miao H, Zhang S. GWAS reveals novel loci and identifies a pentatricopeptide repeat-containing protein (CsPPR) that improves low temperature germination in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1116214. [PMID: 37235012 PMCID: PMC10208356 DOI: 10.3389/fpls.2023.1116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/24/2023] [Indexed: 05/28/2023]
Abstract
Low temperatures (LTs) negatively affect the percentage and rate of cucumber (Cucumis sativus L.) seed germination, which has deleterious effects on yield. Here, a genome-wide association study (GWAS) was used to identify the genetic loci underlying low temperature germination (LTG) in 151 cucumber accessions that represented seven diverse ecotypes. Over two years, phenotypic data for LTG i.e., relative germination rate (RGR), relative germination energy (RGE), relative germination index (RGI) and relative radical length (RRL), were collected in two environments, and 17 of the 151 accessions were found to be highly cold tolerant using cluster analysis. A total of 1,522,847 significantly associated single-nucleotide polymorphism (SNP) were identified, and seven loci associated with LTG, on four chromosomes, were detected: gLTG1.1, gLTG1.2, gLTG1.3, gLTG4.1, gLTG5.1, gLTG5.2, and gLTG6.1 after resequencing of the accessions. Of the seven loci, three, i.e., gLTG1.2, gLTG4.1, and gLTG5.2, showed strong signals that were consistent over two years using the four germination indices, and are thus strong and stable for LTG. Eight candidate genes associated with abiotic stress were identified, and three of them were potentially causal to LTG: CsaV3_1G044080 (a pentatricopeptide repeat-containing protein) for gLTG1.2, CsaV3_4G013480 (a RING-type E3 ubiquitin transferase) for gLTG4.1, and CsaV3_5G029350 (a serine/threonine-protein kinase) for gLTG5.2. The function for CsPPR (CsaV3_1G044080) in regulating LTG was confirmed, as Arabidopsis lines ectopically expressing CsPPR showed higher germination and survival rates at 4°C compared to the wild-type, which preliminarily illustrates that CsPPR positively regulates cucumber cold tolerance at the germination stage. This study will provide insights into cucumber LT-tolerance mechanisms and further promote cucumber breeding development.
Collapse
Affiliation(s)
- Caixia Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diane M. Beckles
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Feng X, Yu Q, Zeng J, He X, Ma W, Ge L, Liu W. Comprehensive Analysis of the INDETERMINATE DOMAIN (IDD) Gene Family and Their Response to Abiotic Stress in Zea mays. Int J Mol Sci 2023; 24:ijms24076185. [PMID: 37047154 PMCID: PMC10094743 DOI: 10.3390/ijms24076185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Transcription factors (TFs) are important regulators of numerous gene expressions due to their ability to recognize and combine cis-elements in the promoters of target genes. The INDETERMINATE DOMAIN (IDD) gene family belongs to a subfamily of C2H2 zinc finger proteins and has been identified only in terrestrial plants. Nevertheless, little study has been reported concerning the genome-wide analysis of the IDD gene family in maize. In total, 22 ZmIDD genes were identified, which can be distributed on 8 chromosomes in maize. On the basis of evolutionary relationships and conserved motif analysis, ZmIDDs were categorized into three clades (1, 2, and 3), each owning 4, 6, and 12 genes, respectively. We analyzed the characteristics of gene structure and found that 3 of the 22 ZmIDD genes do not contain an intron. Cis-element analysis of the ZmIDD promoter showed that most ZmIDD genes possessed at least one ABRE or MBS cis-element, and some ZmIDD genes owned the AuxRR-core, TCA-element, TC-rich repeats, and LTR cis-element. The Ka:Ks ratio of eight segmentally duplicated gene pairs demonstrated that the ZmIDD gene families had undergone a purifying selection. Then, the transcription levels of ZmIDDs were analyzed, and they showed great differences in diverse tissues as well as abiotic stresses. Furthermore, regulatory networks were constructed through the prediction of ZmIDD-targeted genes and miRNAs, which can inhibit the transcription of ZmIDDs. In total, 6 ZmIDDs and 22 miRNAs were discovered, which can target 180 genes and depress the expression of 9 ZmIDDs, respectively. Taken together, the results give us valuable information for studying the function of ZmIDDs involved in plant development and climate resilience in maize.
Collapse
|
25
|
Chen H, Liu X, Li S, Yuan L, Mu H, Wang Y, Li Y, Duan W, Fan P, Liang Z, Wang L. The class B heat shock factor HSFB1 regulates heat tolerance in grapevine. HORTICULTURE RESEARCH 2023; 10:uhad001. [PMID: 36938570 PMCID: PMC10018785 DOI: 10.1093/hr/uhad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Grape is a widely cultivated crop with high economic value. Most cultivars derived from mild or cooler climates may not withstand increasing heat stress. Therefore, dissecting the mechanisms of heat tolerance in grapes is of particular significance. Here, we performed comparative transcriptome analysis of Vitis davidii 'Tangwei' (heat tolerant) and Vitis vinifera 'Jingxiu' (heat sensitive) grapevines after exposure to 25°C, 40°C, or 45°C for 2 h. More differentially expressed genes (DEGs) were detected in 'Tangwei' than in 'Jingxiu' in response to heat stress, and the number of DEGs increased with increasing treatment temperatures. We identified a class B Heat Shock Factor, HSFB1, which was significantly upregulated in 'Tangwei', but not in 'Jingxiu', at high temperature. VdHSFB1 from 'Tangwei' and VvHSFB1 from 'Jingxiu' differ in only one amino acid, and both showed similar transcriptional repression activities. Overexpression and RNA interference of HSFB1 in grape indicated that HSFB1 positively regulates the heat tolerance. Moreover, the heat tolerance of HSFB1-overexpressing plants was positively correlated to HSFB1 expression level. The activity of the VdHSFB1 promoter is higher than that of VvHSFB1 under both normal and high temperatures. Promoter analysis showed that more TATA-box and AT~TATA-box cis-elements are present in the VdHSFB1 promoter than the VvHSFB1 promoter. The promoter sequence variations between VdHSFB1 and VvHSFB1 likely determine the HSFB1 expression levels that influence heat tolerance of the two grape germplasms with contrasting thermotolerance. Collectively, we validated the role of HSFB1 in heat tolerance, and the knowledge gained will advance our ability to breed heat-tolerant grape cultivars.
Collapse
Affiliation(s)
- Haiyang Chen
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinna Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenchang Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huayuan Mu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yang Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | | |
Collapse
|
26
|
Chen C, Lu LL, Ma SY, Zhao YP, Wu N, Li WJ, Ma L, Kong XH, Xie ZM, Hou YX. Analysis of PAT1 subfamily members in the GRAS family of upland cotton and functional characterization of GhSCL13-2A in Verticillium dahliae resistance. PLANT CELL REPORTS 2023; 42:487-504. [PMID: 36680639 DOI: 10.1007/s00299-022-02971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
GhSCL13-2A, a member of the PAT1 subfamily in the GRAS family, positively regulates cotton resistance to Verticillium dahliae by mediating the jasmonic acid and salicylic acid signaling pathways and accumulation of reactive oxygen species. Verticillium wilt (VW) is a devastating disease of upland cotton (Gossypium hirsutum) that is primarily caused by the soil-borne fungus Verticillium dahliae. Scarecrow-like (SCL) proteins are known to be involved in plant abiotic and biotic stress responses, but their roles in cotton defense responses are still unclear. In this study, a total of 25 GhPAT1 subfamily members in the GRAS family were identified in upland cotton. Gene organization and protein domain analysis showed that GhPAT1 members were highly conserved. GhPAT1 genes were widely expressed in various tissues and at multiple developmental stages, and they were responsive to jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) signals. Furthermore, GhSCL13-2A was induced by V. dahliae infection. V. dahliae resistance was enhanced in Arabidopsis thaliana by ectopic overexpression of GhSCL13-2A, whereas cotton GhSCL13-2A knockdowns showed increased susceptibility. Levels of reactive oxygen species (ROS) and JA were also increased and SA content was decreased in GhSCL13-2A knockdowns. At the gene expression level, PR genes and SA signaling marker genes were down-regulated and JA signaling marker genes were upregulated in GhSCL13-2A knockdowns. GhSCL13-2A was shown to be localized to the cell membrane and the nucleus. Yeast two-hybrid and luciferase complementation assays indicated that GhSCL13-2A interacted with GhERF5. In Arabidopsis, V. dahliae resistance was enhanced by GhERF5 overexpression; in cotton, resistance was reduced in GhERF5 knockdowns. This study revealed a positive role of GhSCL13-2A in V. dahliae resistance, establishing it as a strong candidate gene for future breeding of V. dahliae-resistant cotton cultivars.
Collapse
Affiliation(s)
- Chen Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Li-Li Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National NanfanResearch Institute (Sanya), Chinese Academy ofAgricultural Sciences, Sanya, 572024, Hainan, China
| | - Shu-Ya Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan-Peng Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Na Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wen-Jie Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Li Ma
- Agricultural Science Institute of the Third Division of Xinjiang Production and Construction Corps, Tumushuke, 843901, Xinjiang, China
| | - Xian-Hui Kong
- Agricultural Science Institute of the Third Division of Xinjiang Production and Construction Corps, Tumushuke, 843901, Xinjiang, China
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Zong-Ming Xie
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China.
| | - Yu-Xia Hou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
27
|
Hou Y, Wong DCJ, Li Q, Zhou H, Zhu Z, Gong L, Liang J, Ren H, Liang Z, Wang Q, Xin H. Dissecting the effect of ethylene in the transcriptional regulation of chilling treatment in grapevine leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1084-1097. [PMID: 36921558 DOI: 10.1016/j.plaphy.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Ethylene (ETH) plays important roles in various development programs and stress responses in plants. In grapevines, ETH increased dramatically under chilling stress and is known to positively regulate cold tolerance. However, the role of ETH in transcriptional regulation during chilling stress of grapevine leaves is still not clear. To address this gap, targeted hormone profiling and transcriptomic analysis were performed on leaves of Vitis amurensis under chilling stress with and without aminoethoxyvinylglycine (AVG, a inhibitor of ETH synthesis) treatment. APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) and WRKY transcription factors (TF) were only the two highly enriched TF families that were consistently up-regulated during chilling stress but inhibited by AVG. The comparison of leaf transcriptomes between chilling treatment and chilling with AVG allowed the identification of potential ETH-regulated genes. Potential genes that are positively regulated by ETH are enriched in solute transport, protein biosynthesis, phytohormone action, antioxidant and carbohydrate metabolism. Conversely, genes related to the synthesis and signaling of ETH, indole-3-acetic acid (IAA), abscisic acid (ABA) were up-regulated by chilling treatment but inhibited by AVG. The contents of ETH, ABA and IAA also paralleled with the transcriptome data, which suggests that the response of ABA and IAA during chilling stress may regulate by ETH signaling, and together may belong to an integrated network of hormonal signaling pathways underpinning chilling stress response in grapevine leaves. Together, these findings provide new clues for further studying the complex regulatory mechanism of ETH under low-temperature stress in plants more generally and new opportunities for breeding cold-resilient grapevines.
Collapse
Affiliation(s)
- Yujun Hou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Qingyun Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfei Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linzhong Gong
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ju Liang
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Hongsong Ren
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, And CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Qingfeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Center of Economic Botany, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Ren C, Fan P, Li S, Liang Z. Advances in understanding cold tolerance in grapevine. PLANT PHYSIOLOGY 2023:kiad092. [PMID: 36789447 DOI: 10.1093/plphys/kiad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis ssp.) is a deciduous perennial fruit crop, and the canes and buds of grapevine should withstand low temperatures annually during winter. However, the widely cultivated Vitis vinifera is cold-sensitive and cannot survive the severe winter in regions with extremely low temperatures, such as viticulture regions in northern China. By contrast, a few wild Vitis species like V. amurensis and V. riparia exhibit excellent freezing tolerance. However, the mechanisms underlying grapevine cold tolerance remain largely unknown. In recent years, much progress has been made in elucidating the mechanisms, owing to the advances in sequencing and molecular biotechnology. Assembly of grapevine genomes together with resequencing and transcriptome data enable researchers to conduct genomic and transcriptomic analyses in various grapevine genotypes and populations to explore genetic variations involved in cold tolerance. In addition, a number of pivotal genes have been identified and functionally characterized. In this review, we summarize recent major advances in physiological and molecular analyses of cold tolerance in grapevine and put forward questions in this field. We also discuss the strategies for improving the tolerance of grapevine to cold stress. Understanding grapevine cold tolerance will facilitate the development of grapevines for adaption to global climate change.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| |
Collapse
|
29
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
30
|
Liu J, Han L, Li G, Zhang A, Liu X, Zhao M. Transcriptome and metabolome profiling of the medicinal plant Veratrum mengtzeanum reveal key components of the alkaloid biosynthesis. Front Genet 2023; 14:1023433. [PMID: 36741317 PMCID: PMC9895797 DOI: 10.3389/fgene.2023.1023433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Veratrum mengtzeanum is the main ingredient for Chinese folk medicine known as "Pimacao" due to its unique alkaloids. A diverse class of plant-specific metabolites having key pharmacological activities. There are limited studies on alkaloid synthesis and its metabolic pathways in plants. To elucidate the alkaloid pathway and identify novel biosynthetic enzymes and compounds in V. mengtzeanum, transcriptome and metabolome profiling has been conducted in leaves and roots. The transcriptome of V. mengtzeanum leaves and roots yielded 190,161 unigenes, of which 33,942 genes expressed differentially (DEGs) in both tissues. Three enriched regulatory pathways (isoquinoline alkaloid biosynthesis, indole alkaloid biosynthesis and tropane, piperidine and pyridine alkaloid biosynthesis) and a considerable number of genes such as AED3-like, A4U43, 21 kDa protein-like, 3-O-glycotransferase 2-like, AtDIR19, MST4, CASP-like protein 1D1 were discovered in association with the biosynthesis of alkaloids in leaves and roots. Some transcription factor families, i.e., AP2/ERF, GRAS, NAC, bHLH, MYB-related, C3H, FARI, WRKY, HB-HD-ZIP, C2H2, and bZIP were also found to have a prominent role in regulating the synthesis of alkaloids and steroidal alkaloids in the leaves and roots of V. mengtzeanum. The metabolome analysis revealed 74 significantly accumulated metabolites, with 55 differentially accumulated in leaves compared to root tissues. Out of 74 metabolites, 18 alkaloids were highly accumulated in the roots. A novel alkaloid compound viz; 3-Vanilloylygadenine was discovered in root samples. Conjoint analysis of transcriptome and metabolome studies has also highlighted potential genes involved in regulation and transport of alkaloid compounds. Here, we have presented a comprehensive metabolic and transcriptome profiling of V. mengtzeanum tissues. In earlier reports, only the roots were reported as a rich source of alkaloid biosynthesis, but the current findings revealed both leaves and roots as significant manufacturing factories for alkaloid biosynthesis.
Collapse
Affiliation(s)
- Jiajia Liu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Lijun Han
- Yunnan Key Laboratory for Dai and Yi Medicines, University of Chinese Medicine Kunming, Kunming, China
| | - Guodong Li
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Aili Zhang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoli Liu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingzhi Zhao
- Kunming Medical University Haiyuan College, Kunming, China,*Correspondence: Mingzhi Zhao,
| |
Collapse
|
31
|
Nascimento FDS, Rocha ADJ, Soares JMDS, Mascarenhas MS, Ferreira MDS, Morais Lino LS, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:305. [PMID: 36679018 PMCID: PMC9860801 DOI: 10.3390/plants12020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.
Collapse
Affiliation(s)
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | - Mileide dos Santos Ferreira
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ling L, Li M, Chen N, Ren G, Qu L, Yue H, Wu X, Zhao J. Genome-Wide Analysis and Expression of the GRAS Transcription Factor Family in Avena sativa. Genes (Basel) 2023; 14:genes14010164. [PMID: 36672905 PMCID: PMC9858933 DOI: 10.3390/genes14010164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The GRAS transcription factor is an important transcription factor in plants. In recent years, more GRAS genes have been identified in many plant species. However, the GRAS gene family has not yet been studied in Avena sativa. We identified 100 members of the GRAS gene family in A. sativa (Avena sativa), named them AsGRAS1~AsGRAS100 according to the positions of 21 chromosomes, and classified them into 9 subfamilies. In this study, the motif and gene structures were also relatively conserved in the same subfamilies. At the same time, we found a great deal related to the stress of cis-acting promoter regulatory elements (MBS, ABRE, and TC-rich repeat elements). qRT-PCR suggested that the AsGRAS gene family (GRAS gene family in A. sativa) can regulate the response to salt, saline-alkali, and cold and freezing abiotic stresses. The current study provides original and detailed information about the AsGRAS gene family, which contributes to the functional characterization of GRAS proteins in other plants.
Collapse
|
33
|
Nerva L, Dalla Costa L, Ciacciulli A, Sabbadini S, Pavese V, Dondini L, Vendramin E, Caboni E, Perrone I, Moglia A, Zenoni S, Michelotti V, Micali S, La Malfa S, Gentile A, Tartarini S, Mezzetti B, Botta R, Verde I, Velasco R, Malnoy MA, Licciardello C. The Role of Italy in the Use of Advanced Plant Genomic Techniques on Fruit Trees: State of the Art and Future Perspectives. Int J Mol Sci 2023; 24:977. [PMID: 36674493 PMCID: PMC9861864 DOI: 10.3390/ijms24020977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.
Collapse
Affiliation(s)
- Luca Nerva
- Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Angelo Ciacciulli
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Vera Pavese
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Luca Dondini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Elisa Vendramin
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Emilia Caboni
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Vania Michelotti
- Research Center for Genomics and Bioinformatics, Council for Agricultural Research and Economics, 29017 Fiorenzuola D’Arda, Italy
| | - Sabrina Micali
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Stefano La Malfa
- Department of Biotechnology, University of Catania, 95124 Catania, Italy
| | - Alessandra Gentile
- Department of Biotechnology, University of Catania, 95124 Catania, Italy
| | - Stefano Tartarini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Roberto Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Ignazio Verde
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Riccardo Velasco
- Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy
| | - Mickael Arnaud Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| |
Collapse
|
34
|
Li C, Wang K, Chen S, Zhang X, Zhang X, Fan L, Dong J, Xu L, Wang Y, Li Y, Liu L. Genome-wide identification of RsGRAS gene family reveals positive role of RsSHRc gene in chilling stress response in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:285-297. [PMID: 36283201 DOI: 10.1016/j.plaphy.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Radish (Raphanus sativus L.) is an important worldwide root vegetable crop. Little information of the GRAS gene family was available in radish. Herein, a total of 51 GRAS family members were firstly identified from radish genome, and unevenly located onto nine radish chromosomes. Expression analysis of RsGRAS genes in taproot displayed that RsSCL15a and RsSHRc were highly expressed in the radish cambium, and its expression level was increased with the taproot thickening. Comparative transcriptome analysis revealed that the expression patterns of RsGRAS genes varied upon exposure to different abiotic stresses including heavy metals, salt and heat. The expression level of six RsGRAS genes including RsSHRc was increased under chilling stress in two radish genotypes with different cold tolerance. Further analysis indicated that RsGRAS genes could respond to cold stress rapidly and the expression of RsSHRc was up-regulated at different development stages (cortex splitting and thickening stages) under long-term cold treatment. Transient expression of RsSHRc gene in radish showed that RsSHRc possessed the reliable function of eliminating reactive oxygen species (ROS), inhibiting the formation of malondialdehyde (MDA) and promoting to accumulate proline under cold stress. Together, these findings provided insights into the function of RsGRAS genes in taproot development and chilling stress response in radish.
Collapse
Affiliation(s)
- Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Sen Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xinyu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
35
|
Transcription factor CsESE3 positively modulates both jasmonic acid and wax biosynthesis in citrus. ABIOTECH 2022; 3:250-266. [PMID: 36533263 PMCID: PMC9755798 DOI: 10.1007/s42994-022-00085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
PLIP lipases can initiate jasmonic acid (JA) biosynthesis. However, little is known about the transcriptional regulation of this process. In this study, an ERF transcription factor (CsESE3) was found to be co-expressed with all necessary genes for JA biosynthesis and several key genes for wax biosynthesis in transcriptomes of 'Newhall' navel orange. CsESE3 shows partial sequence similarity to the well-known wax regulator SHINEs (SHNs), but lacks a complete MM protein domain. Ectopic overexpression of CsESE3 in tomato (OE) resulted in reduction of fruit surface brightness and dwarf phenotype compared to the wild type. The OE tomato lines also showed significant increases in the content of wax and JA and the expression of key genes related to their biosynthesis. Overexpression of CsESE3 in citrus callus and fruit enhanced the JA content and the expression of JA biosynthetic genes. Furthermore, CsESE3 could bind to and activate the promoters of two phospholipases from the PLIP gene family to initiate JA biosynthesis. Overall, this study indicated that CsESE3 could mediate JA biosynthesis by activating PLIP genes and positively modulate wax biosynthesis. The findings provide important insights into the coordinated control of two defense strategies of plants represented by wax and JA biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00085-2.
Collapse
|
36
|
Wang ZL, Wu D, Hui M, Wang Y, Han X, Yao F, Cao X, Li YH, Li H, Wang H. Screening of cold hardiness-related indexes and establishment of a comprehensive evaluation method for grapevines ( V. vinifera). FRONTIERS IN PLANT SCIENCE 2022; 13:1014330. [PMID: 36507445 PMCID: PMC9731228 DOI: 10.3389/fpls.2022.1014330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 06/17/2023]
Abstract
The goals of this work were to screen physiological and biochemical indexes to assess a set of V. vinifera germplasm resources, to compare evaluation methods for cold hardiness, and to establish a comprehensive method that can be used for more accurate screening for cold hardiness in V. vinifera. Four single methods were used to evaluate the cold hardiness of 20 germplasms resources and 18 physiological and biochemical indexes related to cold hardiness were determined. The LT50 values determined by electrical conductivity (EL), 2,3,5-triphenyltetrazolium chloride staining (TTC), differential thermal analysis (DTA), and recovery growth (RG) methods showed extremely significant positive correlation. Bound water content (BW), proline content (Pro), total soluble sugar content (TSS), malondialdehyde content (MDA), catalase content (CAT), and ascorbic acid content (ASA) exhibited significant correlation with LT50 values measured by different evaluation methods. The comprehensive cold hardiness index calculated by principal component analysis (PCA) combined with subordinate function (SF) was negatively correlated with LT50 values measured by different evaluation methods. Meili and Ecolly exhibited the highest cold hardiness, indicating their potential for use as parents for cold hardiness breeding. EL, DTA, TTC, and RG methods successfully distinguished cold hardiness among different V. vinifera germplasm lines. Measurements of BW, Pro, TSS, MDA, CAT, and ASA in dormant shoots also can be used as main physiological and biochemical indexes related to cold hardiness of V. vinifera. Comprehensive evaluation by PCA combined with SF can accurately screen cold hardiness in V. vinifera. This study provides a reference and accurate identification method for the selection of cold hardiness parents and the evaluation of cold hardiness of germplasm of V. vinifera.
Collapse
Affiliation(s)
- Zhi-Lei Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Wu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Miao Hui
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Science, Langfang Normal University, Langfang, Hebei, China
| | - Xing Han
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Yao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Cao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi-Han Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
- China Wine Industry Technology Institute, Yinchuan, Ningxia, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Yangling, Shaanxi, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
- China Wine Industry Technology Institute, Yinchuan, Ningxia, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Yangling, Shaanxi, China
| |
Collapse
|
37
|
Liu X, Chen H, Li S, Lecourieux D, Duan W, Fan P, Liang Z, Wang L. Natural variations of HSFA2 enhance thermotolerance in grapevine. HORTICULTURE RESEARCH 2022; 10:uhac250. [PMID: 36643748 PMCID: PMC9832954 DOI: 10.1093/hr/uhac250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 06/02/2023]
Abstract
Heat stress limits growth and development of crops including grapevine which is a popular fruit in the world. Genetic variability in crops thermotolerance is not well understood. We identified and characterized heat stress transcription factor HSFA2 in heat sensitive Vitis vinifera 'Jingxiu' (named as VvHSFA2) and heat tolerant Vitis davidii 'Tangwei' (named as VdHSFA2). The transcriptional activation activities of VdHSFA2 are higher than VvHSFA2, the variation of single amino acid (Thr315Ile) in AHA1 motif leads to the difference of transcription activities between VdHSFA2 and VvHSFA2. Based on 41 Vitis germplasms, we found that HSFA2 is differentiated at coding region among heat sensitive V. vinifera, and heat tolerant Vitis davidii and Vitis quinquangularis. Genetic evidence demonstrates VdHSFA2 and VvHSFA2 are positive regulators in grape thermotolerance, and the former can confer higher thermotolerance than the latter. Moreover, VdHSFA2 can regulate more target genes than VvHSFA2. As a target gene of both VdHSFA2 and VvHSFA2, overexpression of MBF1c enhanced the grape thermotolerance whereas dysfunction of MBF1c resulted in thermosensitive phenotype. Together, our results revealed that VdHSFA2 confers higher thermotolerance than VvHSFA2, and MBF1c acts as their target gene to induce thermotolerance. The VdHSFA2 may be adopted for molecular breeding in grape thermotolerance.
Collapse
Affiliation(s)
- Xinna Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyang Chen
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenchang Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Lecourieux
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Bordeaux University, Villenave d'Ornon F-33882, France
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | | |
Collapse
|
38
|
Chen W, Hu X, Hu L, Hou X, Xu Z, Yang F, Yuan M, Chen F, Wang Y, Tu B, Li T, Kang L, Tang S, Ma B, Wang Y, Li S, Qin P, Yuan H. Wide Grain 3, a GRAS Protein, Interacts with DLT to Regulate Grain Size and Brassinosteroid Signaling in Rice. RICE (NEW YORK, N.Y.) 2022; 15:55. [PMID: 36326916 PMCID: PMC9633911 DOI: 10.1186/s12284-022-00601-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Grain size is a direct determinant of grain weight and yield in rice; however, the genetic and molecular mechanisms determining grain size remain largely unknown. FINDINGS We identified a mutant, wide grain 3 (wg3), which exhibited significantly increased grain width and 1000-grain weight. Cytological analysis showed that WG3 regulates grain size by affecting cell proliferation. MutMap-based gene cloning and a transgenic experiment demonstrated that WG3 encodes a GRAS protein. Moreover, we found that WG3 directly interacts with DWARF AND LOW-TILLERING (DLT), a previously reported GRAS protein, and a genetic experiment demonstrated that WG3 and DLT function in a common pathway to regulate grain size. Additionally, a brassinosteroid (BR) sensitivity test suggested that WG3 has a positive role in BR signaling in rice. Collectively, our results reveal a new genetic and molecular mechanism for the regulation of grain size in rice by the WG3-DLT complex, and highlight the important functions of the GRAS protein complex in plants. CONCLUSION WG3 functions directly in regulating grain size and BR signaling in rice.
Collapse
Affiliation(s)
- Weilan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Xiaoling Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Li Hu
- College of Agriculture, Forestry and Health, The Open University of Sichuan, 610073, Chengdu, Sichuan, China
| | - Xinyue Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Zhengyan Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Fanmin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Min Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Feifan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Yunxiao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Liangzhu Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Shiwen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.
| |
Collapse
|
39
|
He Z, Tian Z, Zhang Q, Wang Z, Huang R, Xu X, Wang Y, Ji X. Genome-wide identification, expression and salt stress tolerance analysis of the GRAS transcription factor family in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:1022076. [PMID: 36352865 PMCID: PMC9638169 DOI: 10.3389/fpls.2022.1022076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The GRAS gene family is a plant-specific family of transcription factors and play a vital role in many plant growth processes and abiotic stress responses. Nevertheless, the functions of the GRAS gene family in woody plants, especially in Betula platyphylla (birch), are hardly known. In this study, we performed a genome-wide analysis of 40 BpGRAS genes (BpGRASs) and identified typical GRAS domains of most BpGRASs. The BpGRASs were unevenly distributed on 14 chromosomes of birch and the phylogenetic analysis of six species facilitated the clustering of 265 GRAS proteins into 17 subfamilies. We observed that closely related GRAS homologs had similar conserved motifs according to motif analysis. Besides, an analysis of the expression patterns of 26 BpGRASs showed that most BpGRASs were highly expressed in the leaves and responded to salt stress. Six BpGRASs were selected for cis-acting element analysis because of their significant upregulation under salt treatment, indicating that many elements were involved in the response to abiotic stress. This result further confirmed that these BpGRASs might participate in response to abiotic stress. Transiently transfected birch plants with transiently overexpressed 6 BpGRASs and RNAi-silenced 6 BpGRASs were generated for gain- and loss-of-function analysis, respectively. In addition, overexpression of BpGRAS34 showed phenotype resistant to salt stress, decreased the cell death and enhanced the reactive oxygen species (ROS) scavenging capabilities and proline content under salt treatment, consistent with the results in transiently transformed birch plants. This study is a systematic analysis of the GRAS gene family in birch plants, and the results provide insight into the molecular mechanism of the GRAS gene family responding to abiotic stress in birch plants.
Collapse
Affiliation(s)
- Zihang He
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zengzhi Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qun Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ruikun Huang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xin Xu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoyu Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
40
|
Yang T, Li C, Zhang H, Wang J, Xie X, Wen Y. Genome-wide identification and expression analysis of the GRAS transcription in eggplant ( Solanum melongena L.). Front Genet 2022; 13:932731. [PMID: 36118872 PMCID: PMC9478738 DOI: 10.3389/fgene.2022.932731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/11/2022] [Indexed: 01/09/2023] Open
Abstract
GRAS proteins are plant-specific transcription factors and play important roles in plant growth, development, and stress responses. In this study, a total of 48 GRAS genes in the eggplant (S. melongena) genome were identified. These genes were distributed on 11 chromosomes unevenly, with amino acid lengths ranging from 417 to 841 aa. A total of 48 GRAS proteins were divided into 13 subgroups based on the maximum likelihood (ML) model. The gene structure showed that 60.42% (29/48) of SmGRASs did not contain any introns. Nine pairs of SmGRAS appeared to have a collinear relationship, and all of them belonged to segmental duplication. Four types of cis-acting elements, namely, light response, growth and development, hormone response, and stress response, were identified by a cis-acting element predictive analysis. The expression pattern analysis based on the RNA-seq data of eggplant indicated that SmGRASs were expressed differently in various tissues and responded specifically to cold stress. In addition, five out of ten selected SmGRASs (SmGRAS2/28/32/41/44) were upregulated under cold stress. These results provided a theoretical basis for further functional study of GRAS genes in eggplant.
Collapse
Affiliation(s)
- Ting Yang
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cheng Li
- Institute of Statistics and Applications, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Zhang
- Institute of Statistics and Applications, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingyu Wang
- Institute of Statistics and Applications, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofang Xie
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, China,College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China,*Correspondence: Xiaofang Xie, ; Yongxian Wen,
| | - Yongxian Wen
- Institute of Statistics and Applications, Fujian Agriculture and Forestry University, Fuzhou, China,College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Xiaofang Xie, ; Yongxian Wen,
| |
Collapse
|
41
|
Ma X, Zhao F, Su K, Lin H, Guo Y. Discovery of cold-resistance genes in Vitis amurensis using bud-based quantitative trait locus mapping and RNA-seq. BMC Genomics 2022; 23:551. [PMID: 35918639 PMCID: PMC9347155 DOI: 10.1186/s12864-022-08788-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background In cold regions, low temperature is the main limiting factor affecting grape production. As an important breeding resource, V. amurensis Rupr. has played a crucial role in the discovery of genes which confer cold resistance in grapes. Thus far, many cold-resistance genes have been reported based on the study of V. amurensis. In order to identify more candidate genes related to cold resistance in V. amurensis, QTL mapping and RNA-seq was conducted based on the hybrid population and different cold-resistance cultivars in this study. Results In this study, highly cold-resistant grape cultivar ‘Shuangyou’ (SY) which belongs to V. amurensis, and cold-sensitive cultivar ‘Red Globe’ (RG) which belongs to Vitis vinifera L. were used to identify cold resistance genes. Cold-resistance quantitative trait locus (QTL) mapping was performed based on genetic population construction through interspecific crossing of ‘Shuangyou’ and ‘Red Globe’. Additionally, transcriptome analysis was conducted for the dormant buds of these two cultivars at different periods. Based on transcriptome analysis and QTL mapping, many new structural genes and transcription factors which relate to V. amurensis cold resistance were discovered, including CORs (VaCOR413IM), GSTs (VaGST-APIC, VaGST-PARB, VaGSTF9 and VaGSTF13), ARFs (VaIAA27 and VaSAUR71), ERFs (VaAIL1), MYBs (VaMYBR2, VaMYBLL and VaMYB3R-1) and bHLHs (VaICE1 and VabHLH30). Conclusions This discovery of candidate cold-resistance genes will provide an important theoretical reference for grape cold-resistance mechanisms, research, and cold-resistant grape cultivar breeding in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08788-y.
Collapse
Affiliation(s)
- Xiaolele Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China
| | - Fangyuan Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China
| | - Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China. .,College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, People's Republic of China. .,Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066004, People's Republic of China.
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China.
| |
Collapse
|
42
|
Zhang C, Liu S, Liu D, Guo F, Yang Y, Dong T, Zhang Y, Ma C, Tang Z, Li F, Meng X, Zhu M. Genome-wide survey and expression analysis of GRAS transcription factor family in sweetpotato provides insights into their potential roles in stress response. BMC PLANT BIOLOGY 2022; 22:232. [PMID: 35524176 PMCID: PMC9074257 DOI: 10.1186/s12870-022-03618-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The plant-specific GRAS transcription factors play pivotal roles in various adverse environmental conditions. Numerous GRAS genes have been explored and characterized in different plants, however, comprehensive survey on GRASs in sweetpotato is lagging. RESULTS In this study, 72 putative sweetpotato IbGRAS genes with uneven distribution were isolated on 15 chromosomes and classified into 12 subfamilies supported by gene structures and motif compositions. Moreover, both tandem duplication and segmental duplication events played critical roles in the expansion of sweetpotato GRAS genes, and the collinearity between IbGRAS genes and the related orthologs from nine other plants further depicted evolutionary insights into GRAS gene family. RNA-seq analysis under salt stress and qRT-PCR detection of 12 selected IbGRAS genes demonstrated their significant and varying inductions under multiple abiotic stresses (salt, drought, heat and cold) and hormone treatments (ABA, ACC and JA). Consistently, the promoter regions of IbGRAS genes harbored a series of stress- and hormone-associated cis-acting elements. Among them, IbGRAS71, the potential candidate for breeding tolerant plants, was characterized as having transactivation activity in yeasts, while IbGRAS-2/-4/-9 did not. Moreover, a complex interaction relationship between IbGRASs was observed through the interaction network analysis and yeast two-hybrid assays. CONCLUSIONS Our results laid a foundation for further functional identifications of IbGRAS genes, and multiple members may serve as potential regulators for molecular breeding of tolerant sweetpotato.
Collapse
Affiliation(s)
- Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Delong Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Yiyu Yang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Yi Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Chen Ma
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Zixuan Tang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Feifan Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| |
Collapse
|
43
|
Liu B, Zhao FM, Cao Y, Wang XY, Li Z, Shentu Y, Zhou H, Xia YP. Photoprotection contributes to freezing tolerance as revealed by RNA-seq profiling of rhododendron leaves during cold acclimation and deacclimation over time. HORTICULTURE RESEARCH 2022; 9:uhab025. [PMID: 35039836 PMCID: PMC8801717 DOI: 10.1093/hr/uhab025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/18/2022] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Cold acclimation (CA) and deacclimation (DA), which are often accompanied by changes in freezing tolerance (FT), carbohydrates and hormones, are crucial for winter survival, especially under global warming. Plants with weak CA and premature DA caused by warm winters and/or unseasonal warm spells can be easily injured by adverse reactions to cold. Thus, understanding the molecular mechanisms of FT is imperative. In this study, we used high-throughput RNA-seq to profile the CA and DA of leaves of overwintering Rhododendron "Miyo-no-Sakae" over time; these leaves do not undergo dormancy but do undergo photoprotection during CA, and they do not grow during DA. Using Mfuzz and weighted gene coexpression network analysis, we identified specific transcriptional characteristics in each phase of CA and DA and proposed networks involving coexpressed genes and physiological traits. In particular, we discovered that the circadian rhythm is critical for obtaining the strongest FT, and high expression of circadian rhythm-related genes might be linked to sugar accumulation during winter. Furthermore, evergreen leaves exhibited robust photoprotection during winter, as revealed by high values of nonphotochemical quenching, high expression of transcripts annotated as "early light-induced proteins", loss of granum stacks and destacking of thylakoids, all of which were alleviated during DA. The strong requirement of photoprotection could be the reason for decreased abscisic acid (ABA) and jasmonic acid (JA) contents during CA, and decreases in ABA and JA contents may contribute to decreases in lignin content. Our data suggest that the molecular mechanisms of FT in overwintering leaves are unique, which may be due to the high requirements for photoprotection during winter.
Collapse
Affiliation(s)
- Bing Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Zhejiang 310058, China
| | - Fang-Meng Zhao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Zhejiang 310058, China
| | - Yan Cao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Zhejiang 310058, China
| | - Xiu-Yun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Zhejiang 310058, China
| | - Zheng Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Zhejiang 310058, China
| | - Yuanyue Shentu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Zhejiang 310058, China
| | - Hong Zhou
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Zhejiang 310058, China
| | - Yi-Ping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Zhejiang 310058, China
| |
Collapse
|
44
|
Clemens M, Faralli M, Lagreze J, Bontempo L, Piazza S, Varotto C, Malnoy M, Oechel W, Rizzoli A, Dalla Costa L. VvEPFL9-1 Knock-Out via CRISPR/Cas9 Reduces Stomatal Density in Grapevine. FRONTIERS IN PLANT SCIENCE 2022; 13:878001. [PMID: 35656017 PMCID: PMC9152544 DOI: 10.3389/fpls.2022.878001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 05/03/2023]
Abstract
Epidermal Patterning Factor Like 9 (EPFL9), also known as STOMAGEN, is a cysteine-rich peptide that induces stomata formation in vascular plants, acting antagonistically to other epidermal patterning factors (EPF1, EPF2). In grapevine there are two EPFL9 genes, EPFL9-1 and EPFL9-2 sharing 82% identity at protein level in the mature functional C-terminal domain. In this study, CRISPR/Cas9 system was applied to functionally characterize VvEPFL9-1 in 'Sugraone', a highly transformable genotype. A set of plants, regenerated after gene transfer in embryogenic calli via Agrobacterium tumefaciens, were selected for evaluation. For many lines, the editing profile in the target site displayed a range of mutations mainly causing frameshift in the coding sequence or affecting the second cysteine residue. The analysis of stomata density revealed that in edited plants the number of stomata was significantly reduced compared to control, demonstrating for the first time the role of EPFL9 in a perennial fruit crop. Three edited lines were then assessed for growth, photosynthesis, stomatal conductance, and water use efficiency in experiments carried out at different environmental conditions. Intrinsic water-use efficiency was improved in edited lines compared to control, indicating possible advantages in reducing stomatal density under future environmental drier scenarios. Our results show the potential of manipulating stomatal density for optimizing grapevine adaptation under changing climate conditions.
Collapse
Affiliation(s)
- Molly Clemens
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Global Change Research Group, San Diego State University, San Diego, CA, United States
- Department of Viticulture and Enology, University of California Davis, Davis, CA, United States
| | - Michele Faralli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- *Correspondence: Michele Faralli,
| | - Jorge Lagreze
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Luana Bontempo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Stefano Piazza
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Claudio Varotto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Walter Oechel
- Global Change Research Group, San Diego State University, San Diego, CA, United States
- Department of Geography, University of Exeter, Exeter, United Kingdom
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Lorenza Dalla Costa,
| |
Collapse
|
45
|
Li X, Cai K, Pei X, Li Y, Hu Y, Meng F, Song X, Tigabu M, Ding C, Zhao X. Genome-Wide Identification of NAC Transcription Factor Family in Juglans mandshurica and Their Expression Analysis during the Fruit Development and Ripening. Int J Mol Sci 2021; 22:ijms222212414. [PMID: 34830294 PMCID: PMC8625062 DOI: 10.3390/ijms222212414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China;
| | - Yan Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Fanjuan Meng
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Xingshun Song
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden;
| | - Changjun Ding
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (C.D.); (X.Z.); Tel.: +86-15246668860 (X.Z.)
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (K.C.); (Y.L.); (Y.H.); (F.M.); (X.S.)
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China;
- Correspondence: (C.D.); (X.Z.); Tel.: +86-15246668860 (X.Z.)
| |
Collapse
|
46
|
Zhang Y, Song R, Yuan H, Li T, Wang L, Lu K, Guo J, Liu W. Overexpressing the N-terminus of CATALASE2 enhances plant jasmonic acid biosynthesis and resistance to necrotrophic pathogen Botrytis cinerea B05.10. MOLECULAR PLANT PATHOLOGY 2021; 22:1226-1238. [PMID: 34247446 PMCID: PMC8435237 DOI: 10.1111/mpp.13106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 05/31/2023]
Abstract
Salicylic acid (SA) acts antagonistically to jasmonic acid (JA) in plant immunity. We previously reported that CATALASE2 (CAT2) promotes JA-biosynthetic acyl-CoA oxidase (ACX) activity to enhance plant resistance to necrotrophic Botrytis cinerea, and SA represses JA biosynthesis through inhibiting CAT2 activity, while the underlying mechanism remains to be further elucidated. Here, we report that the truncated CAT2 N-terminus (CAT2-N) interacts with and promotes ACX2/3, and CAT2-N-overexpressing plants have increased JA accumulation and enhanced resistance to B. cinerea B05.10, but compromised antagonism of SA on JA. Catalase inhibitor treatment or mutating CAT2 active amino acids abolished CAT2 H2 O2 -decomposing activity but did not affect its promotion of ACX2/3 activity via interaction. CAT2-N, a truncated protein with no catalase activity, interacted with and promoted ACX2/3. Overexpressing CAT2-N in Arabidopsis plants resulted in increased ACX activity, higher JA accumulation, and stronger resistance to B. cinerea B05.10 infection. Additionally, SA dramatically repressed JA biosynthesis and resistance to B. cinerea in the wild type but not in the CAT2-N-overexpressing plants. Together, our study reveals that CAT2-N can be utilized as an accelerator for JA biosynthesis during plant resistance to B. cinerea B05.10, and this truncated protein partly relieves SA repression of JA biosynthesis in plant defence responses.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Ru‐Feng Song
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Hong‐Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Ting‐Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound ScreeningJiangsu Ocean UniversityLianyungangChina
| | - Lin‐Feng Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Kai‐Kai Lu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Jia‐Xing Guo
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Wen‐Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
47
|
Courbier S. Bundling up: VaPAT1 forms a complex with VaIDD3 to activate cold tolerance in Amur grape calli. PLANT PHYSIOLOGY 2021; 186:1373-1374. [PMID: 34624111 PMCID: PMC8260109 DOI: 10.1093/plphys/kiab203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Sarah Courbier
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University and Research, the Netherlands
| |
Collapse
|