1
|
Kumar R, Das SP, Choudhury BU, Kumar A, Prakash NR, Verma R, Chakraborti M, Devi AG, Bhattacharjee B, Das R, Das B, Devi HL, Das B, Rawat S, Mishra VK. Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing. Biol Res 2024; 57:80. [PMID: 39506826 DOI: 10.1186/s40659-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Conventional pre-genomics breeding methodologies have significantly improved crop yields since the mid-twentieth century. Genomics provides breeders with advanced tools for whole-genome study, enabling a direct genotype-phenotype analysis. This shift has led to precise and efficient crop development through genomics-based approaches, including molecular markers, genomic selection, and genome editing. Molecular markers, such as SNPs, are crucial for identifying genomic regions linked to important traits, enhancing breeding accuracy and efficiency. Genomic resources viz. genetic markers, reference genomes, sequence and protein databases, transcriptomes, and gene expression profiles, are vital in plant breeding and aid in the identification of key traits, understanding genetic diversity, assist in genomic mapping, support marker-assisted selection and speeding up breeding programs. Advanced techniques like CRISPR/Cas9 allow precise gene modification, accelerating breeding processes. Key techniques like Genome-Wide Association study (GWAS), Marker-Assisted Selection (MAS), and Genomic Selection (GS) enable precise trait selection and prediction of breeding outcomes, improving crop yield, disease resistance, and stress tolerance. These tools are handy for complex traits influenced by multiple genes and environmental factors. This paper explores new genomic technologies like molecular markers, genomic selection, and genome editing for plant breeding showcasing their impact on developing new plant varieties.
Collapse
Affiliation(s)
- Rahul Kumar
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India.
| | | | - Burhan Uddin Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Umiam, 793103, Meghalaya, India
| | | | - Ramlakhan Verma
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Ayam Gangarani Devi
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bijoya Bhattacharjee
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Rekha Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bapi Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | | | - Biswajit Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Santoshi Rawat
- Department of Food Science and Technology, College of Agriculture, G.B.P.U.A.&T., Pantnagar, India
| | | |
Collapse
|
2
|
Wei S, Chen M, Wang F, Tu Y, Xu Y, Fu L, Zeng F, Zhang G, Wu D, Shen Q. OsCaM1-1 Is Responsible for Salt Tolerance by Regulating Na +/K + Homoeostasis in Rice. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39445791 DOI: 10.1111/pce.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Calmodulin, a highly conserved calcium-binding protein, plays a crucial role in response to salt stress. Previous studies investigated sequence and function of calmodulin members in some plants, but their roles in rice have not been fully elucidated. Three OsCaM1 genes namely OsCaM1-1/2/3 encode the same OsCaM1 protein. Here, we found that OsCaM1-1 had significantly higher expression than the other two genes under salt stress. After 4 weeks of exposure to 75 mM NaCl, OsCaM1-1 overexpressed mutants showed higher salt tolerance, while knocked-out mutants exhibited lower salt tolerance, compared to the wild type. Moreover, the oscam1-1 mutants had higher Na+ concentration and Na+/K+ ratio in both shoots and roots, less instantaneous K+ and Ca2+ fluxes in roots, compared to wild type under salt stress, indicating the involvement of OsCaM1-1 in regulation of Na+ and K+ homoeostasis via Ca2+ signal. RNA-seq analysis identified 452 differentially expressed genes (DEGs) regulated by OsCaM1-1 and salt stress, and they were mainly enriched in nucleus DNA-binding activities, including ABI5, WRKY76, WRKY48 and bHLH120 transcription factors. Knockout of OsCaM1-1 also modulated the expression of Na+ transporters, including HKT1;1, HKT1;5, SOS1, NHX1 and NHX4. In conclusion, OsCaM1-1 positively regulates salt tolerance in rice through mediating ion homoeostasis.
Collapse
Affiliation(s)
- Siqi Wei
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingjiong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengyue Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yishan Tu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunfeng Xu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Liangbo Fu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Fanrong Zeng
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Guoping Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Dezhi Wu
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Qiufang Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| |
Collapse
|
3
|
Zhang W, Shi M, Yang K, Zhang J, Gao Z, El-Kassaby YA, Li Q, Cao T, Deng S, Qing H, Wang Z, Song X. Regulatory networks of senescence-associated gene-transcription factors promote degradation in Moso bamboo shoots. PLANT, CELL & ENVIRONMENT 2024; 47:3654-3667. [PMID: 38752443 DOI: 10.1111/pce.14950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 08/16/2024]
Abstract
Bamboo cultivation, particularly Moso bamboo (Phyllostachys edulis), holds significant economic importance in various regions worldwide. Bamboo shoot degradation (BSD) severely affects productivity and economic viability. However, despite its agricultural consequences, the molecular mechanisms underlying BSD remain unclear. Consequently, we explored the dynamic changes of BSD through anatomy, physiology and the transcriptome. Our findings reveal ruptured protoxylem cells, reduced cell wall thickness and the accumulation of sucrose and reactive oxygen species (ROS) during BSD. Transcriptomic analysis underscored the importance of genes related to plant hormone signal transduction, sugar metabolism and ROS homoeostasis in this process. Furthermore, BSD appears to be driven by the coexpression regulatory network of senescence-associated gene transcription factors (SAG-TFs), specifically PeSAG39, PeWRKY22 and PeWRKY75, primarily located in the protoxylem of vascular bundles. Yeast one-hybrid and dual-luciferase assays demonstrated that PeWRKY22 and PeWRKY75 activate PeSAG39 expression by binding to its promoter. This study advanced our understanding of the molecular regulatory mechanisms governing BSD, offering a valuable reference for enhancing Moso bamboo forest productivity.
Collapse
Affiliation(s)
- Wenyu Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Kebin Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Junbo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhimin Gao
- International Center for Bamboo and Rattan, Beijing, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Tingting Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shixin Deng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Hongsheng Qing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhikang Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Alsamadany H, Abdulbaki AS, Alzahrani Y. Unravelling drought and salinity stress responses in barley genotypes: physiological, biochemical, and molecular insights. FRONTIERS IN PLANT SCIENCE 2024; 15:1417021. [PMID: 39049857 PMCID: PMC11266107 DOI: 10.3389/fpls.2024.1417021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
In the face of escalating environmental challenges, understanding crop responses to abiotic stress is pivotal for sustainable agriculture. The present study meticulously investigates the intricate interplay between drought and salinity stress in barley (Hordeum vulgare L.). Employing three distinct barley genotypes-Traveller, Prunella, and Zahna-we scrutinize their physiological, biochemical, and molecular adaptations under stress conditions. Our findings underscore genotype-specific responses, unravelling the multifaceted mechanisms that govern stress tolerance. Chlorophyll content, a vital indicator of photosynthetic efficiency, exhibits significant variations across genotypes. Salinity stress induces a decline in chlorophyll levels, while drought stress triggers a more nuanced response. Stomatal conductance, a key regulator of water loss, also diverges among the genotypes. Traveller displays remarkable stomatal closure under drought, conserving water, whereas Prunella and Zahna exhibit contrasting patterns. Antioxidant enzyme activities, crucial for combating oxidative stress, fluctuate significantly. Activities of superoxide dismutase (SOD) and catalase (CAT) surge under salinity stress, while drought predominantly impacts SOD. Gene expression profiling reveals genotype-specific signatures, with stress-responsive genes modulating adaptive pathways. Correlation analyses revealed the intricate interplay of the physiological and biochemical parameters. Genotype-specific adaptations, coupled with dynamic physiological and molecular responses, underscore the plasticity of barley's stress tolerance mechanisms. Throughout the study, the Zahna genotype demonstrated notable tolerance in terms of performance. These insights hold promise for breeding resilient cultivars, bolstering food security in an increasingly unpredictable climate. By deciphering the barley stress symphony, we contribute to the harmonious orchestration of sustainable agricultural practices.
Collapse
Affiliation(s)
- Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulbaki Shehu Abdulbaki
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Plant Science and Biotechnology, Faculty of Life Sciences, Federal University Dutsinma, Katsina, Nigeria
| | - Yahya Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Mishra A, Pandey VP. CRISPR/Cas system: A revolutionary tool for crop improvement. Biotechnol J 2024; 19:e2300298. [PMID: 38403466 DOI: 10.1002/biot.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024]
Abstract
World's population is elevating at an alarming rate thus, the rising demands of producing crops with better adaptability to biotic and abiotic stresses, superior nutritional as well as morphological qualities, and generation of high-yielding varieties have led to encourage the development of new plant breeding technologies. The availability and easy accessibility of genome sequences for a number of crop plants as well as the development of various genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has opened up possibilities to develop new varieties of crop plants with superior desirable traits. However, these approaches has limitation of being more expensive as well as having complex steps and time-consuming. The CRISPR/Cas genome editing system has been intensively studied for allowing versatile target-specific modifications of crop genome that fruitfully aid in the generation of novel varieties. It is an advanced and promising technology with the potential to meet hunger needs and contribute to food production for the ever-growing human population. This review summarizes the usage of novel CRISPR/Cas genome editing tool for targeted crop improvement in stress resistance, yield, quality and nutritional traits in the desired crop plants.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
6
|
Ding M, Zhou D, Ye Y, Wen S, Zhang X, Tian Q, Zhang X, Mou W, Dang C, Fang Y, Xue D. Genome-Wide Identification and Expression Analysis of the Stearoyl-Acyl Carrier Protein Δ9 Desaturase Gene Family under Abiotic Stress in Barley. Int J Mol Sci 2023; 25:113. [PMID: 38203283 PMCID: PMC10778905 DOI: 10.3390/ijms25010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Stearoyl-acyl carrier protein (ACP) Δ9 desaturase (SAD) is a critical fatty acid dehydrogenase in plants, playing a prominent role in regulating the synthesis of unsaturated fatty acids (UFAs) and having a significant impact on plant growth and development. In this study, we conducted a comprehensive genomic analysis of the SAD family in barley (Hordeum vulgare L.), identifying 14 HvSADs with the FA_desaturase_2 domain, which were divided into four subgroups based on sequence composition and phylogenetic analysis, with members of the same subgroup possessing similar genes and motif structures. Gene replication analysis suggested that tandem and segmental duplication may be the major reasons for the expansion of the SAD family in barley. The promoters of HvSADs contained various cis-regulatory elements (CREs) related to light, abscisic acid (ABA), and methyl jasmonate (MeJA). In addition, expression analysis indicated that HvSADs exhibit multiple tissue expression patterns in barley as well as different response characteristics under three abiotic stresses: salt, drought, and cold. Briefly, this evolutionary and expression analysis of HvSADs provides insight into the biological functions of barley, supporting a comprehensive analysis of the regulatory mechanisms of oil biosynthesis and metabolism in plants under abiotic stress.
Collapse
Affiliation(s)
- Mingyu Ding
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Danni Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Yichen Ye
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Shuting Wen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Xian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Quanxiang Tian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Wangshu Mou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Cong Dang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Karunarathne S, Walker E, Sharma D, Li C, Han Y. Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance. J Zhejiang Univ Sci B 2023; 24:1069-1092. [PMID: 38057266 PMCID: PMC10710907 DOI: 10.1631/jzus.b2200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 07/11/2023]
Abstract
Abiotic stresses, predominately drought, heat, salinity, cold, and waterlogging, adversely affect cereal crops. They limit barley production worldwide and cause huge economic losses. In barley, functional genes under various stresses have been identified over the years and genetic improvement to stress tolerance has taken a new turn with the introduction of modern gene-editing platforms. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a robust and versatile tool for precise mutation creation and trait improvement. In this review, we highlight the stress-affected regions and the corresponding economic losses among the main barley producers. We collate about 150 key genes associated with stress tolerance and combine them into a single physical map for potential breeding practices. We also overview the applications of precise base editing, prime editing, and multiplexing technologies for targeted trait modification, and discuss current challenges including high-throughput mutant genotyping and genotype dependency in genetic transformation to promote commercial breeding. The listed genes counteract key stresses such as drought, salinity, and nutrient deficiency, and the potential application of the respective gene-editing technologies will provide insight into barley improvement for climate resilience.
Collapse
Affiliation(s)
- Sakura Karunarathne
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Darshan Sharma
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia.
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia.
| |
Collapse
|
8
|
Balasubramaniam T, Shen G, Esmaeili N, Zhang H. Plants' Response Mechanisms to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2253. [PMID: 37375879 DOI: 10.3390/plants12122253] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Collapse
Affiliation(s)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Nardana Esmaeili
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
9
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
10
|
Zhu J, Zhou H, Fan Y, Guo Y, Zhang M, Shabala S, Zhao C, Lv C, Guo B, Wang F, Zhou M, Xu R. HvNCX, a prime candidate gene for the novel qualitative locus qS7.1 associated with salinity tolerance in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:9. [PMID: 36656369 PMCID: PMC9852152 DOI: 10.1007/s00122-023-04267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A major QTL (qS7.1) for salinity damage score and Na+ exclusion was identified on chromosome 7H from a barley population derived from a cross between a cultivated variety and a wild accession. qS7.1 was fine-mapped to a 2.46 Mb physical interval and HvNCX encoding a sodium/calcium exchanger is most likely the candidate gene. Soil salinity is one of the major abiotic stresses affecting crop yield. Developing salinity-tolerant varieties is critical for minimizing economic penalties caused by salinity and providing solutions for global food security. Many genes/QTL for salt tolerance have been reported in barley, but only a few of them have been cloned. In this study, a total of 163 doubled haploid lines from a cross between a cultivated barley variety Franklin and a wild barley accession TAM407227 were used to map QTL for salinity tolerance. Four significant QTL were identified for salinity damage scores. One (qS2.1) was located on 2H, determining 7.5% of the phenotypic variation. Two (qS5.1 and qS5.2) were located on 5H, determining 5.3-11.7% of the phenotypic variation. The most significant QTL was found on 7H, explaining 27.8% of the phenotypic variation. Two QTL for Na+ content in leaves under salinity stress were detected on chromosomes 1H (qNa1.1) and 7H(qNa7.1). qS7.1 was fine-mapped to a 2.46 Mb physical interval using F4 recombinant inbred lines. This region contains 23 high-confidence genes, with HvNCX which encodes a sodium/calcium exchanger being most likely the candidate gene. HvNCX was highly induced by salinity stress and showed a greater expression level in the sensitive parent. Multiple nucleotide substitutions and deletions/insertions in the promoter sequence of HvNCX were found between the two parents. cDNA sequencing of the HvNCX revealed that the difference between the two parents is conferred by a single Ala77/Pro77 amino acid substitution, which is located on the transmembrane domain. These findings open new prospects for improving salinity tolerance in barley by targeting a previously unexplored trait.
Collapse
Affiliation(s)
- Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Hui Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Yun Fan
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Yu Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Shelake RM, Kadam US, Kumar R, Pramanik D, Singh AK, Kim JY. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100417. [PMID: 35927945 PMCID: PMC9700172 DOI: 10.1016/j.xplc.2022.100417] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 05/10/2023]
Abstract
Prolonged periods of drought triggered by climate change hamper plant growth and cause substantial agricultural yield losses every year. In addition to drought, salinity is one of the major abiotic stresses that severely affect crop health and agricultural production. Plant responses to drought and salinity involve multiple processes that operate in a spatiotemporal manner, such as stress sensing, perception, epigenetic modifications, transcription, post-transcriptional processing, translation, and post-translational changes. Consequently, drought and salinity stress tolerance are polygenic traits influenced by genome-environment interactions. One of the ideal solutions to these challenges is the development of high-yielding crop varieties with enhanced stress tolerance, together with improved agricultural practices. Recently, genome-editing technologies, especially clustered regularly interspaced short palindromic repeats (CRISPR) tools, have been effectively applied to elucidate how plants deal with drought and saline environments. In this work, we aim to portray that the combined use of CRISPR-based genome engineering tools and modern genomic-assisted breeding approaches are gaining momentum in identifying genetic determinants of complex traits for crop improvement. This review provides a synopsis of plant responses to drought and salinity stresses at the morphological, physiological, and molecular levels. We also highlight recent advances in CRISPR-based tools and their use in understanding the multi-level nature of plant adaptations to drought and salinity stress. Integrating CRISPR tools with modern breeding approaches is ideal for identifying genetic factors that regulate plant stress-response pathways and for the introgression of beneficial traits to develop stress-resilient crops.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ritesh Kumar
- Department of Agronomy & Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
12
|
Wu X, Fan Y, Wang R, Zhao Q, Ali Q, Wu H, Gu Q, Borriss R, Xie Y, Gao X. Bacillus halotolerans KKD1 induces physiological, metabolic and molecular reprogramming in wheat under saline condition. FRONTIERS IN PLANT SCIENCE 2022; 13:978066. [PMID: 36035675 PMCID: PMC9404337 DOI: 10.3389/fpls.2022.978066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Salt stress decreases plant growth and is a major threat to crop yields worldwide. The present study aimed to alleviate salt stress in plants by inoculation with halophilic plant growth-promoting rhizobacteria (PGPR) isolated from an extreme environment in the Qinghai-Tibetan Plateau. Wheat plants inoculated with Bacillus halotolerans KKD1 showed increased seedling morphological parameters and physiological indexes. The expression of wheat genes directly involved in plant growth was upregulated in the presence of KKD1, as shown by real-time quantitative PCR (RT-qPCR) analysis. The metabolism of phytohormones, such as 6-benzylaminopurine and gibberellic acid were also enhanced. Mining of the KKD1 genome corroborated its potential plant growth promotion (PGP) and biocontrol properties. Moreover, KKD1 was able to support plant growth under salt stress by inducing a stress response in wheat by modulating phytohormone levels, regulating lipid peroxidation, accumulating betaine, and excluding Na+. In addition, KKD1 positively affected the soil nitrogen content, soil phosphorus content and soil pH. Our findings indicated that KKD1 is a promising candidate for encouraging wheat plant growth under saline conditions.
Collapse
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining, China
| | - Yaning Fan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ruoyi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Zhao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität, Berlin, Germany
- Nord Reet UG, Greifswald, Germany
| | - Yongli Xie
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|