1
|
Qiu H, Wang C, Jiang L, Niu H, Wang X, Qin W, Xu F, Hao L. A microbial-driven persulfate activating-cycling system for in-depth oxytetracycline degradation and bacterial antibiotic resistance control. WATER RESEARCH 2025; 275:123151. [PMID: 39904194 DOI: 10.1016/j.watres.2025.123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Insufficient biodegradability of antibiotics (e.g., oxytetracycline, OTC) and the accompanying antibiotic resistance gene (ARG) spreading risk have been a serious concern in wastewater treatment plants. This study developed a microbial-driven persulfate activating-cycling system (MPCS) relying on the iron-reducing capacity of Shewanella oneidensis to sustainably degrade OTC and prevent ARG elevation. In MPCS, a nanosized bio-magnet shell (20-60 nm) was bio-generated and incorporated with S. oneidensis to activate peroxydisulfate and produce free radicals to attack OTC, removed by 98.78 % in 120 min. S. oneidensis metabolism re-generated the bio-magnet and cleared the toxic intermediates. Despite the stress of OTC and free radicals, S. oneidensis sustained (live/death ratio of 74.50 %: 25.50 %) under bio-magnet shell protection, showing a strong energy metabolism and iron-reducing strength. The tight coupling of biodegradation and advanced oxidation process (AOP) greatly improved degrading efficiency (132.65 %-2369.44 % higher than single biodegradation or AOP). MPCS continuously operated 5 cycles efficiently, exhibiting a diverse degrading pathway with less toxic intermediates than the single treatment. Notably, MPCS functioned well without peroxydisulfate, as the S. oneidensis produces low-level hydrogen peroxide as the AOP substrate, achieving favorable OTC elimination. Especially, the expression of sixteen tetracycline-related ARGs dropped by 62.94 %-100 % in MPCS than biodegradation, indicating resistance control advantage under bio-magnet shell protection and the synergism effect of AOP and biodegradation. This study spontaneously recyclably combined biodegradation and AOP to simultaneously eliminate antibiotics and ARGs, which provided a potential approach to control the drug resistance risk.
Collapse
Affiliation(s)
- Hang Qiu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Can Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Liyue Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Huan Niu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Xinyi Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wenqiu Qin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, PR China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, PR China
| |
Collapse
|
2
|
Guillou M, Gaucher M, Vergne E, Renou J, Brisset M, Aubourg S. Phytocytokine genes newly discovered in Malus domestica and their regulation in response to Erwinia amylovora and acibenzolar-S-methyl. THE PLANT GENOME 2025; 18:e20540. [PMID: 39648642 PMCID: PMC11726410 DOI: 10.1002/tpg2.20540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024]
Abstract
Phytocytokines belong to a category of small secreted peptides with signaling functions that play pivotal roles in diverse plant physiological processes. However, due to low levels of sequence conservation across plant species and poorly understood biological functions, the accurate detection and annotation of corresponding genes is challenging. The availability of a high-quality apple (Malus domestica) genome has enabled the exploration of five phytocytokine gene families, selected on the basis of their altered expression profiles in response to biotic stresses. These include phytosulfokine, inflorescence deficient in abscission/-like, pathogen-associated molecular pattern induced secreted peptide, plant peptide containing sulfated tyrosine, and C-terminally encoded peptide. The genes encoding the precursors of these five families of signaling peptides were identified using a customized bioinformatics protocol combining genome mining, homology searches, and peptide motif detection. Transcriptomic analyses showed that these peptides were deregulated in response to Erwinia amylovora, the causal agent of fire blight in pome fruit trees, and in response to a chemical elicitor (acibenzolar-S-methyl). Finally, gene family evolution and the orthology relationships with Arabidopsis thaliana homologs were investigated.
Collapse
Affiliation(s)
| | - Matthieu Gaucher
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Emilie Vergne
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Jean‐Pierre Renou
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| | | | - Sébastien Aubourg
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| |
Collapse
|
3
|
Singh L, Sinha A, Gupta M, Xiao S, Hammond R, Rawat N. Wheat Pore-Forming Toxin-Like Protein Confers Broad-Spectrum Resistance to Fungal Pathogens in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:489-501. [PMID: 36892820 DOI: 10.1094/mpmi-12-22-0247-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium head blight (FHB), caused by the hemibiotrophic fungus Fusarium graminearum, is one of the major threats to global wheat productivity. A wheat pore-forming toxin-like (PFT) protein was previously reported to underlie Fhb1, the most widely used quantitative trait locus in FHB breeding programs worldwide. In the present work, wheat PFT was ectopically expressed in the model dicot plant Arabidopsis. Heterologous expression of wheat PFT in Arabidopsis provided a broad-spectrum quantitative resistance to fungal pathogens including F. graminearum, Colletotrichum higginsianum, Sclerotinia sclerotiorum, and Botrytis cinerea. However, there was no resistance to bacterial or oomycete pathogens Pseudomonas syringae and Phytophthora capsici, respectively in the transgenic Arabidopsis plants. To explore the reason for the resistance response to, exclusively, the fungal pathogens, purified PFT protein was hybridized to a glycan microarray having 300 different types of carbohydrate monomers and oligomers. It was found that PFT specifically hybridized with chitin monomer, N-acetyl glucosamine (GlcNAc), which is present in fungal cell walls but not in bacteria or oomycete species. This exclusive recognition of chitin may be responsible for the specificity of PFT-mediated resistance to fungal pathogens. Transfer of the atypical quantitative resistance of wheat PFT to a dicot system highlights its potential utility in designing broad-spectrum resistance in diverse host plants. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| | - Arunima Sinha
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| | - Megha Gupta
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| | - Shunyuan Xiao
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, U.S.A
| | - Rosemarie Hammond
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, U.S.A
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| |
Collapse
|
4
|
Gaucher M, Heintz C, Cournol R, Juillard A, Bellevaux C, Cavaignac S, Coureau C, Giraud M, Le Maguet J, Bérud M, Koké E, Crété X, Lemarquand A, Orain G, Brisset MN. The Use of Potassium Phosphonate (KHP) for the Control of Major Apple Pests. PLANT DISEASE 2022; 106:3166-3177. [PMID: 35596247 DOI: 10.1094/pdis-01-22-0183-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phosphonate-based products have demonstrated diverse abilities to protect crops against pests, with various modes of action proposed. In this article, we specifically investigated potassium phosphonate (KHP) on apple crops. Its performance to control three major apple bioagressors (Venturia inaequalis, Erwinia amylovora, and Dysaphis plantaginea) was evaluated under semicontrolled conditions. The product was able to confer significant protection rates (40 to 75% for apple scab, 40% for fire blight, and 30% for rosy aphid), which can be explained by its more or less efficient biocidal activity against the three pests, and by its ability to induce apple immunity (pathogenesis-related proteins and secondary metabolites genes). A cumulative effect of treatments as well as the systemic behavior of the product was demonstrated. Fields trials against apple scab and the postharvest disease bull's eyes rot (Neofabraea vagabunda) were performed on different apple varieties by applying KHP combined with light pest management programs either reducing (dessert orchards) or suppressing (cider orchards) fungicide applications. KHP was able to reduce apple scab by 70 to 90% on shoots and young and harvested fruit, and bull's eyes rot by 70 to 90% on harvested fruit. Overall, our results indicate that KHP is useful for the protection of apple trees against its major pests by direct effect and by triggering the host defense system.
Collapse
Affiliation(s)
- Matthieu Gaucher
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, F-49071, Beaucouzé, France
| | - Christelle Heintz
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, F-49071, Beaucouzé, France
| | - Raphaël Cournol
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, F-49071, Beaucouzé, France
| | - Anthony Juillard
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, F-49071, Beaucouzé, France
| | | | | | | | | | | | | | | | | | | | | | - Marie-Noëlle Brisset
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, F-49071, Beaucouzé, France
| |
Collapse
|