1
|
Shen W, Zhang D, Zhang Z, He J, Khalil A, Li X, Ma F, Guan Q, Niu C. The SET-Domain-Containing Protein MdSDG26 Negatively Regulates Alternaria alternata Resistance in Apple. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39257329 DOI: 10.1111/pce.15136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Apple leaf spot is one of the most devastating diseases in the apple industry, caused by Alternaria alternata f. sp mali (A. alternata). SET-domain group (SDG) proteins function as the histone methyltransferases and participate in plant development and stress responses. However, whether SDG proteins are associated with A. alternata resistance is largely unclear. Here, we describe the pathogen-inducible MdSDG26 gene in apple (Malus × domestica). MdSDG26 has two transcript variants that function similarly in catalyzing histone methylation and A. alternata resistance. Transient overexpression of MdSDG26 increased the global levels of H3K4me3 and H3K36me3, whereas knockdown of MdSDG26 only reduced the H3K36me3 level. Transcriptome analysis revealed that MdSDG26 affected the genome-wide transcriptome changes in response to A. alternata infection. ChIP-qPCR analysis demonstrated that MdSDG26 modulates the levels of H3K36me3 and H3K4me3 at both the promoter and exon regions of MdNTL9. As a negative regulator of A. alternata resistance in apples, MdNTL9 plays a pivotal role in MdSDG26-mediated resistance to A. alternata. Therefore, our findings provide compelling evidence for the regulatory function of MdSDG26 in histone methylation and its molecular role in conferring resistance to A. alternata.
Collapse
Affiliation(s)
- Wenyun Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dehui Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Zitong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jieqiang He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Arij Khalil
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Xuewei Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingmei Guan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Chundong Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Shu L, Li L, Jiang YQ, Yan J. Advances in membrane-tethered NAC transcription factors in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112034. [PMID: 38365003 DOI: 10.1016/j.plantsci.2024.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Transcription factors are central components in cell signal transduction networks and are critical regulators for gene expression. It is estimated that approximately 10% of all transcription factors are membrane-tethered. MTFs (membrane-bound transcription factors) are latent transcription factors that are inherently anchored in the cellular membrane in a dormant form. When plants encounter environmental stimuli, they will be released from the membrane by intramembrane proteases or by the ubiquitin proteasome pathway and then were translocated to the nucleus. The capacity to instantly activate dormant transcription factors is a critical strategy for modulating diverse cellular functions in response to external or internal signals, which provides an important transcriptional regulatory network in response to sudden stimulus and improves plant survival. NTLs (NTM1-like) are a small subset of NAC (NAM, ATAF1/2, CUC2) transcription factors, which contain a conserved NAC domain at the N-terminus and a transmembrane domain at the C-terminus. In the past two decades, several NTLs have been identified from several species, and most of them are involved in both development and stress response. In this review, we review the reports and findings on NTLs in plants and highlight the mechanism of their nuclear import as well as their functions in regulating plant growth and stress response.
Collapse
Affiliation(s)
- Lin Shu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Longhui Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi province 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China.
| |
Collapse
|
3
|
Zhou H, Song X, Lu MZ. Growth-regulating factor 15-mediated vascular cambium differentiation positively regulates wood formation in hybrid poplar ( Populus alba × P. glandulosa). FRONTIERS IN PLANT SCIENCE 2024; 15:1343312. [PMID: 38425797 PMCID: PMC10902170 DOI: 10.3389/fpls.2024.1343312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Introduction Hybrid poplars are industrial trees in China. An understanding of the molecular mechanism underlying wood formation in hybrid poplars is necessary for molecular breeding. Although the division and differentiation of vascular cambial cells is important for secondary growth and wood formation, the regulation of this process is largely unclear. Methods In this study, mPagGRF15 OE and PagGRF15-SRDX transgenic poplars were generated to investigate the function of PagGRF15. RNA-seq and qRT-PCR were conducted to analyze genome-wide gene expression, while ChIP‒seq and ChIP-PCR were used to identified the downstream genes regulated by PagGRF15. Results and discussion We report that PagGRF15 from hybrid poplar (Populus alba × P. glandulosa), a growth-regulating factor, plays a critical role in the regulation of vascular cambium activity. PagGRF15 was expressed predominantly in the cambial zone of vascular tissue. Overexpression of mPagGRF15 (the mutated version of GRF15 in the miR396 target sequence) in Populus led to decreased plant height and internode number. Further stem cross sections showed that the mPagGRF15 OE plants exhibited significant changes in vascular pattern with an increase in xylem and a reduction in phloem. In addition, cambium cell files were decreased in the mPagGRF15 OE plants. However, dominant suppression of the downstream genes of PagGRF15 using PagGRF15-SRDX showed an opposite phenotype. Based on the RNA-seq and ChIP-seq results, combining qRT-PCR and ChIP-PCR analysis, candidate genes, such as WOX4b, PXY and GID1.3, were obtained and found to be mainly involved in cambial activity and xylem differentiation. Accordingly, we speculated that PagGRF15 functions as a positive regulator mediating xylem differentiation by repressing the expression of the WOX4a and PXY genes to set the pace of cambial activity. In contrast, PagGRF15 mediated the GA signaling pathway by upregulating GID1.3 expression to stimulate xylem differentiation. This study provides valuable information for further studies on vascular cambium differentiation mechanisms and genetic improvement of the specific gravity of wood in hybrid poplars.
Collapse
Affiliation(s)
- Houjun Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Yu J, Gao B, Li D, Li S, Chiang VL, Li W, Zhou C. Ectopic Expression of PtrLBD39 Retarded Primary and Secondary Growth in Populus trichocarpa. Int J Mol Sci 2024; 25:2205. [PMID: 38396881 PMCID: PMC10889148 DOI: 10.3390/ijms25042205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Primary and secondary growth of trees are needed for increments in plant height and stem diameter, respectively, affecting the production of woody biomass for applications in timber, pulp/paper, and related biomaterials. These two types of growth are believed to be both regulated by distinct transcription factor (TF)-mediated regulatory pathways. Notably, we identified PtrLBD39, a highly stem phloem-specific TF in Populus trichocarpa and found that the ectopic expression of PtrLBD39 in P. trichocarpa markedly retarded both primary and secondary growth. In these overexpressing plants, the RNA-seq, ChIP-seq, and weighted gene co-expression network analysis (WGCNA) revealed that PtrLBD39 directly or indirectly regulates TFs governing vascular tissue development, wood formation, hormonal signaling pathways, and enzymes responsible for wood components. This regulation led to growth inhibition, decreased fibrocyte secondary cell wall thickness, and reduced wood production. Therefore, our study indicates that, following ectopic expression in P. trichocarpa, PtrLBD39 functions as a repressor influencing both primary and secondary growth.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Boyuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Danning Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| |
Collapse
|
5
|
Xia F, Li B, Song K, Wang Y, Hou Z, Li H, Zhang X, Li F, Yang L. Polyploid Genome Assembly Provides Insights into Morphological Development and Ascorbic Acid Accumulation of Sauropus androgynus. Int J Mol Sci 2023; 25:300. [PMID: 38203470 PMCID: PMC10778994 DOI: 10.3390/ijms25010300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Sauropus androgynus (S. androgynus) (2n = 4x = 52) is one of the most popular functional leafy vegetables in South and Southeast Asia. With its rich nutritional and pharmaceutical values, it has traditionally had widespread use for dietary and herbal purposes. Here, the genome of S. androgynus was sequenced and assembled, revealing a genome size of 1.55 Gb with 26 pseudo-chromosomes. Phylogenetic analysis traced back the divergence of Sauropus from Phyllanthus to approximately 29.67 million years ago (Mya). Genome analysis revealed that S. androgynus polyploidized around 20.51 Mya and shared a γ event about 132.95 Mya. Gene function analysis suggested that the expansion of pathways related to phloem development, lignin biosynthesis, and photosynthesis tended to result in the morphological differences among species within the Phyllanthaceae family, characterized by varying ploidy levels. The high accumulation of ascorbic acid in S. androgynus was attributed to the high expression of genes associated with the L-galactose pathway and recycling pathway. Moreover, the expanded gene families of S. androgynus exhibited multiple biochemical pathways associated with its comprehensive pharmacological activity, geographic adaptation and distinctive pleasurable flavor. Altogether, our findings represent a crucial genomic asset for S. androgynus, casting light on the intricate ploidy within the Phyllanthaceae family.
Collapse
Affiliation(s)
- Fagang Xia
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.X.); (Y.W.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Li
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Kangkang Song
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Yankun Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.X.); (Y.W.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuangwei Hou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Haozhen Li
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Xiaohua Zhang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Long Yang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| |
Collapse
|
6
|
Montesinos Á, Rubio-Cabetas MJ, Grimplet J. Characterization of Almond Scion/Rootstock Communication in Cultivar and Rootstock Tissues through an RNA-Seq Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:4166. [PMID: 38140493 PMCID: PMC10747828 DOI: 10.3390/plants12244166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The rootstock genotype plays a crucial role in determining various aspects of scion development, including the scion three-dimensional structure, or tree architecture. Consequently, rootstock choice is a pivotal factor in the establishment of new almond (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) intensive planting systems, demanding cultivars that can adapt to distinct requirements of vigor and shape. Nevertheless, considering the capacity of the rootstock genotype to influence scion development, it is likely that the scion genotype reciprocally affects rootstock performance. In the context of this study, we conducted a transcriptomic analysis of the scion/rootstock interaction in young almond trees, with a specific focus on elucidating the scion impact on the rootstock molecular response. Two commercial almond cultivars were grafted onto two hybrid rootstocks, thereby generating four distinct combinations. Through RNA-Seq analysis, we discerned that indeed, the scion genotype exerts an influence on the rootstock expression profile. This influence manifests through the modulation of genes associated with hormonal regulation, cell division, root development, and light signaling. This intricate interplay between scion and rootstock communication plays a pivotal role in the development of both scion and rootstock, underscoring the critical importance of a correct choice when establishing new almond orchards.
Collapse
Affiliation(s)
- Álvaro Montesinos
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (UPM-INIA/CSIC), 28223 Madrid, Spain;
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 4 177, 50013 Zaragoza, Spain
| | - María José Rubio-Cabetas
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 4 177, 50013 Zaragoza, Spain
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 4 177, 50013 Zaragoza, Spain
| |
Collapse
|
7
|
Liu G, Wu Z, Luo J, Wang C, Shang X, Zhang G. Genes expression profiles in vascular cambium of Eucalyptus urophylla × Eucalyptus grandis at different ages. BMC PLANT BIOLOGY 2023; 23:500. [PMID: 37848837 PMCID: PMC10583469 DOI: 10.1186/s12870-023-04500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Wood is a secondary xylem generated by vascular cambium. Vascular cambium activities mainly include cambium proliferation and vascular tissue formation through secondary growth, thereby producing new secondary phloem inward and secondary xylem outward and leading to continuous tree thickening and wood formation. Wood formation is a complex biological process, which is strictly regulated by multiple genes. Therefore, molecular level research on the vascular cambium of different tree ages can lead to the identification of both key and related genes involved in wood formation and further explain the molecular regulation mechanism of wood formation. RESULTS In the present study, RNA-Seq and Pac-Bio Iso-Seq were used for profiling gene expression changes in Eucalyptus urophylla × Eucalyptus grandis (E. urograndis) vascular cambium at four different ages. A total of 59,770 non-redundant transcripts and 1892 differentially expressed genes (DEGs) were identified. The expression trends of the DEGs related to cell division and differentiation, cell wall biosynthesis, phytohormone, and transcription factors were analyzed. The DEGs encoding expansin, kinesin, cycline, PAL, GRP9, KNOX, C2C2-dof, REV, etc., were highly expressed in E. urograndis at three years old, leading to positive effects on growth and development. Moreover, some gene family members, such as NAC, MYB, HD-ZIP III, RPK, and RAP, play different regulatory roles in wood formation because of their sophisticated transcriptional network and function redundantly. CONCLUSIONS These candidate genes are a potential resource to further study wood formation, especially in fast-growing and adaptable eucalyptus. The results may also serve as a basis for further research to unravel the molecular mechanism underlying wood formation.
Collapse
Affiliation(s)
- Guo Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Zhihua Wu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Jianzhong Luo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Chubiao Wang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Xiuhua Shang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Guowu Zhang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China.
| |
Collapse
|
8
|
Liu H, Chen S, Wu X, Li J, Xu C, Huang M, Wang H, Liu H, Zhao Z. Identification of the NAC Transcription Factor Family during Early Seed Development in Akebia trifoliata ( Thunb.) Koidz. PLANTS (BASEL, SWITZERLAND) 2023; 12:1518. [PMID: 37050144 PMCID: PMC10096588 DOI: 10.3390/plants12071518] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to gain an understanding of the possible function of NACs by examining their physicochemical properties, structure, chromosomal location, and expression. Being a family of plant-specific transcription factors, NAC (petunia no apical meristem and Arabidopsis thaliana ATAF1, ATAF2, and CUC2) is involved in plant growth and development. None of the NAC genes has been reported in Akebia trifoliata (Thunb.) Koidz (A. trifoliata). In this study, we identified 101 NAC proteins (AktNACs) in the A. trifoliata genome by bioinformatic analysis. One hundred one AktNACs were classified into the following twelve categories based on the phylogenetic analysis of NAC protein: NAC-a, NAC-b, NAC-c, NAC-d, NAC-e, NAC-f, NAC-g, NAC-h, NAC-i, NAC-j, NAC-k, and NAC-l. The accuracy of the clustering results was demonstrated based on the gene structure and conserved motif analysis of AktNACs. In addition, we identified 44 pairs of duplication genes, confirming the importance of purifying selection in the evolution of AktNACs. The morphology and microstructure of early A. trifoliata seed development showed that it mainly underwent rapid cell division, seed enlargement, embryo formation and endosperm development. We constructed AktNACs co-expression network and metabolite correlation network based on transcriptomic and metabolomic data of A. trifoliata seeds. The results of the co-expression network showed that 25 AtNAC genes were co-expressed with 233 transcription factors. Metabolite correlation analysis showed that 23 AktNACs were highly correlated with 28 upregulated metabolites. Additionally, 25 AktNACs and 235 transcription factors formed co-expression networks with 141 metabolites, based on correlation analysis involving AktNACs, transcription factors, and metabolites. Notably, AktNAC095 participates in the synthesis of 35 distinct metabolites. Eight of these metabolites, strongly correlated with AktNAC095, were upregulated during early seed development. These studies may provide insight into the evolution, possible function, and expression of AktNACs genes.
Collapse
Affiliation(s)
- Huijuan Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Songshu Chen
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Xiaomao Wu
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Jinling Li
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Cunbin Xu
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Mingjin Huang
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Hualei Wang
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Hongchang Liu
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Zhi Zhao
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| |
Collapse
|