1
|
Alam NB, Pelzang S, Jain A, Mustafiz A. Cytoprotective role of pyruvate in mitigating abiotic stress response in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112325. [PMID: 39608574 DOI: 10.1016/j.plantsci.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Pyruvate is a central metabolite in cellular respiration and metabolism. It can neutralize reactive oxygen species (ROS), safeguard mitochondrial membrane potential, and regulate gene expression under oxidative stress. However, its role in abiotic stress tolerance in plants needs to be explored. Therefore, the current study investigated the role of pyruvate and its metabolism in response to different abiotic stresses in the model plant Arabidopsis thaliana. We retrieved transcript profiling data for pyruvate metabolism and transportation genes (D-LDH, AlaAT, PK, MPC, PDC, PDH, NAD-ME) from public databases. The study's findings indicate that these genes' expression is regulated in response to different abiotic stresses. Moreover, the promoter region of these genes contained multiple cis-acting elements like ABRE, ARE, P-box, and MBS, which are associated with plants' abiotic stress response. Furthermore, colorimetric analysis showed higher pyruvate content under different abiotic stresses. Therefore, exogenous pyruvate treatment was given before and after different abiotic stresses, which could combat the toxicity of pro-oxidant molecules by pyruvate intake. The semiquantitative RT-PCR analysis revealed that exogenous pyruvate treatment enhances the expression of important transcription factors WRKY2, GH3.3, DREB2A, and bZIP1, and stress-responsive genes e.g., APX1, ERD5, ADC2, and HSP70 in addition to abiotic stresses. Moreover, Arabidopsis plants pre-treated with pyruvate before oxidative stress showed less RBOHD expression. Additionally, pyruvate's cytoprotective role was compared to other well-known antioxidants such as NAC, Trolox, and GSH. Finally, untargeted GC-MS/MS analysis of abiotic stress-treated Arabidopsis plants showed a higher metabolite level of β-hydroxy-pyruvic acid, indicating the crucial role of pyruvate during abiotic stress.
Collapse
Affiliation(s)
- Nazmir Binta Alam
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Sangay Pelzang
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Arushi Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India.
| |
Collapse
|
2
|
Demircan N, Sonmez MC, Akyol TY, Ozgur R, Turkan I, Dietz KJ, Uzilday B. Alternative electron sinks in chloroplasts and mitochondria of halophytes as a safety valve for controlling ROS production during salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14397. [PMID: 38894507 DOI: 10.1111/ppl.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | | | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, İzmir, Türkiye
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
3
|
Albert B, Dellero Y, Leport L, Aubert M, Bouchereau A, Le Cahérec F. Low Nitrogen Input Mitigates Quantitative but Not Qualitative Reconfiguration of Leaf Primary Metabolism in Brassica napus L. Subjected to Drought and Rehydration. PLANTS (BASEL, SWITZERLAND) 2024; 13:969. [PMID: 38611498 PMCID: PMC11013775 DOI: 10.3390/plants13070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
In the context of climate change and the reduction of mineral nitrogen (N) inputs applied to the field, winter oilseed rape (WOSR) will have to cope with low-N conditions combined with water limitation periods. Since these stresses can significantly reduce seed yield and seed quality, maintaining WOSR productivity under a wide range of growth conditions represents a major goal for crop improvement. N metabolism plays a pivotal role during the metabolic acclimation to drought in Brassica species by supporting the accumulation of osmoprotective compounds and the source-to-sink remobilization of nutrients. Thus, N deficiency could have detrimental effects on the acclimation of WOSR to drought. Here, we took advantage of a previously established experiment to evaluate the metabolic acclimation of WOSR during 14 days of drought, followed by 8 days of rehydration under high- or low-N fertilization regimes. For this purpose, we selected three leaf ranks exhibiting contrasted sink/source status to perform absolute quantification of plant central metabolites. Besides the well-described accumulation of proline, we observed contrasted accumulations of some "respiratory" amino acids (branched-chain amino acids, lysineand tyrosine) in response to drought under high- and low-N conditions. Drought also induced an increase in sucrose content in sink leaves combined with a decrease in source leaves. N deficiency strongly decreased the levels of major amino acids and subsequently the metabolic response to drought. The drought-rehydration sequence identified proline, phenylalanine, and tryptophan as valuable metabolic indicators of WOSR water status for sink leaves. The results were discussed with respect to the metabolic origin of sucrose and some amino acids in sink leaves and the impact of drought on source-to-sink remobilization processes depending on N nutrition status. Overall, this study identified major metabolic signatures reflecting a similar response of oilseed rape to drought under low- and high-N conditions.
Collapse
Affiliation(s)
- Benjamin Albert
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, 31400 Toulouse, France
| | - Laurent Leport
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Mathieu Aubert
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, 31400 Toulouse, France
| | - Françoise Le Cahérec
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| |
Collapse
|
4
|
Sankar TV, Saharay M, Santhosh D, Menon S, Raran-Kurussi S, Padmasree K. Biomolecular interaction of purified recombinant Arabidopsis thaliana's alternative oxidase 1A with TCA cycle metabolites: Biophysical and molecular docking studies. Int J Biol Macromol 2024; 258:128814. [PMID: 38114006 DOI: 10.1016/j.ijbiomac.2023.128814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/08/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
In higher plants, the mitochondrial alternative oxidase (AOX) pathway plays an essential role in maintaining the TCA cycle/cellular carbon and energy balance under various physiological and stress conditions. Though the activation of AOX pathway upon exogenous addition of α-ketoacids/TCA cycle metabolites [pyruvate, α-ketoglutarate (α-KG), oxaloacetic acid (OAA), succinate and malic acid] to isolated mitochondria is known, the molecular mechanism of interaction of these metabolites with AOX protein is limited. The present study is designed to understand the biomolecular interaction of pure recombinant Arabidopsis thaliana AOX1A with TCA cycle metabolites under in vitro conditions using various biophysical and molecular docking studies. The binding of α-KG, fumaric acid and OAA to rAtAOX1A caused conformational change in the microenvironment of tryptophan residues as evidenced by red shift in the synchronous fluorescence spectra (∆λ = 60 nm). Besides, a decrease in conventional fluorescence emission spectra, tyrosine specific synchronous fluorescence spectra (∆λ = 15 nm) and α-helical content of CD spectra revealed the conformation changes in rAtAOX1A structure associated with binding of various TCA cycle metabolites. Further, surface plasmon resonance (SPR) and microscale thermophoresis (MST) studies revealed the binding affinity, while docking studies identified binding pocket residues, respectively, for these metabolites on rAtAOX1A.
Collapse
Affiliation(s)
- Tadiboina Veera Sankar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Dharawath Santhosh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Saji Menon
- Senior Field Application Scientist, Nanotemper Technologies GmbH, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500107, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India.
| |
Collapse
|
5
|
Bruhn D, Noguchi K, Griffin KL, Tjoelker MG. Differential nighttime decreases in leaf respiratory CO 2 -efflux and O 2 -uptake. THE NEW PHYTOLOGIST 2024; 241:1387-1392. [PMID: 38152850 DOI: 10.1111/nph.19494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kevin L Griffin
- Department of Ecology, Evolution, & Environmental Biology, Columbia University, New York, NY, 10027, USA
- Department of Earth and Environmental Science, Columbia University, New York, NY, 10027, USA
- Division of Biology & Paleoenvironment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10027, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
6
|
Hanson AD, Millar AH, Nikoloski Z, Way DA. Focus on respiration. PLANT PHYSIOLOGY 2023; 191:2067-2069. [PMID: 36703191 PMCID: PMC10069875 DOI: 10.1093/plphys/kiad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Andrew D Hanson
- Author for correspondence: (A.D.H.), (A.H.M.), (Z.N.), (D.A.W.)
| | - A Harvey Millar
- Author for correspondence: (A.D.H.), (A.H.M.), (Z.N.), (D.A.W.)
| | - Zoran Nikoloski
- Author for correspondence: (A.D.H.), (A.H.M.), (Z.N.), (D.A.W.)
| | - Danielle A Way
- Author for correspondence: (A.D.H.), (A.H.M.), (Z.N.), (D.A.W.)
| |
Collapse
|