1
|
Fan X, Lin B, Yin Y, Zong Y, Li Y, Zhu Y, Guo W. Unraveling the Molecular Mechanisms of Blueberry Root Drought Tolerance Through Yeast Functional Screening and Metabolomic Profiling. PLANTS (BASEL, SWITZERLAND) 2024; 13:3528. [PMID: 39771226 PMCID: PMC11678528 DOI: 10.3390/plants13243528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Blueberry plants are among the most important fruit-bearing shrubs, but they have shallow, hairless roots that are not conducive to water and nutrient uptake, especially under drought conditions. Therefore, the mechanism underlying blueberry root drought tolerance should be clarified. Hence, we established a yeast expression library comprising blueberry genes associated with root responses to drought stress. High-throughput sequencing technology enabled the identification of 1475 genes potentially related to drought tolerance. A subsequent KEGG enrichment analysis revealed 77 key genes associated with six pathways: carbon and energy metabolism, biosynthesis of secondary metabolites, nucleotide and amino acid metabolism, genetic information processing, signal transduction, and material transport and catabolism. Metabolomic profiling of drought-tolerant yeast strains under drought conditions detected 1749 differentially abundant metabolites (DAMs), including several up-regulated metabolites (organic acids, amino acids and derivatives, alkaloids, and phenylpropanoids). An integrative analysis indicated that genes encoding several enzymes, including GALM, PK, PGLS, and PIP5K, modulate key carbon metabolism-related metabolites, including D-glucose 6-phosphate and β-D-fructose 6-phosphate. Additionally, genes encoding FDPS and CCR were implicated in terpenoid and phenylalanine biosynthesis, which affected metabolite contents (e.g., farnesylcysteine and tyrosine). Furthermore, genes for GST and GLT1, along with eight DAMs, including L-γ-glutamylcysteine and L-ornithine, contributed to amino acid metabolism, while genes encoding NDPK and APRT were linked to purine metabolism, thereby affecting certain metabolites (e.g., inosine and 3',5'-cyclic GMP). Overall, the yeast functional screening system used in this study effectively identified genes and metabolites influencing blueberry root drought tolerance, offering new insights into the associated molecular mechanisms.
Collapse
Affiliation(s)
- Xinyu Fan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.F.); (B.L.); (Y.Y.); (Y.Z.); (Y.L.)
| | - Beijia Lin
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.F.); (B.L.); (Y.Y.); (Y.Z.); (Y.L.)
| | - Yahong Yin
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.F.); (B.L.); (Y.Y.); (Y.Z.); (Y.L.)
| | - Yu Zong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.F.); (B.L.); (Y.Y.); (Y.Z.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Yongqiang Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.F.); (B.L.); (Y.Y.); (Y.Z.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Youyin Zhu
- College of Agricultural, Jinhua University of Vocational Technology, Jinhua 321007, China
| | - Weidong Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.F.); (B.L.); (Y.Y.); (Y.Z.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Kamyab A, Samsampour D, Ahmadinasab N, Bagheri A. Lamiaceae family-derived endophytic fungi: induced tolerance to drought stress in Thymus vulgaris plants. BMC PLANT BIOLOGY 2024; 24:1104. [PMID: 39567914 PMCID: PMC11580534 DOI: 10.1186/s12870-024-05764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Thymus vulgaris is a valuable medicinal plant widely cultivated for its aromatic and medicinal properties. However, like many plants, T. vulgaris faces challenges such as drought stress, which significantly affects its growth, morphological, physiological, and biochemical processes. Understanding how endophytic fungi isolated from Lamiaceae family influence T. vulgaris under varying watering regimes can enhance its resilience against drought stress. This study aims to assess the impact of individual and co-inoculation of three native endophytic species, i.e., Fusarium sp. (F1), Cladosporium puyae (F2), and Curvularia australiensis (F3), on T. vulgaris growth parameters under different irrigation regimes in greenhouse conditions. RESULTS It has been discovered that using fungal endophytes as a biological tool can benefits T. vulgaris under drought stress. The results indicated that drought stress significantly reduced the growth, chlorophyll, and carotenoid content of plants lacking endophytes. Combinatory applications with fungal endophytes significantly improved the above-mentioned parameters under drought stress. Lipid peroxidation levels were significantly reduced in plants inoculated with bacterial endophytes. Drought stress significantly increased the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR), peroxidase (POD), and catalase (CAT) in drought conditions. CONCLUSIONS The findings suggested that the addition of fungal endophytes to the inoculum enhances drought tolerance in T. vulgaris by mitigating the harmful impact of drought stress on plant growth and physiological functions. The higher activity of antioxidant enzymes and improved redox state of glutathione are responsible for plants' greater resistance to drought.
Collapse
Affiliation(s)
- Afsoun Kamyab
- Department of Plant Breeding and Biotechnology in Horticultural Products, University of Hormozgan, Bandar Abbas, Iran
| | - Davood Samsampour
- Department of Horticulture, Faculty of Agriculture, University of Hormozgan, Bandar Abbas, Iran.
| | - Navid Ahmadinasab
- Hormozgan Studies and Research Center, University of Hormozgan, Bandar Abbas, Iran
| | - Abdonnabi Bagheri
- Department of Plant Protection Research, Hormozgan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran
| |
Collapse
|
3
|
Gao X, Lin F, Li M, Mei Y, Li Y, Bai Y, He X, Zheng Y. Prediction of the potential distribution of a raspberry (Rubus idaeus) in China based on MaxEnt model. Sci Rep 2024; 14:24438. [PMID: 39424891 PMCID: PMC11489761 DOI: 10.1038/s41598-024-75559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Rubus idaeus is a pivotal cultivated species of raspberry known for its attractive color, distinct flavor, and numerous health benefits. It can be used in pharmaceutical, cosmetics, agriculture and food industries not only as fresh but also as a processed product. Nowadays due to climatic changes, genetic diversity of cultivars has decreased dramatically. However, until now, the status of wild R. idaeus resources in China have not been exploited. In this study, we investigated the resources of wild R. idaeus in China to secure its future potential and sustainability. The MaxEnt model was used to predict R. idaeus suitable habitats and spatial distribution patterns for current and future climate scenarios, based on wild domestic geographic distribution data, current and future climate variables, and topographic variables. The results showed that, mean temperature of the coldest quarter (bio11), precipitation of the coldest quarter (bio19), precipitation of the warmest quarter (bio18), and temperature seasonality (bio4) were crucial factors affecting the distribution of R. idaeus. Presently, the suitable habitats were mainly distributed in the north of China including Xinjiang, Inner Mongolia, Gansu, Ningxia, Shaanxi, Shanxi, Hebei, Beijing, Liaoning, Jilin, Heilongjiang. According to our results, in 2050s, the total suitable habitat area of R. idaeus will increase under SSP1-2.6 and then will be decreased with climate change, while in the 2090s, the total suitable habitat area will continue to decrease. From the present to the 2090s, the centroid distribution of R. idaeus in China will shift towards the east and the species will always be present in Inner Mongolia. Our results provide wild resource information and theoretical reference for the protection and rational utilization of R. idaeus.
Collapse
Affiliation(s)
- Xiangqian Gao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Meng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yujie Mei
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei, China
| | - Yongxiang Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanlin Bai
- Shanxi State-Owned Forest Farm and Seedling Station, Taiyuan, 030000, Shanxi, China
| | - Xiaolong He
- Shanxi State-Owned Forest Farm and Seedling Station, Taiyuan, 030000, Shanxi, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
4
|
Xiao P, Qu J, Wang Y, Fang T, Xiao W, Wang Y, Zhang Y, Khan M, Chen Q, Xu X, Li C, Liu JH. Transcriptome and metabolome atlas reveals contributions of sphingosine and chlorogenic acid to cold tolerance in Citrus. PLANT PHYSIOLOGY 2024; 196:634-650. [PMID: 38875157 DOI: 10.1093/plphys/kiae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
Citrus is one of the most important fruit crop genera in the world, but many Citrus species are vulnerable to cold stress. Ichang papeda (Citrus ichangensis), a cold-hardy citrus species, holds great potential for identifying valuable metabolites that are critical for cold tolerance in Citrus. However, the metabolic changes and underlying mechanisms that regulate Ichang papeda cold tolerance remain largely unknown. In this study, we compared the metabolomes and transcriptomes of Ichang papeda and HB pummelo (Citrus grandis "Hirado Buntan", a cold-sensitive species) to explore the critical metabolites and genes responsible for cold tolerance. Metabolomic analyses led to the identification of common and genotype-specific metabolites, consistent with transcriptomic alterations. Compared to HB pummelo under cold stress, Ichang papeda accumulated more sugars, flavonoids, and unsaturated fatty acids, which are well-characterized metabolites involved in stress responses. Interestingly, sphingosine and chlorogenic acid substantially accumulated only in Ichang papeda. Knockdown of CiSPT (C. ichangensis serine palmitoyltransferase) and CiHCT2 (C. ichangensis hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase2), two genes involved in sphingosine and chlorogenic acid biosynthesis, dramatically decreased endogenous sphingosine and chlorogenic acid levels, respectively. This reduction in sphingosine and chlorogenic acid notably compromised the cold tolerance of Ichang papeda, whereas exogenous application of these metabolites increased plant cold tolerance. Taken together, our findings indicate that greater accumulation of a spectrum of metabolites, particularly sphingosine and chlorogenic acid, promotes cold tolerance in cold-tolerant citrus species. These findings broaden our understanding of plant metabolic alterations in response to cold stress and provide valuable targets that can be manipulated to improve Citrus cold tolerance.
Collapse
Affiliation(s)
- Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yilei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyu Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
5
|
Liu Y, Zhao C, Tang X, Wang L, Guo R. Transcriptomic and Metabolomic Insights into ABA-Related Genes in Cerasus humilis under Drought Stress. Int J Mol Sci 2024; 25:7635. [PMID: 39062878 PMCID: PMC11276642 DOI: 10.3390/ijms25147635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Cerasus humilis, a small shrub of the Cerasus genus within the Rosaceae family, is native to China and renowned for its highly nutritious and medicinal fruits, robust root system, and remarkable drought resistance. This study primarily employed association transcriptome and metabolome analyses to assess changes in abscisic acid (ABA) levels and identify key regulatory genes in C. humilis subjected to varying degrees of drought stress. Notably, we observed distinct alterations in transcription factors across different drought intensities. Specifically, our transcriptome data indicated noteworthy shifts in GATA, MYB, MYC, WRKY, C2H2, and bHLH transcription factor families. Furthermore, combined transcriptomic and metabolomic investigations demonstrated significant enrichment of metabolic pathways, such as 'Carbon metabolism', 'Biosynthesis of amino acids', 'Biosynthesis of cofactors', 'Phenylpropanoid biosynthesis', 'Starch and sucrose metabolism', and 'Plant hormone signal transduction' under moderate (Mod) or severe (Sev) drought conditions. A total of 11 candidate genes involved in ABA biosynthesis and signaling pathways were identified. The down-regulated genes included secoisolariciresinol dehydrogenase-like and PYL2. Conversely, genes including FAD-dependent urate hydroxylase-like, cytochrome P450 97B2, carotenoid cleavage dioxygenase 4 (CCD4), SnRK2.2, ABI 5-like protein 5, PP2C 51, and SnRK2.3, were up-regulated under Mod or Sev drought stress. This study lays the genetic foundation for ABA biosynthesis to enhance drought tolerance and provides genetic resources for plant genetic engineering and breeding efforts.
Collapse
Affiliation(s)
| | | | | | | | - Ruixue Guo
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (C.Z.); (X.T.); (L.W.)
| |
Collapse
|
6
|
Shu H, Xu K, Li X, Liu J, Altaf MA, Fu H, Lu X, Cheng S, Wang Z. Exogenous strigolactone enhanced the drought tolerance of pepper (Capsicum chinense) by mitigating oxidative damage and altering the antioxidant mechanism. PLANT CELL REPORTS 2024; 43:106. [PMID: 38532109 DOI: 10.1007/s00299-024-03196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
KEY MESSAGE Exogenous SL positively regulates pepper DS by altering the root morphology, photosynthetic character, antioxidant enzyme activity, stomatal behavior, and SL-related gene expression. Drought stress (DS) has always been a problem for the growth and development of crops, causing significant negative impacts on crop productivity. Strigolactone (SL) is a newly discovered class of plant hormones that are involved in plants' growth and development and environmental stresses. However, the role of SL in response to DS in pepper remains unknown. DS considerably hindered photosynthetic pigments content, damaged root architecture system, and altered antioxidant machinery. In contrast, SL application significantly restored pigment concentration modified root architecture system, and increased relative chlorophyll content (SPAD). Additionally, SL treatment reduced oxidative damage by reducing hydrogen peroxide (H2O2) (24-57%) and malondialdehyde (MDA) (79-89%) accumulation in pepper seedlings. SL-pretreated pepper seedlings showed significant improvement in antioxidant enzyme activity, proline accumulation, and soluble sugar content. Furthermore, SL-related genes (CcSMAX2, CcSMXL6, and CcSMXL3) were down-regulated under DS. These findings suggest that the foliar application of SL can alleviate the adverse effects of drought tolerance by up-regulating chlorophyll content and activating antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Kaijing Xu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
| | - Xiangrui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
| | - Jiancheng Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
7
|
Xia D, Guan L, Yin Y, Wang Y, Shi H, Li W, Zhang D, Song R, Hu T, Zhan X. Genome-Wide Analysis of MBF1 Family Genes in Five Solanaceous Plants and Functional Analysis of SlER24 in Salt Stress. Int J Mol Sci 2023; 24:13965. [PMID: 37762268 PMCID: PMC10531278 DOI: 10.3390/ijms241813965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Multiprotein bridging factor 1 (MBF1) is an ancient family of transcription coactivators that play a crucial role in the response of plants to abiotic stress. In this study, we analyzed the genomic data of five Solanaceae plants and identified a total of 21 MBF1 genes. The expansion of MBF1a and MBF1b subfamilies was attributed to whole-genome duplication (WGD), and the expansion of the MBF1c subfamily occurred through transposed duplication (TRD). Collinearity analysis within Solanaceae species revealed collinearity between members of the MBF1a and MBF1b subfamilies, whereas the MBF1c subfamily showed relative independence. The gene expression of SlER24 was induced by sodium chloride (NaCl), polyethylene glycol (PEG), ABA (abscisic acid), and ethrel treatments, with the highest expression observed under NaCl treatment. The overexpression of SlER24 significantly enhanced the salt tolerance of tomato, and the functional deficiency of SlER24 decreased the tolerance of tomato to salt stress. SlER24 enhanced antioxidant enzyme activity to reduce the accumulation of reactive oxygen species (ROS) and alleviated plasma membrane damage under salt stress. SlER24 upregulated the expression levels of salt stress-related genes to enhance salt tolerance in tomato. In conclusion, this study provides basic information for the study of the MBF1 family of Solanaceae under abiotic stress, as well as a reference for the study of other plants.
Collapse
Affiliation(s)
- Dongnan Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Lulu Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Yue Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Yixi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Hongyan Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Wenyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Dekai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Ran Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Tixu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| |
Collapse
|
8
|
Wu J, Cheng L, Espley R, Ma F, Malnoy M. Focus on fruit crops. PLANT PHYSIOLOGY 2023; 192:1659-1665. [PMID: 37148289 PMCID: PMC10315308 DOI: 10.1093/plphys/kiad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Affiliation(s)
- Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Richard Espley
- New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland 1025, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all’Adige 38098, Italy
| |
Collapse
|